
Computer Algebra 2
—

Fast polynomial arithmetic and
factorization

Thibaut Verron,

based on earlier lecture notes by Manuel Kauers

Winter semester 2018

1 Notations and conventions

Unless otherwise mentioned, we use the following notations:

• k , K , K are (commutative) �elds

• R is a (commutative, with 1) ring

Given a ring R, R∗ is the group of its invertible elements.

We assume that algebraic computations (sum, inverse, test of 0, test of 1, inverse where

applicable) can be performed.

For a vector v in a vector spaceV of dimension n, we denote its coordinates by (v0, . . . , vn−1).

If f is a polynomial of degree deg(f) = d , its coe�cients are denoted f0, . . . , fd , such that

f (X) = f0 + f1X + · · · + fdX
d =

d∑
i=0

fiX
i .

In order to simplify notations, we may at times use the convention that fi = 0 if i < 0 or

i > deg(f), so that

f =
∑
i ∈Z

fiX
i .

By convention, the degree of the 0 polynomial is −∞.

The logarithm log, without a base, is in base 2.

De�nition 1.1. Given two functions f ,д : N→ R>0

f = O(д) ⇐⇒
f (n)

д(n)
is bounded when n →∞

⇐⇒ ∃c ∈ R>0,n0 ∈ N,∀n ≥ n0, f (n) ≤ cд(n);

f = Õ(д) ⇐⇒ ∃l ∈ N, f = O(д log(д)l).

1.1 Exercises

Exercise 1.1. Show that the “when n → ∞” clause in the de�nition of O can be left out. In

2

1 Notations and conventions

other words, given f ,д : N→ R>0, show that

f = O(д) ⇐⇒
f (n)

д(n)
is bounded

⇐⇒ ∃c ∈ R>0,∀n ∈ N, f (n) ≤ cд(n)

3

2 Semi-fast multiplication

In this chapter, let R be any ring.

Given f ,д ∈ R[X] with degree less than n, we want to compute the coe�cients of h = f · д.

The complexity of the algorithm will be evaluated in number of multiplications and additions

in R. Typically, multiplications are more expensive!

2.1 Naive algorithm

Each coe�cient hk (0 ≤ k < 2n) can be computed with

hk =
k∑
i=0

fiдk−i ,

each costing O(n) multiplications and additions.

The total complexity of the naive algorithm is O(n2) multiplications and O(n2) additions.

2.2 Karatsuba’s algorithm

Remark 2.1. Linear polynomials can be multiplied using 3 multiplications instead of 4 :

(a + bX)(c + dX) = ac + (ad + bc)X + bdX 2

with

ad + bc = ad + bc + ac + bd − ac − bd = (a + b)(c + d) − ac − bd .

This can be used recursively to compute polynomial multiplication faster.

Algorithm 1 Karatsuba

Input: f = f0 + · · · + fn−1X
n−1

, д = д0 + · · · + дn−1X
n−1

Output: h = h0 + · · · + h2n−1X
2n−1

such that h = f д

1. If n = 1, then return f0д0

2. Write f = A + BX dn/2e , д = C + DX dn/2e where all of A,B,C,D have degree <
⌈n

2

⌉
.

3. Compute recursively:

• P = AC

• Q = BD

• R = (A + B)(C + D)

4. Return P + (R − P −Q)X dn/2e + RX 2 dn/2e

4

2 Semi-fast multiplication

Theorem 2.2. Karatsuba’s algorithm multiplies polynomials withO(nlog
2
(3)) = O(n1.585) multi-

plications and additions.

Proof. Let M(n) (resp. A(n)) be the number of multiplications (resp. additions) in a run of

Algo. 1 on an input with size n. Then:

M(n) = 3M(n/2)

and

A(n) = 3A(n/2) +O(n)

so M(n) = O(nlog
2
(3)) and A(n) = O(nlog

2
(3)). �

Remark 2.3. Karatsuba’s algorithm hides an evaluation/interpolation mechanism:

a = (a + bX)X=0

a + b = (a + bX)X=1

b =

(
a + bX

X

)
X=∞

and for two linear polynomials f ,д, if f д = h = h0 + h1X + h2X
2
, we have

f (0)д(0) = h(0) = h0

f (1)д(1) = h(X = 1) = h0 + h1 + h2(
f

X

)
X=∞

(д
X

)
X=∞

=

(
h

X 2

)
X=∞

= h2

2.3 Toom-k algorithm

For the remainder of this section, assume that the ring R is an in�nite �eld.

In general the coe�cients of h can be obtained as a linear combination of f (i)д(i) for i ∈
{0, . . . , 2n − 1} via

©­­­­«
h0

h1

h2

...

ª®®®®¬
=

©­­­­«
1 0 0 . . .

1 1 1 . . .

1 2 4 . . .
...
...
...
. . .

ª®®®®¬
−1 

©­­­­«
1 0 0 . . .

1 1 1 . . .

1 2 4 . . .
...
...
...
. . .

ª®®®®¬
©­­­­«
f0
f1
f2
...

ª®®®®¬
�

©­­­­«
1 0 0 . . .

1 1 1 . . .

1 2 4 . . .
...
...
...
. . .

ª®®®®¬
©­­­­«
д0

д1

д2

...

ª®®®®¬


where � is the component-wise multiplication of two vectors.

This suggests the following generalization of Algo. 1 for any �xed k ≥ 2. First, let V =(
i j
)

2k−1

i, j=0
(Vandermonde matrix), and precompute V −1

.

5

2 Semi-fast multiplication

Algorithm 2 Toom-k

Input: f = f0 + · · · + fn−1X
n−1

, д = д0 + · · · + дn−1X
n−1

Output: h = h0 + · · · + h2n−1X
2n−1

such that h = f д

1. If n < max(k, 16), compute h naively and stop # Forget the “16” until Sec. 2.4

2. Write f = F0 + F1X
dn/k e + · · ·+ Fk−1X

(k−1) dn/k e
and д = G0 +G1X

dn/k e + · · ·+Gk−1X
(k−1) dn/k e

where

deg(Fi) and deg(Gi) <
n
k

3. De�ne Fi = Gi = 0 for
n
k < i ≤ 2k − 1

4. Compute
¯f = V

©­«
F0

F1

...
F

2k−1

ª®¬ and д̄ = V
©­«

G0

G1

...
F

2k−1

ª®¬
5. Compute

¯h = ¯f � д̄ recursively

6. Return V −1 ¯h

Remark 2.4. If we write Fi = f (i)
0
+ · · · + f (i)d Xd

for i ∈ {0, . . . ,k − 1}, one can compute the

product V · (Fi) as

V ·

©­­­­«
F0

F1

...

Fk−1

ª®®®®¬
= V ·


©­­­­­«

f 0

0

f (1)
0

...

f (k−1)

0

ª®®®®®¬
+

©­­­­­«
f 0

1

f (1)
1

...

f (k−1)

1

ª®®®®®¬
X + · · · +

©­­­­­«
f 0

d
f (1)d
...

f (k−1)

d

ª®®®®®¬
Xd


= V ·

©­­­­­«
f 0

0

f (1)
0

...

f (k−1)

0

ª®®®®®¬
+V ·

©­­­­­«
f 0

1

f (1)
1

...

f (k−1)

1

ª®®®®®¬
X + · · · +V ·

©­­­­­«
f 0

d
f (1)d
...

f (k−1)

d

ª®®®®®¬
Xd

so the cost of computing that product is O(dk2).

Theorem 2.5. A run of Algorithm 2 requires O(nlogk (2k−1)) operations. In particular, for any
�xed ε > 0, there exists a multiplication algorithm for R[X] which requiresO(n1+ε) operations in
R.

Proof. See Exercise 2.3. �

Remark 2.6. For �xed k , the cost of precomputingV andV −1
can be neglected, since it is a �xed

cost of O(k2) and O(k3) respectively.

2.4 Toom-Cook algorithm

Theorem2.7 (Toom-Cook). There exists amultiplication algorithm forR[X] that requiresO(n1+2/
√

log(n))

operations in R. This algorithm is obtained by adapting Algo. 2 to choose at each recursion level
k =

⌊
2

2

√
log(n)

⌋
.

6

2 Semi-fast multiplication

Proof. See Exercise 2.4. �

Remark 2.8. This complexity is better than that of Toom-k , since it is better than O(21+ε) for

all ε > 0.

Remark 2.9. Strassen’s algorithm for matrix multiplication is based on the same idea as Karat-

suba’s algorithm, and runs in timeO(nlog
2
(7)) ≤ O(n2.82). Is there a Toom-Cook style algorithm

for matrix multiplication, with complexity better than O(22+ε) for all ε > 0?

For even k , we can multiply k×k matrices with
1

3
k3+6k2− 4

3
k operations, so there are matrix

multiplication algorithms with complexityO(nlogk (
1

3
k3+6k2− 4

3
k)). But logk (

1

3
k3 + 6k2 − 4

3
k) tends

to 3 when k tends to ∞. Its minimum (over 2N) is reached at k = 70, leading to a complexity

O(n2.796) (Pan’s algorithm).

The current record is O(n2.372 863 9) (Le Gall 2014), and yes, that many decimal points are

necessary! It is conjectured that a complexity of O(21+ε) for all ε is realizable.

Remark 2.10. It is conjectured that polynomial multiplication inO(n) operations is not possible.

2.5 Exercises

Exercise 2.1. Implement Karatsuba’s algorithm in a computer algebra system.

Exercise 2.2. Is it possible to use the ideas of the Algorithm of Toom-k with evaluation at

{0, 1, . . . ,k − 2,∞} ? Describe the matrices V and V −1
.

Exercise 2.3. Prove Theorem 2.5.

Exercise 2.4. Prove Theorem 2.7.

Exercise 2.5. Show that there is no algorithm which can multiply two linear polynomials

(over any ring) in 2 multiplications.

7

3 Fast multiplication in ¯k[X]

In this chapter, let k be an algebraically closed �eld. The problem to solve is the same as previ-

ously, but this time, we assume that deg(f) + deg(д) < n.

We will be considering evaluation/interpolation methods.

Algorithm 3 Evaluation/interpolation

Input: f = f0 + · · · + fk−1X
k

, д = д0 + · · · + дl−1X
l

with k + l < n

Output: h = h0 + · · · + hn−1X
n−1

such that h = f д

1. Fix (x0, . . . ,xn−1) ∈ k
n

2. Compute f (xi), д(xi) for i = 0, . . . ,n − 1

3. Compute h(xi) = f (xi)д(xi) for i = 0, . . . ,n − 1

4. Compute h by interpolating h(xi) for i = 0, . . . ,n − 1

Remark 3.1. In general, Algo. 3 requires O(n2) +O(n) +O(n2) = O(n2) operations in k , like the

classical algorithm. The idea is to choose speci�c values of x0, . . . ,xn−1 so that steps 2 and 4

can be done faster.

3.1 Roots of unity and discrete Fourier transform

De�nition 3.2. An element ω ∈ k is called a n’th root of unity if ωn = 1. It is a primitive n’th

root of unity if additionally ωi , 1 for 0 < i < n.

Example 3.3. In C, −1 is a primitive second root of unity. i is a primitive 4th root of unity.

In F17, 2 is a primitive 8th root of unity.

De�nition 3.4. The matrix

DFTn := DFT
(ω)
n :=

(
ωi j)n−1

i, j=0
=

©­­­­­­«

1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) . . . ω(n−1)2

ª®®®®®®¬
∈ kn×n

is called the discrete Fourier transform (wrt ω).

8

3 Fast multiplication in ¯k[X]

Example 3.5. In C, the discrete Fourier transform wrt i is

DFT
(i)
4
=

©­­­«
1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

ª®®®¬ .
Remark 3.6. The DFT is a Vandermonde matrix. In particular, if f = f0 + f1X + · · ·+ fn−1X

n−1
,

DFT
(ω)
n ·

©­­­­«
f0
f1
...

fn−1

ª®®®®¬
=

©­­­­«
f (ω0)

f (ω1)
...

f (ωn−1)

ª®®®®¬
.

De�nition 3.7. Let f ,д ∈ kn . The product f � д is the vector whose i’th coordinate is given

by fiдi . The convolution f ∗ д is the vector whose i’th coordinate is given by

n−1∑
k=0

fkд(i−k) mod n .

Lemma 3.8. Let ω be a primitive n’th root of unity. Then

1. there is a factorization

Xn − 1 = (X − ω)(X − ω2) · · · (X − ωn);

2. for any j ∈ {1, . . . ,n − 1},

n−1∑
i=0

ωi j = 0.

3. there is a group isomorphism(
{ωi

: i ∈ Z}, ·
)
' (Z/nZ,+)

4. the DFT matrix is easy to invert:(
DFT

(ω)
n

)−1

=
1

n
DFT

(1/ω)
n

5. ifm | n, then ωm is a primitive (n/m)’th root of unity

6. the DFT is compatible with convolution

DFTn(f ∗ д) = DFTn(f) � DFTn(д)

9

3 Fast multiplication in ¯k[X]

Proof. 1. All ωi
are distinct: if ωi = ω j

with 1 ≤ i < j ≤ n, then ω j−i = 1 with 0 < j − i < n,

which is a contradiction because ω is a primitive root of unity. All ωi
are roots of Xn − 1, since

(ωi)n = (ωn)i = 1, so the X −ωi
are n distinct factors of Xn − 1. By comparing the degree and

leading coe�cient, we get the wanted factorization.

2. Use the formula(
n−1∑
i=0

X i

)
(X − 1) = Xn − 1

Evaluated at X = ω j
for 0 < j < n, the right hand side is 0, the factor (ω j − 1) is non-zero, so

the sum has to be zero.

3. Clear.

4. Evaluate the product:

DFT
(ω)
n DFT

(1/ω)
n =

(
ωi j)n−1

i, j=0
·
(
ω−i j

)n−1

i, j=0

=

(
n−1∑
k=0

ωikω−k j

)n−1

i, j=0

=

(
n−1∑
k=0

ωk (i−j)

)n−1

i, j=0

=
(
nδi j

)n−1

i, j=0
.

5. Clear.

6. If we associate the vector f = (f0, . . . , fn−1)with the polynomial f (X) = f0+· · ·+fn−1X
n−1

,

convolution is equivalent to multiplication in k[X]/〈Xn − 1〉, that is

(f ∗ д)(X) = f (X)д(X) + q(X) · (Xn − 1)

for some q ∈ k[X]. Indeed, write

f (X)д(X) =
n−1∑
i, j=0

fiдjX
i+j

=
∑
i+j<n

fiдjX
i+j +

∑
n≤i+j<2n

fiдjX
i+j

=
∑
i+j<n

fiдjX
i+j +

∑
n≤i+j<2n

fiдjX
i+j−n

︸ ︷︷ ︸
(f ∗д)(X)

−
∑

n≤i+j<2n

fiдjX
i+j−n +

∑
n≤i+j<2n

fiдjX
i+j

︸ ︷︷ ︸
(
∑
n≤i+j<2n fiдjX i+j−n)(Xn−1)

The claim follows by evaluation at ωi
. �

The remark, together with property 4, makes powers of ω a good choice for evaluation and

interpolation: if we can just �nd a fast way to evaluate DFTn · f , we can perform both steps in

a fast way.

10

3 Fast multiplication in ¯k[X]

3.2 Fast Fourier transform

Given f =

(f0
...

f2n−1

)
, we want to compute

¯f = DFT2n · f .

Let’s expand the j’th coe�cient:

(
DFT

ω
2n f

)
j =

2n−1∑
i=0

ωi j fi

=

n−1∑
i=0

ω2i j f2i +
n−1∑
i=0

ω(2i+1)j f2i+1

=

n−1∑
i=0

(ω2)i j f2i + ω
j
n−1∑
i=0

(ω2)i j f2i+1

=


(
DFT

(ω2)
n feven

)
j
+ ω j

(
DFT

(ω2)
n fodd

)
j

for 0 ≤ j < n(
DFT

(ω2)
n feven

)
j−n
+ ω j

(
DFT

(ω2)
n fodd

)
j−n

for n ≤ j < 2n

=


(
DFT

(ω2)
n feven

)
j
+ ω j

(
DFT

(ω2)
n fodd

)
j

for 0 ≤ j < n(
DFT

(ω2)
n feven

)
j−n
− ω j−n

(
DFT

(ω2)
n fodd

)
j−n

for n ≤ j < 2n

We can use this property to perform the evaluation and interpolation steps.

Algorithm 4 Fast Fourier Transform

Input: f ∈ kn , ω a primitive n’th root of unity, n = 2
k

Output: ¯f = DFT
(ω)
n f

1. If n = 1 then return (f0)

2. u ← FFT([f0, f2, . . . ,],ω2,n/2), v← FFT([f1, f3, . . . ,],ω2,n/2)

3. Return [u0 + v0,u1 + ωv1,u2 + ω
2
v2, . . . ,un/2−1 + ω

n/2−1
vn/2−1,

u0 − v0,u1 − ωv1,u2 − ω
2
v2, . . . ,un/2−1 − ω

n/2−1
vn/2−1]

Theorem 3.9. Algo. 4 requires O(n log(n)) operations in k .

Proof. Similar to before, with the recurrence

T (n) = 2T
(n

2

)
+O(n).

�

This allows us to rewrite Algo. 3 with the FFT.

11

3 Fast multiplication in ¯k[X]

Algorithm 5 Evaluation/interpolation multiplication using FFT

Input: f = f0 + · · · + fk−1X
k

, д = д0 + · · · + дl−1X
l

with k + l < n

Output: h = h0 + · · · + hn−1X
n−1

such that h = f д

1. ω ← primitive n’th root of unity

2.
¯f ← FFT(f ,ω), д̄← FFT(д,ω)

3.
¯h ← ¯f � д̄

4. Return
1

n FFT(
¯h,ω−1)

Theorem 3.10. Multiplication in k[X] can be done with O(n logn) operations in k if k is alge-
braically closed.

Remark 3.11. This complexity is currently the best known complexity for polynomial multi-

plication.

Remark 3.12. Let P be the permutation matrix such that

P · f =

(
feven

fodd

)
and ∆ be the diagonal matrix

∆ =

©­­­­«
1

ω
ω2

. . .

ª®®®®¬
.

Then the computations above yield that

DFT2n =

(
DFTn ∆DFTn
DFTn −∆DFTn

)
· P

=

(
I ∆
I −∆

)
·

(
DFTn

DFTn

)
· P

=

(
I I
I −I

)
·

(
I

∆

)
·

(
DFTn

DFTn

)
· P

This can be generalized to divisions bym instead of 2. Skipping over the details, this gives

DFTmn =

©­­­­«
I I I . . .

I ωnI ω2nI . . .
I ω2nI ω4nI . . .
...

...
...

. . .

ª®®®®¬
·

©­­­­«
I

∆
∆2

. . .

ª®®®®¬
·

©­­­­«
DFTn

DFTn
DFTn

. . .

ª®®®®¬
·P .

This is a result due to Cooley and Tuckey, which can be used to re�ne Algo. 4 so that it

reduces an FFT of any size quickly to FFT’s of prime size.

12

3 Fast multiplication in ¯k[X]

3.3 Exercises

Exercise 3.1. Work out the formulas for fast Fourier transform using 3-ary decomposition

ala Cooley-Tuckey. Implement the corresponding algorithm in a computer algebra system.

13

4 Fast multiplication in R[X]

4.1 FFT outside of a field

FFT multiplication (Algos. 4 and 5) does not require that the base ring R be an algebraically

closed �eld, but that:

1. R contains a primitive n’th root of unity ω;

2. n = 1 + 1 + · · · + 1 is invertible.

In this chapter, we will see how to perform FFT without those hypotheses.

This will be done by extending R with roots of unity, i.e. by working in rings of the form

R[Y]/〈Y k − 1〉. Such rings are not in general �elds, so in order to take advantage of the tech-

niques used for the FFT in �elds, we need to extend the de�nition of a primitive root of unity

to rings.

De�nition 4.1 (Primitive root of unity). Let R be a ring, ω ∈ R and n ∈ N. We say that ω is a

primitive n’th root of 1 if:

• ωn = 1

• for all k ≤ n, ωk − 1 is not a zero-divisor in R (i.e. if x ∈ R is such that x(ωk − 1) = 0,

then x = 0).

The second hypothesis is stronger than the corresponding requirement for �elds, which was

that ωk − 1 , 0. Note that this de�nition is equivalent to the previous one in the case of �elds

(or integral domains), because they do not have non-zero zero-divisors.

Proposition 4.2. Let R be a ring, ω ∈ R and n = 2
k ∈ N such that ω is a primitive n’th root of

1. Let f ,д ∈ R[X]. Then

• Fast Fourier Transform (Algo. 4) computes the evaluations of f at 1,ω, . . . ,ωn−1 modulo
ωn/2 + 1;

• FFT multiplication (Algo. 5) computes f д modulo ωn/2 + 1.

4.2 Schönhage-Strassen’s algorithm if 2 is invertible

In this section, assume that R has no n’th root of unity, but that 2 ∈ R∗.

Let f ,д ∈ R[X], with deg f + degд < n = 2
k
, as before we want to compute h = f д. Write

n = pq where p = 2
dk/2e

and q = 2
bk/2c

, so p ' q '
√
n.

14

4 Fast multiplication in R[X]

Write

f = F0 + F1X
q + F2X

2q + . . .

д = G0 +G1X
q +G2X

2q + . . .

with deg Fi < q, degGi < q, and de�ne two polynomials in R[X ,Y]

¯f = F0 + F1Y + F2Y
2 + . . .

д̄ = G0 +G1Y +G2Y
2 +

Then degX
¯f , degX д̄ < q, degY

¯f , degY д̄ < p, and f = ¯f (X ,Xq), д = д̄(X ,Xq). Let
¯h = ¯f д̄,

then degX
¯h < 2q and degY

¯h < 2p.

Note 4.3. It su�ces to compute
¯h mod Yp + 1 because

degh = deg
¯h(X ,Xq) < pq = n.

Note 4.4. Since degX
¯h < 2q,

¯h(X ,Y) = ¯h(X ,Y) mod X 2q + 1.

Hence, together with the previous note, we can compute in(
R[X]/

〈
X 2q + 1

〉)
[Y]/〈Yp + 1〉.

We denote by D the ring

D := R[X]/
〈
X 2q + 1

〉
.

Proposition 4.5. In the ring D, X is a 4q’th primitive root of unity. Furthermore, let

ω =

{
X 2 if p = q
X if p = 2q.

Then ω is a 2p’th primitive root of unity in D.

With this setting, if

¯f (Y) · д̄(Y) = ¯h(Y) mod Yp + 1

then

¯f (ωY) · д̄(ωY) = ¯h(ωY) mod (ωY)p + 1 = 1 − Yp

15

4 Fast multiplication in R[X]

Algorithm 6 Schönhage-Strassen

Input: f ,д ∈ R[X] with deg f , degд < n = 2
k

Output: h = f д mod Xn + 1

1. If k ≤ 2 then compute h directly

2. De�ne p,q ∈ N,
¯f , д̄ ∈ D[Y] and ω ∈ D as above

3. Use Algo. 5 to compute
¯h ∈ D[y] with

¯h(ωY) = ¯f (ωY)д̄(ωY) mod Yp − 1

using ω2
as a p’th root of unity in D and Algo. 6 recursively for multiplications in D

4. Return h = ¯h(X ,Xq) mod Xn + 1

Remark 4.6. The algorithm requires that 2 be invertible for the FFT step: each call to the FFT

multiplication algorithm is with a power of 2 as n.

Theorem 4.7. Algo. 6 requires O(n log(n) log(log(n))) operations in R.

Remark 4.8. For all practical purposes, log logn ≤ 6.

Proof. Let n � 1 and suppose that

T (m) ≤ c1m logm log logm

for allm < n and some constant c1. Recall that n = 2
k
, p = 2

dk/2e ≤ 2

√
n, q = 2

bk/2c ≤
√
n.

The runtime function satis�es the recurrence

T (n) ≤ pT (2q) +O(n logn)

where pT (2q) is the cost of p component-wise multiplication of polynomials of degree at most

2q, and the trailing O(n logn) is the cost of the FFT.

16

4 Fast multiplication in R[X]

Let Tl (k) = T (2
k), and expand in terms of k :

Tl (k) ≤ 2
dk/2eTl

(⌊
k

2

⌋
+ 1

)
+ c22

kk

≤ c12
dk/2e

2
bk/2c+1

(⌊
k

2

⌋
+ 1

)
log

(⌊
k

2

⌋
+ 1

)
+ c22

kk

≤ c1 2
dk/2e+ bk/2c︸ ︷︷ ︸
=2

k

· 2

(⌊
k

2

⌋
+ 1

)
︸ ︷︷ ︸

≤k+2

log

(⌊
k

2

⌋
+ 1︸ ︷︷ ︸

≤ 3

4
k

)
︸ ︷︷ ︸
≤logk−log(4/3)︸ ︷︷ ︸

≤k logk−k log(4/3)+2 logk−2 log(4/3)

+c22
kk

≤ c12
kk log(k) + c12

k
(
2 logk − 2 log(

4

3

)

)
︸ ︷︷ ︸

≤
1/2

k log(4/3)

+(c2 − c1 log(
4

3

))2kk

︸ ︷︷ ︸
≤(c2−

1

2
log(4/3))2kk

Without loss of generality we can assume that c1 ≥ 2c2/log 4/3, so

Tl (k) ≤ c12
kk log(k)

and indeed

T (n) = O(n logn log logn).

�

4.3 Schönhage-Strassen’s algorithm in the general case

The previous algorithm requires 2 to be invertible in order to divide the reverse DFT by 2
k
.

Without this assumption, we can skip that division, and Algo. 5 returns 2
k f д. Analogously, we

can compute 3
l f д using a 3-adic FFT. Then, Euclid’s extended algorithm yields u, v ∈ Z such

that

u · 2k + v · 3l = 1,

so

u · 2k f д + v · 3l f д = f д.

Theorem4.9. Polynomials inR[X] of degree less thann can bemultiplied usingO(n logn log logn)
operations in R, for any commutative ring R with a unity.

Remark 4.10. This is the current world record.

17

4 Fast multiplication in R[X]

4.4 Multiplication time function

De�nition 4.11. Let R be a ring. A function M : R → N is called multiplication time for R[X]
if there exists an algorithm that multiplies f ,д ∈ R[X] with deg f , degд < n using no more

than M(n) operations in R.

Finding the best possible M for various rings in an active �eld of research.

Proposition 4.12. We can assume that:

1. if R is in�nite,M is worse than linear:

M(n)

n
>

M(m)

m
if n > m;

2. in particular,

M(mn) ≥ mM(n)

and

M(m + n) ≥ M(m) +M(n);

3. M is at most quadratic:

M(nm) ≤ m2M(n)

4. M is at most the complexity of the general algorithm by Schönhage and Strassen:

M(n) = O(n logn log logn).

4.5 Exercises

Exercise 4.1.

1. Implement Schönhage-Strassen’s algorithm for multiplication in Fp [X], where p is an

odd prime.

2. What is the largest degree N such that two polynomials of degree n can be multiplied

in less than 10 minutes with the implementation?

3. Measure the runtime of the algorithm (or the number of operations) on input of vary-

ing size (at least up to N), and plot the results. Verify that the complexity is indeed

O(n log(n) log(log(n))), and give an experimental estimate for the constant. Run the

same experiment with the built-in polynomial multiplication, how does it compare?

18

5 Fast multiplication in Z

Here, we are given two integers f ,д ∈ Z with at most n digits (in base 2), and we want to

compute h = f д.

5.1 Integer multiplication in theory

Remark that if

f = f0 + 2f1 + · · · + 2
n−1 fn−1,

f is the evaluation of the polynomial

¯f = f0 + f1X + · · · + fn−1X
n−1

at X = 2.

This reduces integer multiplication to polynomial multiplication, with similar complexity

results.

Theorem5.1 (Schönhage-Strassen). Integers of lengthn can bemultiplied in timeO(n logn log logn).

Remark 5.2. It is conjectured that the lower bound for the complexity of integer multiplication

is cn logn.

The current best results are the following.

De�nition 5.3. For x ∈ R>1, the iterated logarithm of x is

log
∗(x) = max{k ∈ N : log

k (x) ≤ 1}.

Remark 5.4. For all practical purposes, log
∗(n) ≤ 4.

Theorem 5.5 (Fürer, 2007). Integers of length n can be multiplied in time

n logn2
O (log

∗(n)).

Remark 5.6. Beware of constants! In general,

2
O (f (n)) , O(2f (n))

Indeed

2
cf (n) = (2f (n))c

which will in general grow faster than 2
f (n)

.

19

5 Fast multiplication in Z

In the recent years, researchers have focused on improving that constant, the current best

result is the following:

Theorem 5.7 (Harvey, van der Hoeven, 2018). Integers of length n can be multiplied in time

O(n logn2
2 log

∗(n))).

Remark 5.8. Forgetting the constants, we have

log logn ≥ 2
2 log

∗ n ⇐⇒ n ≥ 2
2

2
12

.

Remember that n is the number of digits of the integers we want to multiply!

5.2 Integer multiplication in practice

Those algorithms are only of theoretical interest. The following algorithm follows a more

pragmatic approach, which is usually superior.

Write F = (fn−1 . . . f1 f0)w and G = (дn−1 . . .д1д0)w in base w with w as large as possible. In

practice, one can for example choose w to be the largest possible processor word.

De�ne

¯f = f0 + f1X + · · · + fn−1X
n−1

д̄ = д0 + д1X + · · · + дn−1X
n−1

so that
¯f (w) = f and д̄(w) = д. Let

¯h = ¯f д̄ = ¯h0 + ¯h1X + . . .

Note that 0 ≤ ¯hi ≤ nw2
for all i .

Assume that n < w/8 and �x three primes p1,p2,p3 between w/2 and w, for which the �eld

Fpi contains a 2
t
’th root of unity for some large t . Then compute

¯f д̄ in Fpi [X] for i = 1, 2, 3,

and reconstruct the coe�cients of
¯h with the Chinese remainder theorem. Finally compute

h = ¯h(w).

Example 5.9. On a 64-bits processor, let’s choose w = 2
64

. Then

p1 = 95 · 257 − 1

p2 = 108 · 257 − 1

p3 = 123 · 257 − 1

are suitable primes, with t = 57 and 55, 65 and 493 the respective 57’th roots of unity.

This is the method of choice for multiplying integers up to ' 500 millions of bits on a 64-bits

architecture.

20

6 Fast multiplication in R[X ,Y]

Given f ,д ∈ R[X ,Y], we want to compute h = f д.

6.1 Isolating a variable

We can use Algo. 6 in R[X][Y]. But the complexity is bounded in number of operations in R[X],
not in R. In order to get a complete bound, we need an estimate for the degree growth in X .

If we de�ne

dX := degX (h) = degX (f) + degX (д)

dY := degY (h) = degY (f) + degY (д)

it su�ces to compute the product in

R[X]/〈XdX+1 − 1〉[Y]/〈YdY+1 − 1〉.

Let

D := R[X]/〈XdX+1 − 1〉.

If we use for example Algo. 6 to compute the multiplication in D[Y]/〈YdY+1 − 1〉, it requires

M(dY) operations in D, each of them requires at most M(dX) operations in R.

Theorem 6.1. Polynomials f ,д ∈ R[X ,Y], with degX (f), degX (д) ≤ n and degY (f), degY (д) ≤
m, can be multiplied withM(n)M(m) operations in R.

6.2 Kronecker substitution

Algorithm 7 Multiplication using Kronecker substitution

Input: f ,д ∈ R[X] with degX (f д) < n, degY (f д) < m

Output: h = f д

1.
¯f ← f (X ,Xn), д̄← д(X ,XN) ∈ R[X]

2. Compute
¯h = ¯f · д̄ ∈ R[X] with a fast algorithm

3. Write
¯h = h(0) + h(1)Xn + h(2)X 2n + · · · + h(m−1)X (m−1)n

with deg(h(i)) < n

4. Return h = h(0) + h(1)Y + h(2)Y 2 + · · · + h(m−1)Ym−1

Theorem 6.2. Algo. 7 requiresM(mn) operations in R.

21

6 Fast multiplication in R[X ,Y]

Proof. The only multiplication computed involves polynomials in R[X] with degree at most

nm. �

Remark 6.3. M(mn) may not be strictly less than M(m)M(n).

22

7 Fast division

Let K be a �eld. The task is, given f ,д ∈ K[X], to �nd q, r ∈ K[X] such that f = qд + r and

deg(r) < deg(д).

7.1 Horner’s rule

Horner’s rule is a technique for evaluating a polynomial f with degreem at some value v with

O(m)multiplications, instead of the naivem2
. It avoids computing successive powers of v, and

instead relies on the following rewriting of f :

f = a0 + a1X + · · · + amX
m

= a0 + X
(
a1 + X

(
· · · + X (am) . . .

))
.

The resulting algorithm is actually the naive Euclidean algorithm used to compute f divided

by д = X − v. The remainder of that division is f (v).

The same algorithm can be used for a polynomial д with degree n, and it then uses O(nm)
operations in K .

7.2 A Karatsuba-style algorithm: Jebelean’s algorithm

There is also a Karatsuba-style division algorithm. Assume that deg f < 2 degд and degд is a

power of 2.

23

7 Fast division

Algorithm 8 Jebelean’s algorithm (1993)

Input: f ,д ∈ K[X], k ∈ N, with degд = n = 2
i
, deg f < 2n + k .

Output: q, r such that f = дX kq + r and deg(r) < n + k

1. If deg f < degд + k , then return q = 0, r = f

2. If degд = 1, then use Horner’s algorithm

3. Write д = д(0) + д(1)Xn/2
with degд(0) < n

2
degд(1) = n

2

Compute q(1), r (1) such that f = q(1)Xn+kд(1) + r (1) with deg r (1) < 3n
2
+ k

4. Find q(1), r (1) by calling Algo. 8 with f , д = д(1) and k = n + k

Compute the true remainder u = f − q(1)Xn+kд

5. Compute u = r (1) − Xn/2+kд(0)q(1) using Algo. 1

Compute q(0), r (0) such that u = q(0)Xn/2+kд(1) + r (0) with deg r (0) < n
2
+ k

6. Find q(0), r (0) by calling Algo. 8 with f = u, д = д(1) and k = n
2
+ k

Compute the true remainder r = u − q(0)X kд

7. Compute r = r (0) − д(0)q(0)X k
using Algo. 1

8. Return q = q(0) + q(1)Xn/2
and r

Theorem 7.1. Algo. 8 is correct.

Proof. We prove it by induction on n, then on k . The case n = 1 is clear, as is the case deg f <
n+k . Now assume that the algorithm is correct for all input of size < n or third argument > k .

Consider f ,д ∈ R[X], k ∈ N with degд = n and deg f < 2n + k . In particular, degд(1) = n
2

.

So the call to Algo. 8 with f = f , д = д(1) and k = n+k is correct, and the results are q(1), r (1)

such that f = д(1)Xn+kq(1) + r (1), deg(r (1)) < n + k , and

deg(q(1)) = deg(f) − deg(Xn+kд(1)) <
n

2

.

The polynomial u satis�es

u = r (1) − Xn/2+kд(0)q(1)

= f − Xn+kд(1)q(1) − Xn/2+kд(0)q(1)

= f − Xn/2+kq(1)д, (7.1)

and it has degree

deg(u) < max

(
n + k,

n

2

+ k +
n

2

+
n

2

)
<

3n

2

+ k .

The call to Algo. 8 with f = u, д = д(1) and k = n
2
+ k is correct, and deg r (0) < n + k and

24

7 Fast division

deg(q(0)) = n
2
+ k . So we get

u = Xn/2+kд(1)q(0) + r (0)

= Xn/2+kд(1)q(0) + X kд(0)q(0) + r (by de�nition of r)

= дX kq(0) + r .

The polynomial r has degree

deg(r) < max

(
n + k,

n

2

+
n

2

+ k
)
< n + k,

and putting it all together using Eq. (7.1), we �nd

f = Xn/2+kq(1)д + X kq(0)д + r = X k
(
Xn/2q(1) + q(0)

)
д + r .

�

Theorem 7.2 (Jebelean, 1993). Algo. 8 requires at most 2MK (n) multiplications in K where
MK (n) is the number of multiplications performed by Algo. 1 (Karatsuba).

Remark 7.3. There is no O in that result.

Proof. Recall the recurrence relation

MK (2n) = 3MK (n).

If we proceed by induction, the number of multiplications T (n) performed by Algo. 8 satis�es

the recurrence relation

T (n) = 2T
(n

2

)
+ 2MK

(n
2

)
= 2 · 2MK

(n
2

)
+ 2MK

(n
2

)
= 6MK

(n
2

)
= 2MK (n).

�

Remark 7.4. The integer version of Algo. 8 is the best-performing division algorithm for inte-

gers of a certain size.

Remark 7.5. The total number of operations (including additions) is O(MK (n) log(n)).

25

7 Fast division

7.3 Division with the cost of multiplication

We now want to perform division in time O(M(n)).

De�nition 7.6. Let f ∈ K[X] and k ∈ N, the k’th reversal of f is

revk (f) := X k f

(
1

X

)
.

Example 7.7. If f = f0 + f1X + · · · + fnX
n

, then revn(f) = fn + fn−1X + · · · + f0X
n

.

Remark 7.8. In general, revk (f) ∈ K[X] if k ≥ n.

Let f ,д ∈ K[X] with deg(f) = m, degд = n < m, and q, r be the quotient and remain-

der respectively of the division of f by д. Performing the change of variable X 7→ 1/X and

multiplying by Xm
the equality f = qд + r gives

Xm f

(
1

X

)
= Xnд

(
1

X

)
Xm−nq

(
1

X

)
+ Xm−n+1Xn−1r

(
1

X

)
revm f = revnд · rm−nq + X

m−n+1
revn−1r

so

revm f = revnд · revm−nq mod Xm−n+1.

Furthermore, since degд = n, we have (revnд)0 , 0, so revnд is invertible modulo Xm−n+1
.

Therefore

revm−nq = revm f · (revnд)
−1

mod Xm−n+1.

So what we need is a fast algorithm for inversion modulo X l
: an algorithm which, given

u ∈ K[X] with u0 , 0 and l ∈ N, computes v ∈ K[X] such that uv = 1 mod X l
.

Regard u ∈ K[X] ⊂ K[[X]] as a formal power series, and consider the map

φ : K[[X]]∗ → K[[X]]
s 7→ u − 1

s .

Let v be a root of φ, we can write

v = w + X lr

with w ∈ K[X]l−1, and w, seen as a power series, is invertible. Then

0 = φ(v) = u −
1

w + X lr
= u −

1

w

1

1 + X lr/w

= u −
1

w

+ X l r

v
2

0

−O(X l+1)

26

7 Fast division

so

uw = 1 + X l r

w

+O(X l+1) = 1 mod X l .

So we have to �nd an approximation of order l of a root v of φ. For this purpose, we use

Newton iteration: we compute successive approximations of the root, starting with

v
(0) =

1

u0

and iterating with

v
(k+1) = v

(k) −
φ(v(k))

φ ′(v(k))
= v
(k) −

u − 1

v
(k)(

1

v
(k)

)
2

= 2v
(k) − u · (v(k))2.

This would give us an algorithm, if only we knew when to stop!

Theorem 7.9. For all k ≥ 0, u · v(k) = 1 mod X 2
k
.

Proof. Proof by induction: for k = 0, we have

u · v(0) = u0 ·
1

u0

+O(X) = 1 mod X .

If it is true for k ≥ 0, then

1 − uv(k+1) = 1 − u(2v(k) − u · (v(k))2) = 1 − 2uv(k) + (uv(k))2 =
(
1 − u · v(k)

)
2

= O(X 2
k+1

) = 0 mod X 2
k+1

.

�

Remark 7.10. This theorem is a particular case of a more general fact: with a starting point

su�ciently close to a root, Newton iteration converges quadratically fast.

Algorithm 9 Inversion using Newton iteration

Input: u ∈ K[X] with u0 , 0, n ∈ N

Output: v ∈ K[X] with u · v = 1 mod Xn

1. v← 1

u0

2. For i from 1 to dlog(n)e, do

3. v← 2v − uv2
rem X l

4. Return v

Theorem 7.11. Algo. 9 requires O(M(n)) operations in K .

27

7 Fast division

Proof. Let T (n) be the number of operations required. Then

T (n) ≤

dlog(n)e∑
i=1

2M(2i) + c2
i

≤ c2
dlog(n)e+1 + 2

dlog(n)e∑
i=1

M(2i)︸︷︷︸
≤
M (n)
n/2i

≤ 4cn + 2

M(n)

n

dlog(n)e∑
i=1

2
i

︸ ︷︷ ︸
≤4n

≤ 4cn + 8M(n) = O(M(n)).

�

With this taken care of, we can now write down all the steps required to perform a fast

division.

Algorithm 10 Fast division

Input: f ,д ∈ K[X], k ∈ N, with deg f =m, degд < n, д , 0

Output: q, r such that f = qд + r and deg(r) < deg(д)

1. Ifm < n then return q = 0, r = f

2. Compute h = revn(д)
−1

mod Xm−n+1
with Algo. 9

3. q̄ ← revm(f)h

4. Return q = revm−n(q̄) and r = f − дq

Theorem 7.12. Algo. 10 requires O(M(m)) operations in K .

Remark 7.13. This result is the current world record for polynomial division.

Remark 7.14. In particular, if f ,д,q ∈ K[X] with deg(f), deg(д), deg(q) ≤ n, then we can

compute (and reduce) f ,д ∈ K[X]/〈q〉 with O(M(n)) operations in K .

If gcd(f ,д) = 1, then we will see that f −1
mod q can be computed using O(M(n) log(n))

operation in K (using the fast GCD algorithm).

7.4 Exercises

Exercise 7.1. Assume that the �eldK is algebraically closed. Find a bound for the complexity

of Algo. 8 if we use FFT instead of Karatsuba’s algorithm for the multiplication. Is it better?

28

7 Fast division

Exercise 7.2. How would you adapt Algo. 8 to work with any polynomial д (even if its

degree is not a power of 2)?

Exercise 7.3.

1. Write an analogue of Algo. 8 for polynomials such that deg(f) ≤ 3 deg(д). What is its

complexity?

2. Generalize to any f ,д ∈ K[X]. What is the resulting complexity?

29

8 Computing with homomorphic images

This chapter does not introduce fast algorithms, but serves as a motivation for algorithms in

later chapters, namely multipoint evaluation, interpolation and half-GCD.

8.1 The problem of coe�icient explosion

Let A ∈ Qn×n
, and assume that you want to solve the system

A ·
©­­«
x1

...

xn

ª®®¬ = 0.

This can be done in O(nω) operations in Q using fast linear algebra. However, in practice, for

large n, the computation will take very long.

The reason is expression swell: the algorithms multiplies and adds rational numbers which

become larger and larger. Additions and multiplications for rationals are de�ned as

a

b
+
c

d
=
ad + bc

bd
a

b
·
c

d
=

ac

bd

so after each operation, the coe�cients size is roughly doubled. Reducing the fractions helps,

but not by a signi�cant factor.

The typical situation is that the input is small (because it comes from actual data) and the

output is small (because frequently in applications, meaningful data tends to not be overcom-

plicated), but intermediate expressions will be meaningless and huge.

The idea to mitigate this problem is to reduce the problem to domains where objects have a

�xed size, so that the actual complexity does not deviate from the predicted number of opera-

tions.

8.2 Computations in Z using modular arithmetic

When doing operations in Z, multiplication doubles the size of the output.

For simplicity, consider a ring homomorphism f : Z → Z, and assume that we want to

compute f (x), avoiding expression swell inside f .

30

8 Computing with homomorphic images

We want to do the computations in Z/pZ, for p ∈ Z \ {0}.

Z Z

Z/pZ Z/pZ

f

mod p mod p

д=f mod p

?

The diagram commutes, which means that given x ∈ Z, д(x mod p) = f (x) mod p. But

what we want is f (x), not its equivalence class modulo p.

So we want to choose p such that f (x) can be recovered from f (x) mod p.

There are two interesting scenarios:

1. We know an a priori bound M(x)with | f (x)| ≤ M(x). Then taking p > 2M(x)will ensure

that

(f (x) mod p) ∩ {−M(x),−M(x) + 1, . . . ,M(x)} = { f (x)}.

2. We can e�ciently check, given y ∈ Z, whether f (x) = y . Then repeat the computation

with increasing p until y , de�ned as

{y} = (f (x) mod p) ∩
{
−
p

2

,−
p

2

+ 1, . . . ,
p

2

}
,

is the solution.

8.3 Computations in Q using rational reconstruction

We now turn back to the problem of Q, where both additions and multiplications double the

size of the output. We can do the same thing for a morphism f : Q → Q, using modular

inverses.

Assume that b and v are coprime to p, we have a commutative diagram:

x = a
b f (x) = u

v

Q Q

Z/pZ Z/pZ

b−1a mod p v
−1u mod p

f

mod p mod p

д=f mod p

?

As in the case ofZ, we want to choosep such that f (a/b) can be recovered fromд(b−1a mod p).

For su�ciency, there are again two scenarios:

31

8 Computing with homomorphic images

1. We know a bound M(x) such that u2 + v
2 ≤ M(x)2. Then taking p > M(x)2 will ensure

that

{(w, z) ∈ Z × N : z−1
w = v

−1u mod p} ∩ {(w, z) : w
2 + z2 ≤ M(x)} = {(u, v)}.

2. We can e�ciently check for a given y ∈ Q whether f (x) = y . Then as in the case of Z,

we try increasing values of p until the result is found.

In both cases, in order to determine the intersection point, we need a way, given y ∈ Z/pZ
to compute (u, v) ∈ Z × N such that v

−1u = y mod p and u2 + v
2

is minimal.

Proposition 8.1. Consider a run of the Extended Euclid’s Algorithm onp andy . Let (u, v) ∈ Z×N
such that v−1u = y mod p and u2 + v2 is minimal. Let дi , si , ti be values computed at each step of
the algorithm, for i = 1, . . . , l :

p = д1 = s1p + t1y = 1 · p + 0 · y

y = д2 = s2p + t2y = 0 · p + 1 · y

д3 = s3p + t3y

...

1 = дl = slp + tly

Then

{(b,a) such that b−1a = y mod p} ⊃ {(дi , ti) : i ∈ {2, . . . , l}} 3 (v,u).

Example 8.2. Consider the case p = 65521, y = 29771, and compute an inverse t of 29771

modulo 65521 using the Extended Euclid’s Algorithm, or in other words, a pair s, t ∈ Z such

that

1 = 65521s + 29771t .

Here are the intermediate values:

д s t

65521 0 1

29771 1 0

5979 -2 1

5855 9 -4

124 -11 5

27 526 -239

16 -2115 961

11 2641 -1200

5 -4756 2161

1 12153 -5522

32

8 Computing with homomorphic images

Then, modulo 65521,

29771 =
29771

1

= −
5979

2

=
5855

9

= −
124

11

= · · · =
1

12153

and the minimal pair of numerator and denominator for 29771 is given halfway through the

algorithm: it is (−124, 11).

Remark 8.3. It means that the Extended Euclid’s Algorithm is useful beyond returning the

Bézout coe�cients. If we are looking for a rational fraction equal to x mod p, given a bound

on the size of the coe�cients, we can �nd it by examining all lines in the algorithm. And, for the

particular case where we want both coe�cients to have roughly the same size, the relevant line

will be roughly halfway through the algorithm, and can be found using half-GCD algorithms.

8.4 Computation with large moduli using Chinese
Remaindering

We saw that computations in Z and Q can be done in Z/pZ, for p ∈ N large enough compared

to a boundM(x) on the wanted result. But ifM(x) is large, p will need to be large, again making

the computations expensive.

It is possible to mitigate this problem using the Chinese Remainder Theorem:

(n mod p) ∩ (n mod q) = n mod lcm(p,q).

So by running the computations modulop andq, we can reconstruct the result modulo lcm(p,q).

We still need to be able to �nd the canonical (small) representative of n modulo lcm(p,q),
given the representatives modulo p and q.

For simplicity, assume that p and q are coprime, so that lcm(p,q) = pq. We are given np ,nq ∈
Z, and we want to �nd n ∈ Z such that{

n mod p = np mod p

n mod q = nq mod q.

Since gcd(p,q) = 1, there exists s, t ∈ Z such that

sq + tq = 1.

Let

n = np + (nq − np)sp ∈ Z

it is congruent to np modulo p and to np + (nq − np) = nq modulo q. So we can just take the

canonical representative of n modulo pq.

This can be generalized to more moduli.

33

8 Computing with homomorphic images

Algorithm 11 Chinese Remainder reconstruction

Input:
• u1, . . . ,un ∈ Z

• p1, . . . ,pn ∈ Z, pairwise coprime

Output: u ∈ Z such that u mod pi = ui mod pi for i = 1, . . . ,n

1. u ← u1

2. m ← 1

3. For k from 2 to n do

4. m ←m · pk−1

5. s ←m−1
mod pk

6. u ← ((uk − u)s rem pk)m

7. Return u

Remark 8.4. It means that in the second scenarios, both for Z and Q, when computing modulo

p for increasing values of p, we do not have to throw away results for values of p which were

too small. We can use them to reconstruct larger moduli.

Remark 8.5. For example, if we take p1, . . . ,p20 to be the �rst 20 primes, we can reconstruct

results modulo

p1 · · ·p20 = 2 · 3 · · · 71 ' 5.6 · 10
26 ' 1.8 · 288

8.5 Computations in K[X] and K(X)

In K[X] and K(X), we face the same problem as in Z and Q respectively. We can use the

same techniques as in the case of integers to reduce to problems over K[X]/〈P〉 for some small

irreducible polynomial P .

A good choice for P is X − a, with a ∈ K , and then K[X]/〈P〉 = K . In that case, the oper-

ations of reducing modulo X − ai , ai ∈ K , i ∈ {0, . . . ,n}, running the computations in K and

reconstructing the resulting polynomial constitute the evaluation/interpolation method seen

before.

Remark 8.6. Algo. 11 for polynomials is Newton’s interpolation.

34

9 Fast evaluation and interpolation

Fast multiplication and fast division algorithms are useful because those operations are heavily

used in many higher-level algorithms. However, it is frequently not enough, in order to obtain

a speed-up, to replace the operations with their fast counterparts.

Example 9.1. Given n ∈ N (with n smaller than a machine word), how to compute n!?

The usual algorithm uses the formula

n! = n · (n − 1)!.

This algorithm is recursively called linearly-many times, and at each step does one multiplica-

tion with a small integer (with a linear cost). Its complexity satis�es

T (n) = T (n − 1) +O(n),

so

T (n) = O(n2).

On the other hand, an algorithm using the following formula

n! =
(n

2

)
! ·

©­«
n∏

k=n
2
+1

k
ª®¬

is recursively called log-many times, and at each step adds one large multiplication. Its com-

plexity satis�es

T (n) = 2T
(n

2

)
+M

(n
2

)
so

T (n) = O(M(n) log(n)).

If M(n) = O(n2), it’s worse. If M(n) = Õ(n), it’s better.

The lesson is that in order to take advantage of fast multiplication, algorithms need to be

adjusted. It is usually not su�cient to plug fast multiplication into a standard algorithm.

We want to do two things in this chapter:

Evaluation Given f ∈ K[X] with deg(f) < n and a = (a0, . . . ,an−1) ∈ Kn
, compute the

multipoint evaluation f (a0), . . . , f (an−1) ∈ K

35

9 Fast evaluation and interpolation

Interpolation Given a = (a0, . . . ,an−1) ∈ K
n

with ai , aj for i , j, and b = (b0, . . . ,bn−1) ∈

Kn
, compute f ∈ K[X] with deg(f) < n such that f (ai) = bi for all i .

Remark 9.2. Ifω is an’th root of unity inK andai = ω
i

(i = 0, . . . ,n−1), then we can accomplish

both tasks with O(n log(n)) operations in K . But this doesn’t work with arbitrary ai .

Remark 9.3. The standard algorithms (Horner rule called n times, Newton interpolation) re-

quire O(n2) operations, with no improvements with fast multiplications.

The goal is to �nd algorithms for both operations usingO(M(n) log(n)) operations in K . The

main idea, similar to the example of the factorial, is to split the problem into parts of equal size,

instead of proceeding point by point.

9.1 Evaluation

Letm(i) = X − ai and de�ne, for 0 ≤ i < k = log(n), O ≤ j < 2
k−i

,

M (i, j) =m(j2
i)m(j2

i+1) · · ·m(j2
i+2

i−1) =

2
i−1∏
l=0

m(j2
i+l).

M (3,0) =m(0) · · ·m(7)

M (2,0) =m(0) · · ·m(3)

M (1,0) =m(0)m(1)

M (0,0) =m(0) m(1)

M (1,1) =m(2)m(3)

m(2) m(3)

M (2,1) =m(4) · · ·m(7)

M (1,2) =m(4)m(5)

m(4) m(5)

M (1,3) =m(6)m(7)

m(6) m(7)

Algorithm 12 Splitting subroutine

Input: a = (a0, . . . ,an−1) ∈ K
n

, n = 2
k

Output: M (i, j) as de�ned above

1. M (0, j) ← X − aj (j ∈ {0, . . . ,n − 1})

2. For i from 1 to k do

3. M (i, j) ← M (i−1,2j) ·M (i−1,2j+1)
(j ∈ {0, . . . , 2k−i − 1})

Theorem 9.4. Algorithm 12 requires O(M(n) log(n)) operations in K .

Proof. Let T (n) be the number of operations required in a run of Algorithm 12. Note that

36

9 Fast evaluation and interpolation

deg(M (i, j)) = 2
i
. Then T (n) satis�es

T (n) =
k∑
i=1

2
k−i−1∑
j=0

M(2i−1)

≤

k∑
i=1

M
©­«

2
k−i−1∑
j=0

2
i−1ª®¬

≤ kM(2k−1) ≤ kM
(n

2

)
= O(M(n) log(n)).

�

Note that X − aj divides M (k−1,0)
for j ∈ {0, . . . , n

2
− 1}. So, if we write

f = qM (k−1,0) + r

with r = f rem M (k−1,0)
, then

f (aj) = r (aj)

for j ∈ {0, . . . , n
2
− 1}. Likewise, for j ∈ {n

2
, . . . ,n − 1},

f (aj) =
(
f rem M (k−1,1)

)
(aj).

This suggests the following algorithm for evaluation.

Algorithm 13 Multipoint evaluation

Input: f ∈ K[X], deg(f) < n = 2
k

, a = (a0, . . . ,an−1) ∈ K
n

Output: (f (a0), . . . , f (an−1)) ∈ K
n

1. If n = 1 then return f (a0)

2. Compute (M (i, j)) with Algorithm 12 and cache the result

3. r (0) ← f rem M (k−1,0)
, r (1) ← f rem M (k−1,1)

4. Compute recursively

(
r 0(a0), . . . , r

(0)(a n
2
−1
)

)
5. Compute recursively

(
r 1(a n

2

), . . . , r (1)(an−1)

)
6. Return

(
r 0(a0), . . . , r

(0)(a n
2
−1
), r 1(a n

2

), . . . , r (1)(an−1)

)
Theorem 9.5. Algorithm 13 requires O(M(n) log(n)) operations in K .

Remark 9.6. This is the best known complexity for multipoint evaluation.

Proof. We only need to compute the M (i, j) once, for a �xed cost of O(M(n) log(n)). Let T (n) be

the number of operations required for the rest of the computations, we will prove by induction

37

9 Fast evaluation and interpolation

that T (n) ≤ cM(n) log(n). The complexity T (n) satis�es the recurrence

T (n) = 2T
(n

2

)
+

r (0) and r (1)︷ ︸︸ ︷
O(M(n))

≤ 2cM
(n

2

)
log

(n
2

)
+ c2M(n)

≤ cM(n) log

(n
2

)
+ c2M(n)

≤ cM(n) log(n) + (c2 − 2c)M(n)

≤ cM(n) log(n) by choosing c large enough for the second term to be negative.

�

9.2 Interpolation

Recall that given a = (a0, . . . ,an−1) ∈ K
n

with ai , aj for i , j, and b = (b0, . . . ,bn−1) ∈ K
n

,

we want to compute f ∈ K[X] with deg(f) < n such that f (ai) = bi for all i .

Recall (Lagrange interpolation).

f =
n−1∑
j=0

bjLj

where

Lj =
∏
i,j

X − ai
aj − ai

=

{
1 at X = aj

0 at X = ai , i , j .

It can be rewritten as

Lj =
M (k,0)

(X − aj)S (j)
where S (j) =

∏
i,j

aj − ai .

Observe that

dM (k,0)

dX
=

d

dX

n−1∏
i=0

(X − ai) =
n−1∑
j=0

∏
i,j

(X − ai) =
n−1∑
j=0

M (k,0)

X − aj
,

so that S (j) = d

dXM
(k,0)|X=aj can be obtained by fast multipoint evaluation applied to

d

dXM
(k,0)

.

Next we need a fast way to compute linear combinations

∑n−1

j=0
c j

M (k,0)
X−aj

. This is the purpose

of the next subroutine.

38

9 Fast evaluation and interpolation

Algorithm 14 Linear combination subroutine

Input:
• a = (a0, . . . ,an−1) ∈ K

n
with ai , aj (i , j)

• n = 2
k

• c = (c0, . . . , cn−1) ∈ K
n

• M (i, j) as computed by Algo. 12

Output:
n−1∑
j=0

c j
M (k,0)

X − aj

1. If n = 1 then return c0

2. Compute r 0 ←

n/2−1∑
j=0

c j
M (k−1,0)

X − aj
recursively

3. Compute r 1 ←

n−1∑
j=n/2

c j
M (k−1,1)

X − aj
recursively

4. Return M (k−1,1)r (0) +M (k−1,0)r (1)

Theorem 9.7. Algo. 14 requires O(M(n) log(n)) operations in K .

Proof. As usual by induction, with the complexity satisfying the recurrence formula

T (n) = 2T
(n

2

)
+O

(
M

(n
2

))
�

Algorithm 15 Fast interpolation

Input:
• a = (a0, . . . ,an−1) ∈ K

n
with ai , aj (i , j)

• n = 2
k

• b = (b0, . . . ,bn−1) ∈ K
n

Output: f ∈ K[X] with deg(f) < n and f (ai) = bi for i = 0, . . . ,n − 1

1. Compute M (i, j) using Algo. 12

2. д←
d

dX
M (k,0)

3. Compute (S (0), S (1), . . .) ← (д(a0),д(a1), . . .) using Algo. 13

4. Compute f ←
n−1∑
j=0

bj

S (j)
M (k,0)

X − aj
using Algo. 14

5. Return f

Theorem 9.8. Algo. 14 requires O(M(n) log(n)) operations in K .

Remark 9.9. This is the best known complexity for polynomial interpolation.

39

9 Fast evaluation and interpolation

Remark 9.10. The algorithms above carry over from K[X] to R[X] provided that ai − aj ∈ R
∗

for i , j. Without this condition, the Vandermonde matrix needs not be invertible and the

interpolation polynomial may not exist or be unique.

Remark 9.11. There are integer versions of Algo. 13 and 15 (fast simultaneous modular reduc-

tion / fast Chinese remaindering), also running in time O(M(n) log(n)).

Remark 9.12. The algorithms presented in this chapter are not faster than Algo. 3 if classical

multiplication is used.

9.3 Exercises

Exercise 9.1.

1. Let p be a prime. Implement the algorithms presented in this chapter for fast evaluation

and fast interpolation of polynomials in Fp [X], for p a prime.

2. Verify, by deconstructing and reconstructing large polynomials, that the experimental

complexity approaches the theoretical complexity.

Exercise 9.2.

1. Describe the integer equivalent of the presented algorithms, for fast simultaneous mod-

ular reduction and fast Chinese remaindering.

2. Implement those algorithms.

3. Verify, by deconstructing and reconstructing large integers, that the experimental com-

plexity approaches the theoretical complexity.

40

10 Fast GCD

In this chapter, the task is, given f ,д ∈ K[X] with degree < n, to �nd h = gcd(f ,д) ∈ K[X].

10.1 "Slow" GCD: Euclid’s algorithm

Algorithm 16 Euclid’s algorithm

Input: f ,д ∈ K[X]
Output: gcd(f ,д)

1. h ← f ,
¯h ← д

2. While
¯h , 0, do

3.

(
h
¯h

)
←

(
¯h

h rem
¯h

)
4. Return h

Let ri , for i ∈ N, be the value ofh in the i’th iteration of the loop, so r0 = f , r1 = д, r2 = f rem д...

Let qi = ri−1 quo ri for i ∈ N. Then ri+1 = ri−1 rem ri = ri−1 − qiri , so(
ri
ri+1

)
=

(
ri+1

ri−1 − qiri

)
=

(
0 1

1 −qi

)
·

(
ri−1

ri

)
= QiQi−1 · · ·Q2Q1 ·

(
f
д

)
where Qi =

(
0 1

1 −qi
)
.

Eventually,(
gcd(f ,д)

0

)
= QkQk−1 · · ·Q2Q1

(
f
д

)
where the �rst row of Qk · · ·Q1 contains the Bézout coe�cients s, t such that

gcd(f ,д) = s f + tд.

Remark 10.1. Euclid’s algorithm can be extended to keep track of the qi ’s and return the Bézout

coe�cients as well as the GCD.

10.2 Fast GCD

Theorem 10.2. There exists an algorithm computing the GCD of two polynomials f and д with
degree < n, together with their Bézout coe�cients, using O(M(n) log(n)) operations in K .

41

10 Fast GCD

Note that in order to compute gcd(f ,д), it is enough to compute R := Qk · · ·Q1, and we even

get s, t for free in the process. In order to get a fast algorithm for the GCD, we will try to split

this product in the middle.

To see how, observe that the trailing coe�cients of r0, r1 have no in�uence on the �rst quo-

tient q1: if deg(r0) − deg(r1) = k , the degree of q1 is k and only depends on the �rst coe�cient

of r1 and the �rst k coe�cients of r0.

Remark 10.3. Generically, and except maybe at the �rst step, deg(ri) − deg(ri+1) = 1.

De�nition 10.4. For f ∈ K[X] with deg(f) = n and k ∈ Z, we denote

f � k := f quo Xn−k = fn−k + fn−k+1X + ... + fnX
k

Proposition 10.5.
• If k < 0, f � k = 0.

• If k ≥ n, f � k = f .

• If i ∈ N, (X i f) � k = f � k .

• Assume that deg(f) = deg(д). Then f � k = д � k if and only if deg(f − д) < deg(f) − k .

De�nition 10.6. Let (f ,д), (¯f , д̄) ∈ K[X]2 with deg(f) ≥ deg(д), deg(¯f) ≥ deg(д̄) and k ∈ Z.

Then (f ,д) and (¯f , д̄) are said to coincide up to k , written (f ,д) ∼k (¯f , д̄), if{
f � k = ¯f � k

д � (k − (deg(f) − deg(д))) = д̄ � (k − (deg(¯f) − deg(д̄))).

Remark 10.7. The relation ∼k is an equivalence relation (Exercise 10.1).

Proposition 10.8. If (f ,д) ∼k (¯f , д̄) and k ≥ deg(f) −deg(д), then deg(f) −deg(д) = deg(¯f) −
deg(д̄).

Proof. If k ≥ deg(f)−deg(д), д � (k −(deg(f)−deg(д))) has degree k −(deg(f)−deg(д))which

is non-negative, and so is non-zero. By hypothesis, it is equal to д̄ � (k − (deg(¯f) − deg(д̄))),
and in particular their degrees are equal, hence deg(f) − deg(д) = deg(¯f) − deg(д̄). �

Theorem 10.9. Let (f ,д), (¯f , д̄) ∈ (K[X] \ {0})2 and k ∈ Z be such that (f ,д) ∼2k (¯f , д̄) and
k ≥ deg(f) − deg(д) ≥ 0. Let q, q̄, r , r̄ be such that

f = qд + r with deg(r) < deg(д)
¯f = q̄д̄ + r̄ with deg(r̄) < deg(д̄).

Then

q = q̄ and


(д, r) ∼2(k−deg(q)) (д̄, r̄)

or r = 0

or k − deg(q) < deg(д) − deg(r)

42

10 Fast GCD

Proof. Without loss of generality we can assume that deg(f) = deg(¯f) > 2k : otherwise, one

can multiply (f , ¯f) and (д, д̄) by suitable powers ofX and all hypotheses are still satis�ed. Then,

by Prop. 10.8, deg(д) = deg(д̄) and k ≥ deg(q) = deg(f) − deg(д) = deg(¯f) − deg(д̄) = deg(q̄).
Furthermore,

deg(f − ¯f) < deg(f) − 2k ≤ deg(д) − k

deg(д − д̄) < deg(д) − (2k − (deg(f) − deg(д))) = deg(f) − k

≤ deg(д) − k ≤ deg(д) − deg(q)

deg(r − r̄) ≤ max(deg(r), deg(r̄)) < deg(д).

Since

f − ¯f = q(д − д̄) + (q − q̄)д̄ + (r − r̄) (10.1)

(q− q̄)д̄ is a sum of terms with degree < deg(д), hence it also has degree < deg(д), hence q = q̄.

Assume now that r , 0 and k − deg(q) ≥ deg(д) − deg(r). We have to show that

д � 2(k − deg(q)) = д̄ � 2(k − deg(q)) (10.2)

r � 2(k − deg(q)) − (deg(д) − deg(r)) = r̄ � 2(k − deg(q)) − (deg(д̄) − deg(r̄)) (10.3)

Since (f ,д) and (¯f , д̄) coincide up to 2k ,

д � (2k − deg(q)) = д̄ � (2k − deg(q))

and Eq. (10.2) follows from the fact that deg(q) > 0.

For Eq. (10.3), by Eq. (10.1) we have

deg(r − r̄) ≤ max(deg(f − ¯f), deg(q) + deg(д − д̄)) < deg(q) + deg(f) − 2k

= deg(д) − 2(k − deg(q)) = deg(r) − 2(k − deg(q)) − (deg(д) − deg(r)).

Furthermore by assumption

deg(r) ≥ deg(q) + deg(д) − k ≥ deg(q) + deg(f) − 2k > deg(r − r̄)

so deg(r) = deg(r̄) and Eq. (10.3) follows from the above bound on deg(r − r̄). �

Theorem 10.9 gives a su�cient condition for two Euclidean quotients to be equal. We now

do the same for a sequence of reductions as they happen in the Euclidean algorithm.

Let r0, r1 be two polynomials in K[X] such that deg(r0) > deg(r1), and consider as before a

sequence of reductions of length l :

ri−1 = qiri + ri+1 for i = 1, . . . , l − 1

rl−1 = qlrl .

43

10 Fast GCD

Letmi = deg(qi), ni = deg(ri). For k ∈ N, de�ne η(k) ∈ N by

η(k) = max

{
j ∈ {0, . . . , l} :

j∑
i=1

mi ≤ k

}
.

Note that if 0 ≤ i ≤ l , then ni = n0 −m1 − · · · −mi , and so

n0 − nη(k) =

η(k)∑
i=1

mi ≤ k <

η(k)+1∑
i=1

mi = n0 − nη(k)+1.

Let r̄0, r̄1 be two polynomials in K[X] such that deg(r̄0) > deg(r̄1), we de�ne analogously
¯l ,

m̄i , n̄i and η̄(k).

Theorem 10.10. Let k ∈ N, h = η(k) and ¯h = ¯eta(k). If (r0, r1) and (r̄0, r̄1) coincide up to 2k ,
then h = ¯h and qi = q̄i for 1 ≤ i ≤ h.

Proof. We show by induction on j that the following holds for 0 < j ≤ h:

j ≤ ¯h

qi = q̄i for 1 ≤ i ≤ j{
j = h

or (r j , r j+1) and (r̄ j , r̄ j+1) coincide up to 2(k − n0 + nj).

Then the claim follows by symmetry.

There is nothing to prove for j = 0. Assume that the induction hypothesis holds for 0 ≤

j − 1 < h. Then r j−1 , 0 and k ≥ n0 − nj ≥ nj−1 − nj = n̄j−1 − n̄j and so r̄ j , 0. Theorem 10.9

applied with k ← k − n0 + nj−1 implies that qj = q̄j , and either (r j , r j+1) and (r̄ j , r̄ j+1) coincide

up to 2(k − n0 + nj), or r j+1 = 0, or k − n0 + nj < nj − nj+1.

In the second case, j + 1 > l , j ≥ 1 so j = h = 1. In the third case, h = η(k) = j by de�nition

of η.

Finally, since

j∑
i=1

deg(q̄i) =

j∑
i=1

deg(qi) ≤
h∑
i=1

deg(qi) ≤ k

so j ≤ η̄(j) = ¯h. �

We will use this result to describe a divide-and-conquer algorithm for the GCD. For this

purpose, we want to divide the problem into two subproblems of approximately the same size,

taking into account the degrees of the quotients. This is the reason why we introduced η(k)
(todo...)

44

10 Fast GCD

Algorithm 17 Fast Half-GCD (Knuth, Strassen)

Input: f ,д ∈ K[X], n = n0 = deg(f) > deg(д) = n1, k ∈ N such that 0 ≤ k ≤ n

Output: h = η(k) ∈ N, q1, . . . ,qh ∈ K[X], Rh = Qh · · ·Q1 ∈ K[X]
2×2

Base cases

1. If r1 = 0 or k < n0 − n1, then return 0, the empty sequence and I2

2. If k = 0 = n0 − n1, then return 1,
LC(f)
LC(д) and

(
0 1

1 −
LC(f)
LC(д)

)
First half of the reductions

3. r0 ← f , r1 ← д

4. d ← dk/2e

5. Call the algorithm recursively with r0 � (2d − 2), r1 � (2d − 2 − (n0 − n1)) and d − 1,

obtaining η(d − 1), q1, . . . ,qη(d−1) and R(1) = Qη(d−1) · · ·Q1

Propagating the reductions to the second half

6. j ← η(d − 1) + 1, δ ← deg(R(1)
2,2)

7.

(
r j−1

r j

)
← R(1) ·

(
r0

r1

)
8. If r j = 0 or k < δ + deg(r j−1) − deg(r j), then return j − 1, q1, . . . ,qj−1 and R(1)

Second half of the reductions

9. qj ← r j−1 quo r j

10. r j+1 ← r j−1 rem r j

11. d ← k − δ − (deg(r j−1) − deg(r j))

12. Call the algorithm recursively with input r j � 2d , r j+1 � (2d − (deg(r j) − deg(r j+1))) and d ,

obtaining η(d), qj+1, . . . ,qh and R(2) = Qη(d)+j . . .Q j+1

13. Return η(d) + j, q1, . . . ,qη(d)+1 and R(2)
(
0 1

1 −qj

)
R(1).

Remark 10.11. To compute the GCD of f and д, call the algorithm with k = n.

Theorem 10.12. Algo. 17 requires O(M(n) log(n)) operations in K if n ≤ 2k .

Remark 10.13. This is currently the best known complexity for computing the GCD of two

polynomials.

Remark 10.14. The algorithm may be optimized further, by dropping trailing coe�cients of the

polynomials before Step 7. This improves the constant in the complexity, and it eliminates the

requirement that n ≤ 2k . See [1, Algo. 11.6] for details.

Remark 10.15. Generically, deg(ri+1) = deg(ri) − 1 and η(k) = k , and the algorithm really splits

the problem into �rst the �rst l/2 reductions, and then the last l/2. In this case, the constant

in the complexity can be further improved.

Remark 10.16. The algorithm can return any line in the sequence of reductions of the Extended

Euclid’s Algorithm, but not all of them. The version presented above return the h’th line, with

45

10 Fast GCD

h = η(k), which corresponds to the line where the sum of the degrees of the quotients is roughly

k . This means that it can directly be used for rational reconstruction purposes.

Remark 10.17. If the �eld is in�nite, expression swell is to be expected. This can be mitigated

by clearing constants at every step and using homomorphic images.

Remark 10.18. If h = gcd(f ,д) then revdeg(h)h = gcd(revdeg(f) f , revdeg(д)д)? This may be used

to gain an extra speed when the trailing coe�cients are in some way simpler than the leading

coe�cients.

Remark 10.19. There is an integer analog of Algo. 17, also running in O(M(n) log(n)) time.

Remark 10.20. Algo. 17 can be used for fast modular inversion, but it is still slower than Newton

inversion.

Remark 10.21. There is no speed-up if classical multiplication is used.

Remark 10.22. Kronecker substitution can be used to obtain a fast GCD algorithm overK[X1, . . . ,Xn].

10.3 Exercises

Exercise 10.1. Show that the relation ∼k is an equivalence relation.

46

11 Fast squarefree decomposition

The task in this chapter is, given f ∈ K[X], �nd д1, . . . ,дm ∈ K[X] such that the дi ’s are

squarefree and pairwise coprime, and f = д1д
2

2
· · ·дmm .

11.1 Definitions and naive algorithm

De�nition 11.1. (д1, . . . ,дm) is called a squarefree decomposition of f . Its components are

uniquely determined up to multiplication by elements of K .

The product
¯f = д1 · · ·дm is called the squarefree part of f .

f is called squarefree if f = ¯f , or equivalently if for all д ∈ K[X] \K , д2 - f , or equivalently

if f has no multiple factor in its decomposition as a product of primes.

For the moment, we assume that Q ⊂ K , i.e. n = 1 + · · · + 1 , 0 for all n ∈ N.

Proposition 11.2. Let f ∈ K[X], write f ′ = d

dX f . Then f is squarefree if and only if gcd(f , f ′) =
1. Furthermore,

gcd(f , f ′) · ¯f = f .

Proof. If f is squarefree, write its prime decomposition f = p1p2 . . .pm where all pi ’s are

distinct. Then

f ′ =
m∑
i=1

p ′i

∏
j,i

pj ,

therefore

pi | f
′ ⇐⇒ pi | p

′
i

∏
j,i

pj ⇐⇒ pi | p
′
i .

So pi - f
′

and therefore gcd(f , f ′) = 1.

Now suppose that f = д1д
2

2
. . .дmm with pairwise coprime squarefree дi ’s. Then

f ′ =
m∑
i=1

iд′iд
i−1

i

∏
j,i

дjj .

So дk−1

k | f ′, but

дkk | f
′ ⇐⇒ дk | iд

′
k

∏
j,i

дjj ⇐⇒ дk | д
′
k

47

11 Fast squarefree decomposition

so дkk does not divide f ′. Therefore

gcd(f , f ′) = д2д
2

3
. . .дm−1

m .

�

Algorithm 18 Squarefree decomposition

Input: f ∈ K[X]
Output: (д1, . . . ,дm) the squarefree decomposition of f

1. u ← gcd(f , f ′)

2. If u = 1 then return (f)

3. Else

4. Recursively compute the squarefree decomposition (д2,д3, . . . ,дm) of u

5. Return

(
f

uд2 . . .дm
,д2, . . . ,дm

)
Theorem 11.3. Algorithm 18 requires O(mM(n) log(n)) operations in K .

11.2 Fast squarefree decomposition

We now want an algorithm running in time O(M(n) log(n)).

Theorem 11.4. Let д1, . . . ,дm ∈ K[X] be squarefree and pairwise coprime, д = д1 . . .дm and

h =
m∑
i=1

ciд
′
i
д

дi
∈ K[X] for some ci ∈ K .

Then

gcd(д,h − cд′) =
∏
c j=c

дj for all c ∈ K .

Proof. Since д′ =
∑m

i=1
д′i

д
дi

, we have

h − cд′ =
m∑
i=1

(ci − c)д
′
i
д

дi
.

gcd(дi ,д
′
i
д
дi
) = 1, because д′i

д
дi

is the product of д′i and the дj ’s with j , i , each of them being

coprime to дi . Furthermore, for j , i , дj | (ci − c)д
′
i
д
дi

. Therefore

gcd(дi ,h − cд
′) = gcd(дi , (ci − c)д

′
i
д

дi
) = gcd(дi , ci − c) =

{
дi if c = ci

1 otherwise,

which concludes the proof. �

48

11 Fast squarefree decomposition

Now let (д1, . . . ,дm) be the squarefree decomposition of f ∈ K[X]. Let u = gcd(f , f ′). For

k = 1, . . . ,m, let

Vk = дkдk+1 . . .дm

Wk =

m∑
i=k

(i − k + 1)д′i
Vk
дi
.

Then:

• V ′k =
∑m

i=k д
′
i
Vk
дi

• By Th. 11.4, gcd(Vk ,Wk −V
′
k) = дk

•

Wk −V
′
k

дk
=

m∑
i=k

(i − k + 1 − 1)д′i
Vk
дiдk

=

m∑
i=k+1

(i − (k + 1) + 1)д′i
Vk+1

дi
=Wk+1.

• V1 = ¯f =
f
u

•

f ′

u
=

m∑
i=1

iд′i
f

дiu
=

m∑
i=1

(i − 1 + 1)д′i
V1

дi
=W1.

This motivates the following algorithm.

Algorithm 19 Squarefree decomposition (Yun)

Input: f ∈ K[X]
Output: (д1, . . . ,дm) the squarefree decomposition of f

1. u ← gcd(f , f ′)

2. k ← 1, V1 ←
f
u ,W1 ←

f ′

u

3. Repeat

4. дk ← gcd(Vk ,Wk −V
′
k)

5. Vk+1 ←
Vk
дk

6. Wk+1 ←
Wk −V

′
k

дk
7. k ← k + 1

8. Until Vk = 1

9. Return (д1, . . . ,дk)

Theorem 11.5. Algo. 19 requires O(M(n) log(n)) operations in K .

Remark 11.6. This is the best known complexity for �nding the square-free decomposition of

a polynomial.

Proof. Let dk = deg(дk) for k = 1, . . . ,m. Then deg(Vk) =
∑m

i=k di and deg(Wk) ≤ deg(Vk)−1 <

49

11 Fast squarefree decomposition

deg(Vk). Let T (n) be the number of operations required by Algo. 19. We have

T (n) = O(M(n) log(n)) +
m∑
k=1

O(M(deg(Vk)) log(deg(Vk)︸ ︷︷ ︸
≤n

))

= O(M(n) log(n)) +O

(
M

(
m∑
k=1

deg(Vk)

)
log(n)

)
.

Since

m∑
k=1

deg(Vk) =
m∑
k=1

m∑
i=k

di =
m∑
i=1

idi = n,

we conclude that T (n) = O(M(n) log(n)). �

11.3 Fast squarefree decomposition in Z/pZ

Algorithms 18 and 19 do not work if K has positive characteristic, for example if K = Fp for p
prime.

Example 11.7. Consider f = X 3 + 1 ∈ F3[X], with f ′ = 3X 2 = 0, so gcd(f , f ′) = f . Algo. 18

would not terminate and Algo. 19 would return 1.

In fact f is not squarefree: f = X 3 + 1 = (X + 1)3.

Theorem 11.8. For all f ∈ Fp [X],

f ′ = 0 ⇐⇒ ∃д ∈ Fp [X] such that дp = f .

Proof. Write f = f0+ f1X + . . . , and assume that f ′ = 0. So f1+2f2X + · · · = 0, so for all k > 0,

k fk = 0. So for all k , p divides k or fk = 0. Then

f = f0 + fpX
p + f2pX

2p + · · · = д(Xp) = д(X)p

for д = f0 + fpX + f2pX
2 +

Conversely, if f = дp , f ′ = pд′дp−1 = 0. �

Let us examine the output of Algo. 19 more closely. It does terminate also for K = Fp , but

as we have seen above the output might be incorrect. Actually, if (д1, . . . ,дm) is the squarefree

decomposition of f ∈ K[X], Algo. 18 will return (h1, . . . ,hp−1) where for all i = 1, . . . ,p − 1,

hi =
∏

j=i mod p

дj .

It is not a problem ifm < p, and in particular if deg(f) < p.

50

11 Fast squarefree decomposition

Otherwise, we still have that

b :=
f

h1h
2

2
. . .h

p−1

p−1

=
д1д

2

2
. . .дmm

д1д
2

2
. . .д

p−1

p−1
дp+1д

2

p+2
. . .д

p−1

2p−1
. . .

= (дpдp+1 . . .д2p−1)
p (д2pд2p+1 . . .д3p−1)

2p . . .

and it is ap’th power. If (s1, . . . , sl) is a squarefree decomposition ofb1/p
, then for all j = 1, . . . , l

sj =

(j+1)p−1∏
i=jp

дi ,

therefore

дi | hj ⇐⇒ i = j mod p

дi | sj ⇐⇒ j =

⌊
i

p

⌋
.

Algorithm 20 Squarefree decomposition in Fp

Input: f ∈ Fp [X]
Output: (д1, . . . ,дm) the squarefree decomposition of f

1. Call Algo. 19 on f , obtaining (h1, . . . ,hp−1) = (h1, . . . ,hk , 1, . . . , 1)

2. b ←
f

h1h
2

2
. . .h

p−1

p−1

3. If b = 1 then return (h1, . . . ,hk)

4. Recursively compute the squarefree decomposition (s1, . . . , sl) of b1/p

5. дjp+i ← gcd(hi , sj) (i = 1, . . . ,p − 1, j = 1, . . . , l)

6. дjp ←
sj

дjp+1 . . .дjp+p−1

(j = 1, . . . , l)

7. дi ←
hi

дp+i . . .дlp+i
(i = 1, . . . ,p − 1)

8. Return (д1,д2, . . .)

51

12 The LLL algorithm

Throughout this chapter, Rn
refers to the real euclidean vector space of dimension n, equipped

with the scalar product (v,w) = v1w1 + · · · + vnwn and the norm | |v | | =
√
(v, v).

12.1 La�ices

De�nition 12.1. Let b(1), . . . ,b(m) ∈ Rn
. The Z-module L = b(1)Z+ · · ·+b(n)Z ⊂ Rn

is called

a lattice. The set B = {b(1), . . . ,b(m)} is called a basis of L.

Example 12.2. Zn
(with the canonical basis)is a lattice, and so are all its submodules.

Example 12.3. The set L = {(u
√

2, v
√

3) : u, v ∈ Z} is a lattice.

Example 12.4. The set L = Z

(
5

2

)
+ Z

(
4

1

)
is a lattice. Observe that

(
1

1

)
lies in L and is shorter

than both

(
5

2

)
and

(
4

1

)
. An alternative basis is

(
1

1

)
,

(
0

3

)
.

It is not yet the shortest basis for L: it is

(
1

1

)
,

(
−2

1

)
.

The goal in this chapter is, given a lattice L ⊂ Rn
(by means of its basis), to �nd:

1. argminx ∈L\{0} | |x | |, that is a nonzero vector of L with minimal length;

2. a basis of L consisting of vectors that are as short as can be.

Both problems are NP-hard, so with the state of today’s knowledge, we cannot hope to de-

scribe algorithms which are both e�cient and exact. Our goal is to �nd an e�cient approximate

algorithm, in the sense that it will �nd vectors of L which are at most

c × length of the shortest vector in L,

where the constant c depends only on n (not on L).

52

12 The LLL algorithm

12.2 Basis orthogonalization

Algorithm 21 Gram-Schmidt orthogonalization

Input: a basis b(1), . . . ,b(m) of some subspace U ⊂ Rn

Output: a basis
¯b(1), . . . , ¯b(m) of U such that (¯b(i), ¯b(j)) = 0 if i , j

1. For k from 1 tom

2.
¯b(k) ← b(k) −

k−1∑
j=1

(b(k), ¯b(j))

(¯b(j), ¯b(j))
¯b(j)

3. Return
¯b(1), . . . , ¯b(m)

Remark 12.5. By construction, we have the following properties:

1.
¯b(1), . . . , ¯b(k) generate the same subspace Uk as b(1), . . . ,b(k);

2.
¯b(k) is the orthogonal projection of b(k) on U ⊥k−1

;

3. | | ¯b(k) | | ≤ | |b(k) | |;

4. (¯b(k), ¯b(j)) = 0 if j , k

5. Let µk, j =
(b (k), ¯b (j))
(¯b (j), ¯b (j))

, then

b(k) = ¯b(k) +
k−1∑
j=1

µk, j ¯b(j), (12.1)

so

©­­«
b(1)

...

b(m)

ª®®¬ =
©­­«

1 0

. . .

µk, j 1

ª®®¬
©­­«

¯b(1)

...
¯b(m)

ª®®¬
6. If n =m, det(¯b(1), . . . , ¯b(m)) = det(b(1), . . . ,b(m))

Remark 12.6. The output of Algo. 21 depends on the order of the input.

Theorem 12.7. Let b(1), . . . ,b(m) ∈ Rn be linearly independent vectors, and L the lattice that
they generate. Let ¯b(1), . . . , ¯b(m) be the orthogonalized basis computed by Algo. 21. Then for all
x ∈ L \ {0},

| |x | | ≥ min

1≤i≤m
| | ¯b(i) | |.

Proof. Let x =
∑m

i=1
cib
(i)

be a non-zero vector in L. Let k be maximal such that ck , 0, using

Eq. (12.1), we can write

x = ck ¯b(k) +
∑
j<k

λj ¯b(j)

53

12 The LLL algorithm

for some λj ∈ R. Note that all terms in the sum are orthogonal. Therefore

| |x | |2 = ck | | ¯b
(k) | |2 +

∑
j<k

λ2

j | |
¯b(k) | |2 ≥ c2

k | |
¯b(k) | |2.

Since ck ∈ Z \ {0},

| |x | |2 ≥ || ¯b(k) | |2.

�

12.3 Description of the LLL algorithm

If
¯b(1), . . . , ¯b(m) as computed by Gram-Schmidt’s algorithm form a basis of L, then the shortest

vector of L will be among the
¯b(i). But usually the

¯b(i) are outside of L.

The idea to move forward is to approximate the
¯b(i) with elements of L.

De�nition 12.8. Let b(1), . . . ,b(m) be linearly independent and
¯b(1), . . . , ¯b(m) be as computed

by Algo. 21. Then (b(1), . . . ,b(m)) is called a reduced basis if for all k ∈ {1, . . . ,m − 1},

| | ¯b(k) | |2 ≤ 2| | ¯b(k+1) | |2.

Theorem 12.9. Let (b(1), . . . ,b(m)) be a reduced basis of a lattice L ⊂ Rn , and let x ∈ L \ {0}.
Then

| |b(1) | | ≤ 2
(m−1)/2 | |x | |.

Proof. Let
¯b(1), . . . , ¯b(m) be as computed by Algo. 21. Then

| |b(1) | |2 = | | ¯b(1) | |2 ≤ 2| | ¯b(2) | |2 ≤ · · · ≤ 2
m−1 | | ¯b(m) | |2.

By Theorem 12.7,

x ≥ min | | ¯b(i) | | ≥ 2
−(m−1)/2 | | ¯b(1) | | = 2

−(m−1)/2 | |b(1) | |.

�

b(1), . . . ,b(m) will be “close” to
¯b(1), . . . , ¯b(m) if the |µk, j | are small. The LLL algorithm pro-

ceeds by modifying the input basis in Algo. 21 such as to minimize the numbers, until the basis

is reduced.

54

12 The LLL algorithm

Algorithm 22 LLL algorithm (A. Lenstra, H. Lenstra, L. Lovacz)

Input: B = (b(1), . . . ,b(m)) ∈ Zn
, linearly independent over Q, generating a lattice L

Output: a reduced basis of L

1. Compute B̄ = (¯b(1), . . . , ¯b(m)) and the coe�cients µk, j by Algo. 21

2. M ←
©­­«

1 0

. . .

µk, j 1

ª®®¬
3. k ← 2

4. While k ≤ m do

5. For j from k − 1 down to 1 do

6. b(k) ← b(k) −
⌊
µk, j +

1

2

⌋
b(j)

7. Update B̄ and M

8. If k > 1 and | | ¯b(k−1) | |2 > 2| | ¯b(k) | |2 then

9. Swap b(k−1)
and b(k)

10. Update B̄ and M

11. k ← k − 1

12. Else

13. k ← k + 1

14. Return b(1), . . . ,b(m)

Remark 12.10. For µ ∈ R,

⌊
µ + 1

2

⌋
is the integer nearest to µ. In the literature, it is sometimes

denoted bµe.

First consider the �rst loop of the algorithm (Steps 5 to 7).

Lemma 12.11. Let k ≤ m, and let B = (b(1), . . . ,b(m)), B̄ = (¯b(1), . . . , ¯b(m)) andM = (µi, j) be the
values of the corresponding variables before Step 5. Let C = (c(1), . . . , c(m)), C̄ = (c̄(1), . . . , c̄(m))
and N = (νi, j) be the values of B, B̄ andM before Step 8 (after exiting the �rst loop). Then

• C̄ = B̄;

• the rows 1, . . . ,k − 1 inM and N are equal;

• for all j ∈ {1, . . . ,k − 1}, |νk, j | ≤ 1

2
.

Proof. We prove it by downwards induction on j ∈ {1, . . . ,k} that, after the pass through the

loop with value j,

1. for all l ∈ {j, . . . ,k}, c̄(l) = ¯b(l);

2. the rows 1, . . . ,k − 1 in M and N are equal;

3. for all l ∈ {j, . . . ,k − 1}, |νk,l | ≤
1

2
.

The initial case j = k is trivial.

Assume that the properties hold for j + 1 ≤ k , and consider Step 7 for j. The recomputation

does not change B̄:

•
¯b(j) for j < k has no reason to change;

55

12 The LLL algorithm

•
¯b(k) is the projection ofb(k) onto the subspace orthogonal toUk−1 = Span(b(1), . . . ,b(k−1)),

so it is also the orthogonal projection of b(k) + v for any v ∈ Uk−1;

•
¯b(j) for j > k is unchanged because all the previous

¯bl are unchanged.

As a consequence, the rows 1, . . . ,k − 1 of M and N are equal.

Now consider the k’th row of M . For brevity, let λ =
⌊
µk, j +

1

2

⌋
. We have:

c̄(k) = ¯b(k) = b(k) −
k−1∑
l=1

µk,l ¯b(l)

= b(k) − λb(j) −
k−1∑
l=1

µk,l ¯b(l) + λb(j)

= c(k) −
k−1∑
l=1

l,j

µk,l ¯b(l) − µk, j ¯b(j) + λb(j)

= c(k) −

j−1∑
l=1

(
µk,l − λµ j,l

)
¯b(l) −

(
µk, j − λ

)
c̄(j) −

k−1∑
l=j+1

µk,l c̄
(l)

So the µk,l with l > j are unchanged, and µk, j becomes µk, j −
⌊
µk, j +

1

2

⌋
, which lies in

[
− 1

2
, 1

2

]
.

�

Now we consider the second modi�cation done by the algorithm.

Lemma 12.12. At Step 10, after swapping b(k−1) and b(k):

• in the basis B̄, the only changes are in the entries ¯b(k−1) and ¯b(k);

• in thematrixM , the only changes are in the rowsk−1 and below (so the rowsk−1,k, . . . ,m).

Proof. For the �rst statement, the basis vectors
¯b(j), with j < k −1, are unchanged because they

do not depend on b(l) for l ≥ k − 1 > j. And the basis vectors
¯b(j), with j > k , are unchanged

because they are orthogonal projections onto U ⊥j , which does not change when we permute

elements of the basis.

As a consequence, the only modi�ed entries in the matrix M are those which depend on the

vectors b(k−1)
and b(k) (rows k − 1 and k) and on the vectors

¯b(k−1)
and

¯b(k) (columns k − 1 and

k). Since the matrix is triangular by construction, all entries in the rows 1, . . . ,k − 2 of those

two columns are zero. �

This equips us to prove the main loop invariant of the algorithm. An immediate corollary

will be that the output of the algorithm is necessarily a reduced basis of the lattice. Then all

that will remain to do is to bound the number of loops to prove that the algorithm terminates

and give complexity estimates.

56

12 The LLL algorithm

Proposition 12.13. The following invariant holds every time Algorithm 22 enters the loop 4:

|µ j,i | ≤
1

2

for 1 ≤ i < j < k

| | ¯b(i−1) | |2 ≤ 2| | ¯b(i) | |2 for 1 < i < k .

Proof. If k = 1 there is nothing to prove, so the invariants are true on the very �rst loop of the

algorithm. We will prove that they remain true from one loop to the next.

Assume that the invariants hold at the beginning of a loop, with value k . By Lemma 12.11,

before Step 8

|µk,i | ≤
1

2

for 1 ≤ i < k,

and, since the rows 1, . . . ,k − 1 of M are unchanged,

|µ j,i | ≤
1

2

for 1 ≤ i < j < k .

Now consider the two cases in Step 8. If no swap is needed, the second invariant already

holds for i = k , and by hypothesis is already held for 1 < i < k , so it holds for all i such

that 1 < i < k + 1. And from the above, the �rst invariant also holds for all i, j such that

1 ≤ i < j < k + 1.

If a swap was needed, then by Lemma 12.12, the basis elements
¯b(1), . . . , ¯b(k−2)

and the rows

1, . . . ,k − 2 of the matrix M are unchanged by the swap, so the �rst invariant still holds for

all i, j such that 1 ≤ i < j < k − 1 and the second invariant still holds for all i, j such that

1 < i < k . �

Corollary 12.14. If Algorithm 22 terminates, its output is a reduced basis.

12.4 Termination and complexity

Theorem 12.15. Algorithm 22 terminates in at most O(n2
log(A)) iterations of the “while” loop,

where A is a bound on | |b(1) | |, . . . , | |b(m) | |.

Proof. For k ∈ {1, . . . ,m}, let

Bk =
©­­«
b(1)

...

b(k)

ª®®¬ ∈ Zk×n
, B̄k =

©­­«
¯b(1)

...
¯b(k)

ª®®¬ ∈ Zk×n

and let dk = det(Bk · B
T
k). Since B̄k is the matrix of an orthogonal basis,

B̄k B̄
T
k =

©­­«
| | ¯b(1) | |2

. . .

| | ¯b(k) | |2

ª®®¬
57

12 The LLL algorithm

Let Mk be the matrix formed with the �rst k rows and columns of M , so that

Bk = Mk B̄k

and therefore

BkB
T
k = Mk B̄k B̄

T
kM

T
k

so

dk = det(B̄k B̄
T
k) =

k∏
i=1

| | ¯b(i) | |2

This immediately implies (via Lemma 12.11) that in Steps 5 to 7, dk does not change.

Consider now Step 10 when rows i − 1 and i were just swapped. If k , i − 1, the e�ect of the

swap is just a permutation of the vectors of the basis, and the determinant of the permutation

matrix is ±1, so dk is unchanged.

If k = i − 1, let (b(1)∗ , . . . ,b
(k)
∗), (

¯b(1)∗ , . . . , ¯b
(k)
∗) and d∗k be the new value of (b(1), . . . ,b(k)),

(¯b(1), . . . , ¯b(k)) and dk respectively after the recomputation:

d∗i−1
=

i−1∏
j=1

| | ¯b(j)∗ | |
2 =

i−2∏
j=1

| | ¯b(j)∗ | |
2 · | | ¯b(i−1)

∗ | |2

= di−1 ·
| | ¯b(i−1)
∗ | |2

| | ¯b(i−1) | |2
.

Since
¯b(i−1)
∗ is the orthogonal projection of

b(i−1)
∗ = b(i) = ¯b(i) +

i−1∑
j=1

µk, j ¯b(j)

onto U ⊥k−2
,

¯b(i−1)
∗ = ¯b(i) + µi,i−1

¯b(i−1),

so

| | ¯b(i−1)
∗ | |2 ≤ || ¯b(i) | |2︸ ︷︷ ︸

< 1

2
| | ¯b (i−1) | |2

+ µ2

i,i−1︸︷︷︸
≤ 1

4

| | ¯b(i−1) | |2

<
3

4

| | ¯b(i−1) | |2.

Therefore

d∗i−1
<

3

4

di−1.

58

12 The LLL algorithm

Now consider

D :=

m∏
k=1

dk =
m∏
k=1

k∏
j=1

| | ¯b(k) | |2 =
m∏
k=1

| | ¯b(k) | |2(m−k+1) ∈ N \ {0}.

From the above, every swap decreasesD by a factor of
3

4
, and remains �xed at every other point

of the algorithm. This shows that the algorithm terminates: otherwise, successive values of D
would form a strictly decreasing sequence of positive integers.

Furthermore, we can bound the initial value of D with

D = | | ¯b(1) | |2m · · · | | ¯b(m) | |2 ≤ ||b(1) | |2m · · · | |b(m) | |2 ≤ Am(m−1).

So the number of swaps is bounded by

log
4/3 A

m(m−1) = O(m2
log(A)) = O(n2

log(A))

and it also bounds the number of iterations: if S is the number of swaps (where k is decre-

mented), there will be exactly S +m iterations without a swap (where k is incremented) and so

2S +m iterations in total. �

Theorem 12.16. Algorithm 22 requires O(n4
log(A)) operations in Z.

Proof. It is a consequence of the previous theorem, noting that Steps 7 and 10 each require

O(n2) operations in Z, only recomputing those values which may have been changed, and that

the �rst step requires O(n3) operations. �

Theorem 12.17. The size of the integers constructed during a run of Algorithm 22 is bounded by
O(n log(A)). The bit complexity of Algorithm 22 is O(n4

log(A)M(n log(A))).

Remark 12.18. Algorithm22 can be extended to vectors that are not linearly independent, or to

vectors that live in some computable ring R with Z ⊂ R ⊂ R.

Remark 12.19. Algorithm 22 �nd a vector in L that is no more than 2
(n−1)/2

times as long as the

shortest. In practice, it usually �nds the shortest.

Remark 12.20. Several non-equivalent notions of “reduced” exist in the literature.

12.5 Applications

12.5.1 Factorization in Q[X]

We will see in Chapter 14 an application of the LLL algorithm to factorization of polynomials

with rational coe�cients.

59

12 The LLL algorithm

12.5.2 Integer relations

Let ξ1, . . . , ξm ∈ R. An integer relation between ξ1, . . . , ξm is a vector (e1, . . . , em) ∈ Zm
such

that

e1ξ1 + · · · + emξm = 0.

Such relations can be found using lattice reduction: let ε > 0 (small), w ∈ N>0 (large) and let

x1, . . . ,xm ∈ Q be approximations of ξ1, . . . , ξm with precision ε > 0, that is

|xi − ξi | < ε for all i .

Then, if (e1, . . . , em) is an integer relation, so is (we1, . . . ,wem)

|we1x1 + · · · + wemxm | = |we1(x1 − ξ1) + · · · + wem(xm − ξm)|

≤ (|e1 | + · · · + |em |)wε .

Consider the lattice

L =

©­­­­­­«

wx1

1

0

...

0

ª®®®®®®¬
Z +

©­­­­­­«

wx2

0

1

...

0

ª®®®®®®¬
Z + · · · +

©­­­­­­«

wxm
0

0

...

1

ª®®®®®®¬
Z ⊂ Qm+1

Then the vector

©­­­«
we1x1 + · · · + wemxm

e1

. . .

em

ª®®®¬ ∈ L
will be short if (e1, . . . , em) is an integer relation, ε is small enough and w is large enough.

More precisely, using the previous bounds, it can be shown that an integer relation with

|ei | < M will be found if

ε < 2
m/2

min

i=1, ...,m

|xi |

mM

and

w >
M
√
m

2
−m/2

mini=1, ...,m |xi | −mMε
.

12.5.3 Minimal polynomial

If α is an approximation of an algebraic number of degree d , its minimal polynomial can be

found by applying the previous technique to 1,α ,α2, . . . ,αd .

60

12 The LLL algorithm

12.5.4 Rational and algebraic reconstruction

Let p ∈ Z, and Zp = {
u
v
| v does not divide p} ⊂ Q. Let φ :

u
v
∈ Zp 7→ v

−1u ∈ Fp . A number

r = u
v

can be reconstructed form its image φ(r) using the Half-GCD algorithm (see Chapter 8).

Alternatively, one can use LLL and the fact that

(
u
v

)
is a short vector of(

φ(r)
1

)
Z +

(
p
0

)
Z.

The problem can be generalized to algebraic reconstruction. Letm ∈ Q[X] be an irreducible

polynomial, and consider the number �eld Q(α) = Q[X]/m. Let Zp (α) be the subset of Q(α)
consisting of numbers whose denominator is not divisible by p. Ifm has degree d , elements of

Zp (α) have the form

z =
u0 + u1α + · · · + ud−1α

d−1

v

where u0, . . . ,ud−1 ∈ Z and v ∈ N \ pN.

If φ(m) has a root ᾱ in Fp , then φ can be extended to Zp (α) by setting φ(α) = ᾱ .

Example 12.21. Consider the �eld Q[i] = Q[X]/〈X 2 + 1〉, and φ the reduction modulo 5. In F5,

X 2 + 1 has 2 and 3 as roots. So we can set φ(i) = 2 and obtain a ring morphism Z5(i) → F5.

Explicitely, this morphism is de�ned as

φ :

a + bi

d
7→ d−1a + 2d−1b mod 5.

In this situation, given φ(z), we can reconstruct z by using LLL. Indeed,

©­­­­­­«

u0

u1

...

ud−1

v

ª®®®®®®¬
is a short vector of the lattice

©­­­­­­«

φ(z)
0

...

0

1

ª®®®®®®¬
Z +

©­­­­­­«

0

φ(z)/ᾱ
...

0

1

ª®®®®®®¬
Z + · · · +

©­­­­­­«

0

0

...

φ(z)/ᾱd−1

1

ª®®®®®®¬
Z +

©­­­­­­«

p
0

...

0

0

ª®®®®®®¬
Z + · · · +

©­­­­­­«

0

0

...

p
0

ª®®®®®®¬
Z ⊂ Zd+1

where the divisions by ᾱ are performed in Fp and an arbitrary representative in Z is chosen.

61

12 The LLL algorithm

12.5.5 Linear systems over Z

Let b(1), . . . ,b(m) ∈ Zn
and consider

L =
{
x = (x1, . . . ,xn) ∈ Z

m | x1b
(1) + . . . xmb

(m)
}
⊂ Zm .

L is a lattice, and solving the linear system requires �nding generators of this lattice.

Those generators can be found using LLL. Let w ∈ N, and consider the lattice

L∗ =

©­­­­­­«

wb(1)

1

0

...

0

ª®®®®®®¬
Z +

©­­­­­­«

wb(2)

0

1

...

0

ª®®®®®®¬
Z + · · · +

©­­­­­­«

wb(m)

0

0

...

1

ª®®®®®®¬
Z ⊂ Zn+m .

This lattice contains the wanted generators, which will have the form

©­­­­­­­­­«

0

...

0

x1

...

xm

ª®®®®®®®®®¬
.

If w is large enough, those vectors will be short and appear in a reduced basis of L∗.

12.5.6 Knapsack-type problems

The knapsack problem (KP) is the problem of deciding, given a list of items with their weight

together with a minimal weight w and a maximal weight W , whether it is possible to pack

items with a total weight at least w and at most W . This problem is NP-complete. Many

cryptosystems depend on problems with a similar type as KP.

We consider here the subset sum problem (SSP): given a1, . . . ,an ,a ∈ N, does there exist

I ⊂ {1, . . . ,n} such that

∑
i ∈I ai = a? Equivalently, we want to decide whether there exists

x1, . . . ,xn ∈ {0, 1} such that a1x1 + · · · + anxn = a.

This is also a NP-complete problem.

Remark 12.22. SSP is equivalent to the KP under polynomial-time reductions, because they

are both NP-complete. There is also a direct (and trivial) reduction from SSP to KP, by taking

w =W = a.

62

12 The LLL algorithm

A pragmatic attack on SSP is to apply LLL to the lattice

L =

©­­­­­­«

−a1w

1

0

...

0

ª®®®®®®¬
Z +

©­­­­­­«

−a2w

0

1

...

0

ª®®®®®®¬
Z + · · · +

©­­­­­­«

−anw
0

0

...

1

ª®®®®®®¬
Z +

©­­­­­­«

aw
0

0

...

0

ª®®®®®®¬
Z ⊂ Zn+1

with some large w, and hope for solutions (0,x1, . . . ,xn) to show up in a reduced basis.

A lot of cryptosystems based on the knapsack problem or related NP-complete problems can

be broken in this way.

12.6 Exercises

Exercise 12.1.

1. Implement Gram-Schmidt orthogonalization and the LLL algorithm, using calls to the

Gram-Schmidt algorithm for steps 7 and 10.

2. Re�ne the implementation to perform steps 7 and 10 in quadratic time.

Exercise 12.2. Describe a way to use the LLL algorithm for Chinese remainder reconstruc-

tion: given n,m,a,b ∈ N, �nd x ∈ N such that{
x mod n = a

x mod m = b .

63

13 Factorization in Fp[X]

Given f ∈ Fp [X], we want to �nd p1, . . . ,pn ∈ Fp [X] irreducible and pairwise distinct, and

e1, . . . , en ∈ N, such that f = pe1

1
· · ·penn .

13.1 Preliminaries

Remark 13.1. Using the squarefree decomposition algorithm as a preprocessor, we may assume

that e1, . . . , en = 1.

Recall the following theorem:

Theorem 13.2. 1. For all a ∈ Fp , ap − a = 0.

2. Let q = pn and let K be a �eld with q elements. Then K is the splitting �eld of Xq −X over
Fp , that is the smallest �eld extension of Fp containing in whichXq −X splits into a product
of linear factors. Furthermore, Xq − X is squarefree in F̄p , so

Xq − X =
∏
a∈K

(X − a).

3. If K is a �eld extension of Fp , then

Fp = {a ∈ K : ap − a = 0}.

4. If K is a �nite �eld and L is a �eld extension of K , then there exists l such that |L| = |K |l .

13.2 Berlekamp’s algorithm

The idea is to reduce factorization to linear algebra.. Consider the Fp-vector spaceR := Fp [X]/〈f 〉.
Then the map

L : R → R
a 7→ ap − a

is Fp-linear.

If f = p1 · · ·pm for irreducible pairwise distinct pi ’s, then

R ' Fp [X]/〈p1〉 × · · · × Fp [X]/〈pm〉.

64

13 Factorization in Fp [X]

Let a ∈ ker(L) then for all i ∈ {1, . . . ,m}:

ap = a mod f =⇒ ap = a mod pi

=⇒ a rem pi ∈ Fp (for any representative of a ∈ R = Fp [X]/〈f 〉).

And conversely, if for all i ∈ {1, . . . ,m}, ap − a is divisible by pi , then ap − a is divisible by f
and a ∈ ker(L). So

β := ker(L) ' Fmp .

Remark 13.3. The kernel β of L contains Fp (as constant polynomials modulo f in R). Under

the isomorphism above, it corresponds to the line generated by (1, . . . , 1), that is vectors where

all coordinates are equal.

If a ∈ R is such that (a mod p1,a mod p2, . . .) has some, but not all, components 0, then

gcd(a, f) =
∏

pi |a pi is a proper divisor of f .

Since eachb ∈ ker(L) corresponds to some vector in Fmp , we can simply search through them.

But there are many such vectors, pm of them to be precise.

Instead, �x b ∈ ker(L) \ Fp , and suppose that it corresponds to a vector

(b1, . . . ,bm) ∈ F
m
p

with no zero component. Then b − b1 corresponds to the vector

b − b1(1, . . . , 1) = (0,b2 − b1, . . . ,bm − b1).

It is therefore enough to search through b +α with b ∈ ker(L) �xed and α running through Fp .

Algorithm 23 Factorization in Fp [X] (Berlekamp)

Input: f ∈ Fp [X], deg(f) = n > 0, f squarefree

Output: a proper divisor д of f , or f itself if f is irreducible

1. For i = 0 . . .n − 1, compute X ip
rem f =

n−1∑
j=0

qi, jX
j

and set QT ← ((qi, j))
n−1

i, j=0

2. Compute a basis B = {b(1), . . . ,b(m)} ⊂ Fnp of ker(Q − In)

3. Ifm = 1 then return f

4. For i = 1, . . . ,m

5. b ← b(i)(1,X , . . . ,Xn−1) ∈ Fp [X]

6. If deg(b) = 0, continue with next i

7. Else, for α = 0, . . . ,p − 1 do

8. д← gcd(f ,b + α)

9. If д , 1 then break and return д

Theorem 13.4. Algorithm 23 is correct.

Theorem 13.5. Algorithm 23 requires O(n3 + pM(n) log(n)) operations in Fp .

Remark 13.6. If p is large, Algorithm 23 is slow.

65

13 Factorization in Fp [X]

13.3 Cantor-Zassenhaus algorithm

We would like to reduce the complexity in p to log(p).

The idea of the algorithm in this section will be to proceed in two stages:

1. split f into f = д1 · · ·дk where дi is the product of irreducible factors of degree i (distinct
degree splitting);

2. split each дi into a product of irreducibles (equal degree splitting).

Theorem 13.7. In Fp [X], the following identity holds:

Xpn − X =
∏

Q irred.
monic

deg(Q) |n

Q .

Proof. We �rst prove that the rhs divides the lhs: if Q ∈ Fp [X] is irreducible monic such that

deg(Q) = d | n, let k be such that n = dk . Then K := Fp [X]/〈q〉 is a �eld with pd elements.

Thus, for all a ∈ K , ap
d
= a, and so

ap
n
= ap

kd
= a(p

d)k = (· · · (ap
d
)p

d
· · ·)p

d
= a.

So Xpn − X is 0 in K , which implies that Q divides Xpn − X .

Now we prove that the lhs divides the rhs. Let K be the splitting �eld of Xpn − X . Let

Q | Xpn − X with Q irreducible with degree d . We have to show that d | n. Consider the

�eld Fp [X]/〈Q〉. It has pd elements and it is a sub�eld of K which has pn elements, so indeed

d | n. �

With this theorem, we can present an algorithm for distinct degree splitting.

Algorithm 24 Distinct degree splitting

Input: f ∈ Fp [X], deg(f) = n > 0, f squarefree

Output: д1, . . . ,дk ∈ Fp [X] such that f = д1 · · ·дk and дi consists only of factors of degree i

1. h ← X

2. For k = 1, 2, . . . while f , 1, do

3. h ← hp rem f # h = Xpk
mod f

4. дk ← gcd(h − X , f)

5. f ←
f
дk

6. Return д1, . . . ,дk

Theorem 13.8. Algo. 24 is correct and requires O(kM(n) log(np)) operations in Fp .

Proof. Let P be an irreducible factor of f , with degree i . By Th. 13.7, P divides Xpi − X and

P does not divide Xp j − X for j < i . So P still divides f at step k = i in the algorithm, and it

divides дi .

66

13 Factorization in Fp [X]

Since the дk ’s are made with gcd’s with f , they cannot contain any factor which does not

divide f .

The complexity is clear once we note that all polynomials involved have degree at most

pn. �

Lemma 13.9. Let p be prime, q = pk and consider the �eld Fq . Let S = {a2
: a ∈ F×q } be the set

of squares in F×q . Then:

1. S = {a ∈ F×q : a(q−1)/2 = 1}

2. |S | = q−1

2
.

Theorem 13.10. Let p , 2 and f ∈ Fp [X]. LetQ be an irreducible factor of f with degree d < n.
Then

Prob A∈Fp [X]
gcd(A,f)=1

deg(A)<n

(
A(p

d−1)/2 − 1 = 0 mod Q
)
=

1

2

.

Proof. Let e = 1

2
(pd − 1), it is an integer because p , 2. Let A ∈ Fp [X] with degree < n and

coprime to f , then it is coprime to Q . Let K = Fp [X]/〈Q〉, it is a �eld with pd elements and A
is invertible in that �eld. By Lemma 13.9, we have

Ae = A
1

2
(pd−1) =

{
1 if A = B2

for some B ∈ Fp [X]

−1 if A , B2
for all B ∈ Fp [X]

and the cardinality of the set of squares in K× is half the cardinality of K×. �

Algorithm 25 Factorization subroutine

Input: f ∈ Fp [X], p > 2, deg(f) = n > 0, and d ∈ N, d < n such that f is the product of m pairwise

distinct irreducible polynomials of degree d

Output: h proper factor of f , or FAIL

1. Choose A ∈ Fp [X] with 1 ≤ deg(A) < n at random

2. h ← gcd(A, f)

3. If h , 1 then return h

4. h ← A(p
d−1)/2

rem f

5. h ← gcd(h − 1, f)

6. If h , 1 and h , f then return h

7. Return FAIL

Theorem13.11. Algo. 25 requiresO((d log(p)+log(n))M(n)) operations in Fp and returns FAILwith
probability < 1

2
m−1
≤ 1

2
if f is not irreducible.

Proof. Let д1, . . . ,дm be the irreducible factors of f . The algorithm returns FAILif, at step 6,

either

67

13 Factorization in Fp [X]

1. h = f , meaning that A(p
d−1)/2 = 1 mod дi for all i , or

2. h = 1, meaning that A(p
d−1)/2 = −1 mod дi for all i .

By Th. 13.10, either event has probability 2
−m

, so together they have probability 2
−m+1

. The

probability of failure is strictly smaller than that because there is a small chance of success at

step 3. �

Algorithm 26 Equal degree splitting

Input: f ∈ Fp [X], p > 2, deg(f) = n > 0, and d ∈ N, d < n such that f is the product of m pairwise

distinct irreducible polynomials of degree d

Output: the irreducible factors of f

1. If n = d then return f

2. Call Algo. 25 on f , returning h

3. If h is FAILthen

4. Compute the factors of f recursively

5. Else

6. Compute the factors of h and f /h recursively

7. Return the factors

Theorem13.12. The expected number of operations in Fp in a run of Algo. 26 isO ((d log(p) + log(n)) log(n/d)M(n)).

Proof. Each recursion level requires O((d log(p) + log(n))M(n)) operations by the theorem on

the complexity of Algo. 25, and because

log(a)M(a) + log(b)M(b) ≤ log(a + b)M(a + b)

and deg(h) + deg(f /h) = deg(f) = n.

It remains to show that the expected depth of the recursion tree isO(log(n/d)) = O(log(m)).
Any two irreducible factors дi ,дj have a chance ≥ 1

2
to be separated in step 2. So with proba-

bility < 1

2
k they are still not separated at the k’th recursion level. With probability < m2

2
k there

is at least one unseparated pair of factors at level k .

Let p(k) = Prob(depth > k), we know so far that

p(k) <
m2

2
k
.

68

13 Factorization in Fp [X]

The expected depth of the recursion tree is then∑
k≥1

k
(
p(k−1) − p(k)

)
=

∑
k≥0

(k + 1)p(k) −
∑
k≥0

kp(k)

=
∑
k≥0

p(k)

=
∑

k≤2 logm

p(k)︸︷︷︸
≤1︸ ︷︷ ︸

≤2 log(m)

+
∑

k>2 log(m)

p(k)︸︷︷︸
<m2

2
k︸ ︷︷ ︸

<m2
∑
(1

2
)k

≤ 2 log(m) +m2
2

2
2 log(m)︸ ︷︷ ︸
=2

= O(log(m)).

�

Algorithm 27 Factorization in Fp [X] (Cantor-Zassenhaus)

Input: f ∈ Fp [X], p > 2, deg(f) = n > 0, f squarefree

Output: the irreducible factors of f

1. Compute the distinct degree splitting f = д1 · · ·дk with Algo. 24

2. For d from 1 to k do

3. If дd , 1 then compute the irreducible factors of дd by Algo. 26

4. Return the factors

Theorem 13.13. Algo. 27 requires an expected number of O(nM(n) log(pn)) operations in Fp .

Remark 13.14. Algorithms 24, 26 and 27 can be generalized to arbitrary �nite �elds (i.e. �elds

with pn elements where p is any prime).

Remark 13.15. Maple and Mathematica use variants of Algorithm 27 for polynomial factoriza-

tion.

69

14 Factorization in Q[X]

The task is the same as before: given f ∈ Q[X], �nd д1, . . . ,дm ∈ Q[X] irreducible such that

f = д1 · · ·дm .

In this chapter, we present 4 algorithms:

• an algorithm reconstructing a factorization inQ[X] from one in Fp [X] orZ/plZ[X], with

exponential cost in number of operations in Fp , Z/plZ and Z;

• an algorithm computing a factorization in Z/plZ[X] in polynomial time;

• LLL’s algorithm, performing the reconstruction in polynomial time, but slower in prac-

tice than the exponential algorithm;

• von Hoeij’s algorithm, performing the reconstruction in polynomial time and more e�-

cient in practice.

14.1 Reconstructing from a factorization in Fp[X]

Without loss of generality, we can assume that:

1. f is squarefree, i.e. the дi ’s are pairwise distinct

2. f ∈ Z[X] (because factoring f is equivalent to factoring c f for any c , 0, so we can

clear denominators)

3. д1, . . . ,дm ∈ Z[X] (Gauss’s lemma)

De�nition 14.1. Let h =
∑
hiX

i ∈ Z[X], the content of h is

cont(h) = gcd(hi).

The primitive part of h is

pp(h) =
h

cont(h)
∈ Z[X].

Proposition 14.2. If h1,h2 ∈ Z[X], then

cont(h1h2) = ±cont(h1)cont(h2)

pp(h1h2) = ±pp(h1)pp(h2).

Lemma 14.3 (Gauss). If f ∈ Z[X] factors as д1 · · ·дm overQ[X], then there exist c1, . . . , cm ∈ Z
such that c1д1, . . . , cmдm ∈ Z[X] and f = c1д1 · · · cmдm .

70

14 Factorization in Q[X]

Proof. It is enough to prove it for a product of two polynomials. Assume that f = д1д2 with

дi =
hi
di
,hi ∈ Z[X],di ∈ N, minimal.

The minimality of di ensures that di does not divide cont(дi). Since f = д1д2, d1d2 divides

cont(д1)cont(д2), so d1 divides cont(д2) and d2 divides cont(д1). So we can write

f =
cont(д1)cont(д2)

d1d2

pp(h1)pp(h2) =
cont(д1)

d2

д1

cont(д2)

d1

д2.

�

If f = д1д2 in Z[X], then f = д1д2 in (Z/q)[X] for all q ∈ N. But the converse is false:

consider f = X 2 + 1 ∈ Z[X], it is irreducible over Q but X 2 + 1 = (X + 2)(X + 3)inF5[X]. Still,

all irreducible factors of f ∈ Z[X] will be products of the irreducible factors of f mod q.

The idea is thus to try all combinations!

For f = f0 + · · · + fnX
n ∈ Z[X], de�ne | f | =

√
f 2

0
+ · · · + f 2

n .

Theorem 14.4 (Landau - Mignotte). Let f ,д ∈ Z[X] with deg(f) = n, deg(д) = k and д | f ,
then

max

i
|дi | ≤ |д | ≤ 2

k | f | ≤
√
n + 1 2

k
max

i
| fi |.

Algorithm 28 Partial factorization over Z[X]

Input: f ∈ Z[X], squarefree with degree deg(f) = n > 0

Output: an irreducible factor д of f , of f itself if irreducible

1. Choose a prime p > B := 2

√
n + 1 2

n
maxi | fi | so that

¯f := f mod p ∈ Fp [X] is also squarefree

2. Compute the monic irreducible factors д̄(1), . . . , д̄(m) ∈ Fp [X] of
¯f

3. For k from 1 tom/2, do

4. For all G ⊂ {д̄(1), . . . , д̄(m)} with |G | = k , do

5. h ← LC(f)
∏

д∈G д

6. If д | f in Q[X], then return д

7. Return f

Remark 14.5. The conversions from Fp toZ are done by taking the representative in {− dp/2e , . . . , dp/2e}.

Remark 14.6. The algorithm is easily modi�ed such as to produce a full factorisation.

Remark 14.7. In the worst case, up to 2
n/2

attempts are needed before a factorд is found. Indeed,

for all n = 2
k
, there are irreducible polynomials in Z[X] which split into linear factors modulo

any prime.

Remark 14.8. Typically the performance is not that bad.

71

14 Factorization in Q[X]

14.2 p-adic numbers and Hensel’s li�ing

The main disadvantage of the previous algorithm is that it requires to do computations in large

prime �elds Fp , where p � 2
64

, which are quite slow. To overcome this issue, we use Hensel’s

lifting.

De�nition 14.9. Let p ∈ Z be a prime number. The set

Zp =

{
∞∑
n=0

anp
n

: 0 ≤ an < p

}
,

equipped with the natural addition and multiplication (convolution) is called the ring of p-adic
integers.

Proposition 14.10. 1. Zp is indeed a ring;

2. Zp ' {
u
v
∈ Q : p - v};

3. There is a natural inclusion Z ↪→ Zp .

Proof. Exercise. �

p-adic numbers can be equipped with a distance and a topology which make them approx-

imations of integers. Moderately more precisely, we say that two p-adic numbers u, v ∈ Zp
are “close” i� u − v = 0 mod pl for a large exponent l . Equivalently, it means that the �rst l
coe�cients of u and v are the same.

De�nition 14.11. Letu =
∑

n∈N anp
n

be ap-adic number. The truncated expansion

∑l−1

n=0
anp

n ∈

Z is called a p-adic approximation of u of order l .

The idea of the next algorithm will be to �nd a goodp-adic approximation for the coe�cients

of the factors of f .

Consider the equation

f = д · h

for given f ∈ Z[X] ↪→ Zp [X] and unknown д,h. Factorizing f in Zp [X] is equivalent to

solving the previous equation for д,h in Zp [X], which amounts to �nding a root of

F : Zp [X]
2 → Zp [X]

д,h 7→ f − д · h.

We can use Newton iteration for that. Suppose that д(k),h(k) ∈ Z[X] are such that

f − д(k)h(k) = 0 mod pk .

Then there exists дk ,hk ∈ Z[X] with coe�cients in {0, . . . ,p − 1} such that

д(k+1) = д(k) + дkp
k

mod pk+1

h(k+1) = h(k) + hkp
k

mod pk+1.

72

14 Factorization in Q[X]

Expanding F (д(k) + дkp
k ,h(k) + hkp

k) as a power series around (д(k),h(k)) yields:

F (д(k+1),h(k+1)) = F (д(k),h(k)) + ∂1F (д
(k),h(k))︸ ︷︷ ︸
−h(k)

pkдk + ∂2F (д
(k),h(k))︸ ︷︷ ︸
−д(k)

pkhk + p
2k (. . .)

so, truncating and grouping,

0 = (f − д(k)h(k)) − h(k)pkдk − д
(k)pkhk mod pk+1.

All three terms of this sum are divisible by pk , so

u :=
f − д(k)h(k)

pk
mod p = h(0)дk + д

(0)hk mod p.

If gcd(д(0),h(0)) = 1 in Zp [X] then there are unique s, t ∈ Fp [X] of degree < degh(0) and

< degд(0) respectively, such that

1 = д(0)s + h(0)t ∈ Fp [X],

and so

u = д(0)us + h(0)ut .

Let q = us quo h(0), adding 0 = q(д(0)h(0) − h(0)д(0)) to the previous equation yields

u = д(0) ·
(
us − qh(0)

)
+ h(0) ·

(
ut + qд(0)

)
,

where:

• u has degree ≤ n

• us − qh(0) = us rem h(0) so the �rst summand has degree ≤ n − 1

• as a consequence, the second summand has degree ≤ n, and so ut + qд(0) has degree

≤ deg(д(0)).

For any α ∈ Z, we have the same equality

u = д(0) ·
(
us − (q − α)h(0)

)
︸ ︷︷ ︸

=:hk

+h(0) ·
(
ut + (q − α)д(0)

)
︸ ︷︷ ︸

=:дk

,

where hk and дk are uniquely determined by α , and α is the coe�cient of degree n in hk . If

LC(h(0)) = 1, then we can always choose α = 0, and it will ensure that LC(h(k)) = 1 for all k .

73

14 Factorization in Q[X]

Algorithm 29 Approximated factorization over Zp [X] (Hensel)

Input:
• f ∈ Z[X], deg f = n, p prime, l ∈ N

• д(0),h(0) ∈ Fp [X] coprime such that f = д(0)h(0) mod p and h(0) is monic

Output: д(l),h(l) ∈ Z[X], h(l) monic, such that f = д(l)h(l) mod pl+1

1. Compute s, t ∈ Fp [X] with 1 = д(0)s + h(0)t

2. д← д(0), h ← h(0)

3. For k from 1 to l do

4. u ← (f − дh)/pk

5. q = us quo h(0)

6. h ← h + pk (us − qh(0))

7. д← д + pk (ut + qд(0))

8. Return (д,h)

Theorem 14.12. Algo. 29 requires O(lM(n)) operations in Fp or Z.

Remark 14.13. Algo. 29 can be generalized to an arbitrary number of factors.

We can then use the same idea as Algo. 28, replacing the factorisations in Fp for large p with

factorizations in Z/plZ where p is small and l is large enough (i.e. such that pl > B). This gets

rid of the �rst problem with Algo. 28, which was the computations in a large prime �rld.

14.3 LLL-powered factorization

In this section, the goal is to describe an alternative to Algo. 29 with polynomial worst-case

complexity.

Theorem 14.14 (Hadamard). Let b(1), . . . ,b(n) ∈ Rn and B ∈ R be such that maxi | |b
(k)
i | | < B

for k = 1, . . . ,n. Then

| det(b(1), . . . ,b(n))| ≤ | |b(1) | | · · · | |b(1) | | ≤ nn/2Bn .

Proof. If the b(i) are linearly dependent, there is nothing to prove. Assume that they are not,

and let
¯b(1), . . . , ¯b(n) be their Gram-Schmidt orthogonalization (as computed by Algo. 21). Then

| det(b(1), . . . ,b(n))| = | det(¯b(1), . . . , ¯b(n))|

=

√
det(¯b(1), . . . , ¯b(n)) det(¯b(1), . . . , ¯b(n))T

=

√
det(Diag(| |¯b(1) | |2, . . . , | |¯b(n) | |2))

= | | ¯b(1) | |2 · · · | | ¯b(n) | |2

≤ ||b(1) | |2 · · · | |b(n) | |2 ≤ (
√
nB)n .

�

74

14 Factorization in Q[X]

Recall that for a polynomial f = f0 + · · · + fnX
n ∈ Z[X], we de�ned | f | =

√
f 2

0
+ · · · + f 2

n .

Theorem 14.15. Let f ,д ∈ Z[X], deg f = n > 0, degд = m > 0. Suppose that u ∈ Z[X] with
degu > 0 is such that u | f , u | д ∈ Fq[X] for some q > 0 with | f |m |д |n < q. Then gcd(f ,д) is
nontrivial in Z[X].

Proof. We will show that res(f ,д) = 0, which implies the result, with

|res(f ,д)| =

���������det

©­­­­«
f0 д0

...
. . .

...
. . .

fn f0 дm д0

. . .
...

. . .
...

fn дm

ª®®®®¬
���������

The previous theorem yields that

|res(f ,д)| ≤ | f |m |д |n < q.

It su�ces to show res(f ,д) = 0 mod q. But this is true since u | gcd(f ,д) ∈ Fq[X]. �

Now suppose that u ∈ Z[X] with deg(u) = d > 0 is monic and f ∈ Z[X] with deg(f) = n is

such that u | f mod q for some q.

If we can �nd д ∈ Z[X] with deg(д) = k < n and u | д mod q and |д |n < q | f |−k , then the

theorem implies that gcd(f ,д) ∈ Z[X] is a proper factor of f .

Let u = u0 + · · · + udX
d

and consider

L :=

©­­­­­­­­­­­­­«

u0

u1

...

ud
0

0

...

0

ª®®®®®®®®®®®®®¬︸︷︷︸
u

Z +

©­­­­­­­­­­­­­«

0

u0

...

ud−1

ud
0

...

0

ª®®®®®®®®®®®®®¬︸ ︷︷ ︸
Xu

Z + · · · +

©­­­­­­­­­­­­­«

0

0

...

0

u0

u1

...

ud

ª®®®®®®®®®®®®®¬︸︷︷︸
X k−du

Z +

©­­­­­­­­­­­­­­«

q
0

...

0

0

...

...

0

ª®®®®®®®®®®®®®®¬
Z +

©­­­­­­­­­­­­­­«

0

q
...

0

0

...

...

0

ª®®®®®®®®®®®®®®¬
Z + · · · +

©­­­­­­­­­­­­­­«

0

...

0

q
0

...

...

0

ª®®®®®®®®®®®®®®¬
Z ⊂ Zk+1.

Proposition 14.16. For д = д0 + · · · + дkX
k , we have

©­­«
д0

...

дk

ª®®¬ ∈ L ⇐⇒ u | д mod q.

Proof. “⇒” is obvious. For “⇐”, assume that u | д mod q. Then д = au + bq ∈ Z[X] for

some a,b ∈ Z[X] such that dega < degд − degu = k − d and degb ≤ k , with b = āu + ¯b for

ā, ¯b ∈ Z[X] (u monic), with deg
¯b < degu = d . Then

д = (a + ā)︸ ︷︷ ︸
deg≤k−d

u + q ¯b︸︷︷︸
deg<degu

∈ Z[X]

75

14 Factorization in Q[X]

so (д0, . . . ,дk) ∈ L. �

If д | f in Z[X] then by Thm. 14.4 (Landau-Mignotte), |д | < 2
k | f |. By Thm. 12.15 (LLL), we

can �nd д̄ ∈ L with

|д̄ | < 2
k/2 · 2k · | f | = 2

3k/2 | f |.

If (23k/2 | f |)n < q | f |−k , for example if q > 2
3n2/2+n | f |2n , then the above implies that gcd д̄, f

will be a nontrivial factor of f .

Algorithm 30 LLL factorization

Input: f ∈ Z[X] squarefree, deg(f) = n

Output: a proper factor д of f (or f itself if f is irreducible)

1. Find p ∈ Z such that f mod p is squarefree

2. B ← 2 · 23n2/2+n | f |2n , l ←
⌈
logp B

⌉
3. Compute д̄(1), . . . , д̄(m) ∈ Fp [X] the monic irreducible factors of f mod p (Algo. 27)

4. Compute д(1), . . . ,д(m) ∈ Z[X] such that f = LC(f)д̄(1) · · · д̄(m) mod pl (Algo. 29)

5. Let u ∈ {д(1), . . . ,д(m)} with maximal degree

6. For k from deg(u) + 1 to n − 1 do

7. De�ne L ⊆ Zk+1
as above

8. Compute a short vector д̄ ∈ L (Algo 22 [LLL]), view д̄ as an element of Z[X]

9. h ← gcd(д̄, f) in Q[X]

10. If degh > 0 then return h

11. Return f

Theorem 14.17. Algo. 30 requires O(n6(n + log(| f |))) operations in Z or Fp .

Proof. The most expensive step is 8. By Th. 12.16, it requiresO(k4
log |u |) operations in Z. The

size of u is bounded by

log |u | ≤ log

(
2

3n2/2+n | f |2n
)

=

(
3

2

n2 + n + 2n log | f |

)
= O(n(n + log | f |)).

The cost for the whole loop is therefore bounded by(
n∑

k=1

k4

)
log |u | ≤ O(n5)O(n(n + log | f |)) = O(n6(n + log | f |)).

�

76

14 Factorization in Q[X]

Remark 14.18. 1. The bit complexity of Algo. 30 isO(n6(n+log | f |))M(n2(n+log | f |))(logn+
log log | f |).

2. A full factorization can be found with the same complexity.

3. In practice, Algo. 30 is worse than Algo. 28 and it is not used by any computer algebra

system.

14.4 Van Hoeij’s algorithm

In this section, with loss of generality but for simpli�city, we assume that f is monic.

De�nition 14.19. Let X1, . . . ,Xn be indeterminates and d ∈ N.

1. A polynomial p ∈ K[X1, . . . ,Xn] is called symmetric if for all π ∈ Sn ,

p(X1, . . . ,Xn) = p(Xπ (1), . . . ,Xπ (n)).

The set of symmetric polynomials is denoted by K[X1, . . . ,Xn]
Sn

.

2. The elementary symmetric polynomial of degree d is

ed (X1, . . . ,Xn) =
∑

0≤i1<i2< · · ·<id ≤n

Xi1Xi2 · · ·Xid .

3. We de�ne the polynomial

pd (X1, . . . ,Xn) = Xd
1
+ · · · + Xd

n .

Example 14.20. • e1(x ,y , z) = x + y + z

• e2(x ,y, z) = xy + xz + yz

• e3(x ,y,y) = xyz

Proposition 14.21.

K[X1, . . . ,Xn]
Sn = K[e1, . . . , en] = K[p1, . . . ,pn].

Proof. The second equality comes from the Newton identities

kek =
k∑
i=1

(−1)i−1ek−ipi

pk =
k∑
i=1

(−1)i−1eipk−i .

�

77

14 Factorization in Q[X]

De�nition 14.22. For f ∈ K[X] monic with α1, . . . ,αn ∈ K̄ such that

f = (X − α1)(X − α2) · · · (X − αn)

and i ∈ N, the i’th trace of f is

Tri (f) = α
i
1
+ · · · + α in .

Theorem 14.23. Let f ∈ Z[X] be monic, K an extension of Q, д ∈ K[X] monic with degree d
such that д | f in K[X]. Then

д ∈ Z[X] ⇐⇒ Tri (д) ∈ Z for all i ∈ {1, . . . ,d}.

Proof. “⇒”: Let α1, . . . ,αd ∈ K̄ be the roots of д. Then

д = (X − α1)(X − α2) · · · (X − αd)

= Xd − e1(α1, . . . ,αd)X
d−1 + · · · + (−1)ded (α1, . . . ,αd) ∈ Z[X].

So each ei (α1, . . . ,αd) lies in Z. So by Newton’s identities, so does each pi (α1, . . . ,αd) = Tri (д).

“⇐”: If Tri (д) = pi (α1, . . . ,αd) ∈ Z then, again by Newton’s identities, ei (α1, . . . ,αd) ∈ Q,

so д ∈ Q[X]. But д is monic and divides f ∈ Z[X], so by Gauss’s lemma, д ∈ Z[X]. �

Let д1, . . . ,дm ∈ Z[X] be monic, irreducible modulo p and such that

f = д1 · · ·дm mod pl .

Every irreducible factor д ∈ Z[X] of f can be written as

д = дe1

1
· · ·дemm mod pl

for some (e1, . . . , em) ∈ {0, 1}
m

.

The idea for the next algorithm is to use LLL to search for the exponent vector (e1, . . . , em)
instead of the coe�cient vector of some factor of degree d .

Typically, we can expect that:

1. m � d

2. |ei | ≤ 1 � |дk |.

Searching for (e1, . . . , em) is a linear optimization problem. Indeed, for all polynomials u, v,
Tri (uv) = Tri (u) + Tri (v), so

Tri (д) = e1Tri (д1) + · · · + emTri (дm) mod pl .

However, a priori we do not know Tri (д) exactly, but only bounds for it.

78

14 Factorization in Q[X]

Suppose B ∈ N is such a bound. Let ti, j := Tri (дj) mod pl , and consider the lattice L ⊆ Qn+m

generated by

©­­­­­­­­­­­­­­«

t11/B
t21/B
...

tn1/B

1

0

...

0

ª®®®®®®®®®®®®®®¬
,

©­­­­­­­­­­­­­­«

t12/B
t22/B
...

tn2/B

0

1

...

0

ª®®®®®®®®®®®®®®¬
, . . . ,

©­­­­­­­­­­­­­­«

t1m/B
t2m/B
...

tnm/B

0

0

...

1

ª®®®®®®®®®®®®®®¬
,

©­­­­­­­­­­­­­­«

pl/B

0

...

0

0

0

...

0

ª®®®®®®®®®®®®®®¬
,

©­­­­­­­­­­­­­­«

0

pl/B

...

0

0

0

...

0

ª®®®®®®®®®®®®®®¬
, . . . ,

©­­­­­­­­­­­­­­«

0

0

...

pl/B

0

0

...

0

ª®®®®®®®®®®®®®®¬
.

Then for every factor д = дe1

1
· · ·дemm of f , there is a vector

e =

©­­­­­­­­­«

•
...

•

e1

...

em

ª®®®®®®®®®¬
∈ L with |e | ≤

√
n +m.

Conversely, by Th. 14.23, any e ∈ L with |e | ≤
√
n +m gives rise to a factor д of f if pl is

su�ciently big.

Algorithm 31 Factorization in Z[X] (van Hoeij)

Input: f ∈ Z[X] squarefree, deg(f) = n

Output: д1, . . . ,дr ∈ Z[X] the monic irreducible factors of f

1. Find p ∈ Z such that f mod p is squarefree

2. Compute д̄1, . . . , д̄m ∈ Fp [X] the monic irreducible factors of f mod p (Algo. 27)

3. Let B be a bound on Tri (д) for any irreducible factor д of f and i = 1, . . . ,n

4. For l = 2, 3, 4, . . . do

5. Compute д̄(1), . . . , д̄(m) ∈ Z[X] monic such that f = д̄(1) · · · д̄(m) mod pl

6. Let L ⊆ Qn+m
be de�ned as above and compute a reduced basis b(1), . . . ,b(s) of L (Algo. 22 [LLL])

7. {e(1), . . . , e(r)} ← {π (b(i)) : |b(i) | ≤
√
n +m} ∩ {0, 1}m where π : Qn+m → Qm

drops the top n
coordinates

8. For i from 1 to r , do д(i) ← д̄
e (i)

1

1
· · · д̄

e (i)m
m

9. If f = д(1) · · ·д(r) in Z[X] then return д(1), . . . ,д(r).

Here are some possible improvements:

1. Before entering the loop, perform a partial factor combination as in Algo. 28 (say, up to

subsets of size 3) and only treat the remaining д̄i as described above.

79

14 Factorization in Q[X]

2. Instead of

©­­­­­­­­­­­­­­­­­­­«

t1i/B
t2i/B
...

tni/B

0

0

...

1

...

0

ª®®®®®®®®®®®®®®®®®®®¬

∈ Qn+m

as generators of the lattice, use

©­­­­­­­­­­­­­­­­­«

A ·

©­­­­­«
t1i
...
...

tni

ª®®®®®¬
/B

0

...

1

...

0

ª®®®®®®®®®®®®®®®®®¬

∈ Qs+m

where A ∈ Zs×n
is a random matrix with small entries, and s is small but slowly increas-

ing with l .

3. Even better, for l > 2, use

©­­­­­­­­«
A

©­­«
t11 . . . t1m
...

...

tn1 . . . tnm

ª®®¬ · π (b(i))/B
π (b(i))

ª®®®®®®®®¬
∈ Qs+m

where the b(i) are the vectors of the reduced basis from the previous iteration.

Remark 14.24. 1. With the improvements above, Algo. 31 is the fastest known algorithm

for factorization in Q[X] in practice.

2. It is not easy to give a complexity bound.

80

14 Factorization in Q[X]

14.5 Exercises

Exercise 13.1. Let p be a prime. Implement Berlekamp’s algorithm for factorization over

Fp [X].

Exercise 14.1. Prove Proposition 14.10.

81

Bibliography

[1] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Third. Cambridge

University Press, Cambridge, 2013, pp. xiv+795. isbn: 978-1-107-03903-2. doi: 10.1017/

CBO9781139856065. url: https://doi.org/10.1017/CBO9781139856065.

82

https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065

	Notations and conventions
	Exercises

	Semi-fast multiplication
	Naive algorithm
	Karatsuba's algorithm
	Toom-k algorithm
	Toom-Cook algorithm
	Exercises

	Fast multiplication in bark[X]
	Roots of unity and discrete Fourier transform
	Fast Fourier transform
	Exercises

	Fast multiplication in R[X]
	FFT outside of a field
	Schönhage-Strassen's algorithm if 2 is invertible
	Schönhage-Strassen's algorithm in the general case
	Multiplication time function
	Exercises

	Fast multiplication in =193 =225 =512 =512 =176 ==90==90 Z
	Integer multiplication in theory
	Integer multiplication in practice

	Fast multiplication in R[X,Y]
	Isolating a variable
	Kronecker substitution

	Fast division
	Horner's rule
	A Karatsuba-style algorithm: Jebelean's algorithm
	Division with the cost of multiplication
	Exercises

	Computing with homomorphic images
	The problem of coefficient explosion
	Computations in =193 =225 =512 =512 =176 ==90==90 Z using modular arithmetic
	Computations in =193 =225 =512 =512 =176 ==81==81 Q using rational reconstruction
	Computation with large moduli using Chinese Remaindering
	Computations in K[X] and K(X)

	Fast evaluation and interpolation
	Evaluation
	Interpolation
	Exercises

	Fast GCD
	"Slow" GCD: Euclid's algorithm
	Fast GCD
	Exercises

	Fast squarefree decomposition
	Definitions and naive algorithm
	Fast squarefree decomposition
	Fast squarefree decomposition in =193 =225 =512 =512 =176 ==90==90 Z /p =193 =225 =512 =512 =176 ==90==90 Z

	The LLL algorithm
	Lattices
	Basis orthogonalization
	Description of the LLL algorithm
	Termination and complexity
	Applications
	Factorization in =193 =225 =512 =512 =176 ==81==81 Q [X]
	Integer relations
	Minimal polynomial
	Rational and algebraic reconstruction
	Linear systems over =193 =225 =512 =512 =176 ==90==90 Z
	Knapsack-type problems

	Exercises

	Factorization in =193 =225 =512 =512 =176 ==70==70 F p[X]
	Preliminaries
	Berlekamp's algorithm
	Cantor-Zassenhaus algorithm

	Factorization in =193 =225 =512 =512 =176 ==81==81 Q [X]
	Reconstructing from a factorization in =193 =225 =512 =512 =176 ==70==70 F p[X]
	p-adic numbers and Hensel's lifting
	LLL-powered factorization
	Van Hoeij's algorithm
	Exercises

