Computer Algebra 2

Fast polynomial arithmetic and
factorization

Thibaut Verron,
based on earlier lecture notes by Manuel Kauers

Winter semester 2018

1 Notations and conventions

Unless otherwise mentioned, we use the following notations:
 k, K, K are (commutative) fields
+ Ris a (commutative, with 1) ring

Given a ring R, R* is the group of its invertible elements.

We assume that algebraic computations (sum, inverse, test of 0, test of 1, inverse where
applicable) can be performed.

For a vector v in a vector space V of dimension n, we denote its coordinates by (vy, . . . , Up—1).
If f is a polynomial of degree deg(f) = d, its coefficients are denoted fy, . . ., fg, such that

d
F) = fo+ iX 4ot faXT =) fiXE
i=0

In order to simplify notations, we may at times use the convention that f; = 0if i < 0 or
i > deg(f), so that

f=> fix"

ieZ
By convention, the degree of the 0 polynomial is —co.

The logarithm log, without a base, is in base 2.

Definition 1.1. Given two functions f,g: N — R

f(n)

f =0(9) & =—— isbounded when n — oo
g(n)

& dc € R.g,n9 € N,Vn > ny, f(n) < cg(n);

f=0(g) & 3l eN,f =0(glogy)).

1.1 Exercises

Exercise 1.1. Show that the “when n — o” clause in the definition of O can be left out. In

1 Notations and conventions

other words, given f,g: N — R, show that

= Mis ounde
f=0@9) =) bounded

= dceR.op,VneN, f(n) < cg(n)

2 Semi-fast multiplication

In this chapter, let R be any ring.
Given f,g € R[X] with degree less than n, we want to compute the coefficients of h = f - g.

The complexity of the algorithm will be evaluated in number of multiplications and additions
in R. Typically, multiplications are more expensive!

2.1 Naive algorithm

Each coeflicient hy (0 < k < 2n) can be computed with

k
hi = Z fi9k—i»
=0

each costing O(n) multiplications and additions.

The total complexity of the naive algorithm is O(n?) multiplications and O(n?) additions.

2.2 Karatsuba’s algorithm

Remark 2.1. Linear polynomials can be multiplied using 3 multiplications instead of 4 :
(a+bX)(c +dX) = ac + (ad + bc)X + bdX?

with
ad+bc =ad +bc+ac+bd—ac—bd=(a+b)c+d)—ac—bd.

This can be used recursively to compute polynomial multiplication faster.

Algorithm 1 Karatsuba
Input: f = o+ + fua X" L, g=go+ -+ + gn1 X"
Output: h = hy + - -+ + hy,1 X?* 1 such that h = fg
1. If n = 1, then return fygo
2. Write f = A+ BX"?1 g = C + DX/?1 where all of A, B, C, D have degree < {%]
3. Compute recursively:
« P=AC
« Q=BD
« R=(A+B)(C+D)
4. Return P + (R — P — Q)X /21 4 Rx2In/2]

2 Semi-fast multiplication

Theorem 2.2. Karatsuba’s algorithm multiplies polynomials with O(n'°%®)) = O(n'-%%%) multi-
plications and additions.

Proof. Let M(n) (resp. A(n)) be the number of multiplications (resp. additions) in a run of
Algo. 1 on an input with size n. Then:

M(n) = 3M(n/2)
and

A(n) = 3A(n/2) + O(n)
so M(n) = O(n'°&®) and A(n) = O(n'°&:®)). O
Remark 2.3. Karatsuba’s algorithm hides an evaluation/interpolation mechanism:

a=(a+bX)x=g
a+b=(a+bX)x=1

- (a+bX)
X X=00

and for two linear polynomials f, g, if fg = h = hg + h X + h,X?, we have

f(0)9(0) = h(0) = ho
f(g(1) = h(X =1) = ho + hy + hy

£), G () =

2.3 Toom-k algorithm

For the remainder of this section, assume that the ring R is an infinite field.

In general the coefficients of h can be obtained as a linear combination of f(i)g(i) for i €
{0,...,2n— 1} via

-1

ho 100 100 B\ (1 0 0 ..\/[g
hy 111 111 fi 111 ... ||g
1 2 4 12 4 2 4

g2

where © is the component-wise multiplication of two vectors.

This suggests the following generalization of Algo. 1 for any fixed k > 2. First, let V =

(i)fl;; (Vandermonde matrix), and precompute V1.

2 Semi-fast multiplication

Algorithm 2 Toom-k
Input: f = fy+-+ fo X" Lg=go+ -+ g1 X"}
Output: h = hy + -+ + hy,-1 X?" ! such that h = fg
1. If n < max(k, 16), compute h naively and stop # Forget the “16” until Sec. 2.4
2. Write f = Fo+ B X", 4.4 o XKD/ and g = Gy + G X KT -+ G XK=DIn/KT wwhere
deg(F;) and deg(G;) < ¢
3. Define F; = G; = 0for ¢ <i<2k-1

F() Gﬂ
_ F Gy
4. Compute f = V(.) and g = V(.)

Far-1

Py
5. Compute h = f © g recursively
6. Return V_1h

Remark 2.4. If we write F; = O(i) + -+ f;i)Xd fori € {0,...,k — 1}, one can compute the
product V - (F;) as

fo f?; f(% ff)
V. le -V. f“ + fl: X4t f‘f x4
b o] | oo
f?(1)>]:1(1)> f(1)>
=v| " |4V fI: X+ 4V f‘f x4
f;)(k_l) fl(k—l) f;k—l)

so the cost of computing that product is O(dk?).

Theorem 2.5. A run of Algorithm 2 requires O(n'°8«2¥=V) operations. In particular, for any
fixed & > 0, there exists a multiplication algorithm for R[X| which requires O(n'*¢) operations in
R.

Proof. See Exercise 2.3. O
Remark 2.6. For fixed k, the cost of precomputing V and V! can be neglected, since it is a fixed

cost of O(k?) and O(k®) respectively.

2.4 Toom-Cook algorithm

Theorem 2.7 (Toom-Cook). There exists a multiplication algorithm for R[X] that requires O(n'*+2/Vleg(n)y
operations in R. This algorithm is obtained by adapting Algo. 2 to choose at each recursion level

k= [22WJ.

2 Semi-fast multiplication

Proof. See Exercise 2.4. O

Remark 2.8. This complexity is better than that of Toom-k, since it is better than O(2!*¢) for
all e > 0.

Remark 2.9. Strassen’s algorithm for matrix multiplication is based on the same idea as Karat-
suba’s algorithm, and runs in time O(n'°82(") < O(n?-*?). Is there a Toom-Cook style algorithm
for matrix multiplication, with complexity better than O(22*¢) for all & > 0?

For even k, we can multiply k X k matrices with %k3 +6k?— %k operations, so there are matrix
multiplication algorithms with complexity O(nlogk(%k3+6k2_%k)). But logk(%k3 +6k* — %k) tends

to 3 when k tends to co. Its minimum (over 2N) is reached at k = 70, leading to a complexity
O(n*7%) (Pan’s algorithm).

The current record is O(n?-372863%) (Le Gall 2014), and yes, that many decimal points are
necessary! It is conjectured that a complexity of O(2!*¢) for all ¢ is realizable.

Remark 2.10. It is conjectured that polynomial multiplication in O(n) operations is not possible.

2.5 Exercises

Exercise 2.1. Implement Karatsuba’s algorithm in a computer algebra system.

Exercise 2.2. Is it possible to use the ideas of the Algorithm of Toom-k with evaluation at

{0,1,...,k — 2,00} ? Describe the matrices V and V1.

Exercise 2.3. Prove Theorem 2.5.

Exercise 2.4. Prove Theorem 2.7.

Exercise 2.5. Show that there is no algorithm which can multiply two linear polynomials

(over any ring) in 2 multiplications.

3 Fast multiplication in k[X]

In this chapter, let k be an algebraically closed field. The problem to solve is the same as previ-
ously, but this time, we assume that deg(f) + deg(g) < n.

We will be considering evaluation/interpolation methods.

Algorithm 3 Evaluation/interpolation

Input: f = fy+-+ fr1 X5, g=go+ -+ g1 X withk+1<n
Output: h = hg + - - + h,1 X" such that h = fg

Fix (xg,...,%xn-1) € k"

Compute f(x;), g(x;) fori=0,...,n—1

Compute h(x;) = f(x;)g(x;) fori=0,...,n—1

Compute h by interpolating h(x;) fori =0,...,n—1

Ll

Remark 3.1. In general, Algo. 3 requires O(n?) + O(n) + O(n?) = O(n?) operations in k, like the
classical algorithm. The idea is to choose specific values of xy, . .., x,-; so that steps 2 and 4
can be done faster.

3.1 Roots of unity and discrete Fourier transform

Definition 3.2. An element w € k is called a n’th root of unity if @™ = 1. It is a primitive n’th
root of unity if additionally ' # 1 for 0 < i < n.

Example 3.3. In C, —1 is a primitive second root of unity. i is a primitive 4th root of unity.

In Fy7, 2 is a primitive 8th root of unity.

Definition 3.4. The matrix

1 1 1 1
1 w w? ™!

DFT,, := DFT(nw) = (a)i]'):l;io -1 w? w* A) c kmxn
1 w’;_l wz(;'_l) - w("‘_l)z

is called the discrete Fourier transform (wrt).

3 Fast multiplication in k[X]
Example 3.5. In C, the discrete Fourier transform wrt i is
1 1 1

1
(i _ (1

PFL =10 o1 1 4

— .

Remark 3.6. The DFT is a Vandermonde matrix. In particular, if f = fo + X +- - + fr1 X1,

fo f(e)
e | A | Z| F@D
ft) @)

Definition 3.7. Let f,g € k". The product f © g is the vector whose i’th coordinate is given
by figi. The convolution f * g is the vector whose i’th coordinate is given by

S
—_

fkg(i—k) mod n-
0

>~
Il

Lemma 3.8. Let w be a primitive n’th root of unity. Then

1. there is a factorization
X"-1=X-0)X -0’ (X -o");

2. foranyje{1l,...,n—1},

3. there is a group isomorphism
({o' i€ z},") = (Z/nZ,+)
4. the DFT matrix is easy to invert:
(DFTEf‘)))_l = Lppr{/®)
n

5. ifm | n, then ™ is a primitive (n/m)’th root of unity

6. the DFT is compatible with convolution

DFT,(f * g) = DFTA(f) © DFT,(g)

3 Fast multiplication in k[X]

Proof. 1. All o' are distinct: if ' = o/ with1 <i<j<n thenw ™ =1witho <j—i<n,
which is a contradiction because w is a primitive root of unity. All w’ are roots of X" — 1, since
(@)™ = (w™)! = 1, so the X — ' are n distinct factors of X" — 1. By comparing the degree and
leading coefficient, we get the wanted factorization.

2. Use the formula
n-1
21X
i=0
Evaluated at X = «’ for 0 < j < n, the right hand side is 0, the factor («’/ — 1) is non-zero, so
the sum has to be zero.

3. Clear.
4. Evaluate the product:

(X-1)=X"-1

DFT,”'DFT,’” = (0")] 1) - (™)} .

5. Clear.

6. If we associate the vector f = (fy, . . ., fn—1) with the polynomial f(X) = fo+- - -+ fr_1 X" 71,
convolution is equivalent to multiplication in k[X]/(X™ — 1), that is

(f *9)X) = fX)g9(X) + g(X) - (X" = 1)
for some q € k[X]. Indeed, write

n-1
Z ﬁngl+]

fX)9(X) =

i,j=0

= > figX e D figx™
i+j<n n<i+j<2n

= > figXT e Y figXTT = X figi X Y figpXT
i+j<n n<i+j<2n n<i+j<2n n<i+j<2n

(fxg)(X) (Bn<ivj<an figi XXM 1)
The claim follows by evaluation at w'. O

The remark, together with property 4, makes powers of w a good choice for evaluation and
interpolation: if we can just find a fast way to evaluate DFT,, - f, we can perform both steps in
a fast way.

10

3 Fast multiplication in k[X]

3.2 Fast Fourier transform

fo
Given f = () we want to compute f = DFT,, - f.
onfl
Let’s expand the j’th coefficient:

2n-1

(DFT5, f), =) o fi

i=0
n-1 n—-1

- 2ij 2i+1)j

—Zw ! foi + § o')Jf2i+1

Z(wzwfl + o Z<w2> U frinn

(DFT," fove), +wf(DFT," foaa),

DFT(w)feven + 60] (DFT(M)fodd)
j-n

+ o (DFT(w)fodd)

j (DFT() fodd)

()
(DFT foven)
()™

DFT") fuyen
j-n

foro0<j<n
forn<j<2n

for0<j<n

forn<j<2n

We can use this property to perform the evaluation and interpolation steps.

Algorithm 4 Fast Fourier Transform

Input: f € k", » a primitive n’th root of unity, n = 2*
Output: f = DFT(,,w) f
1. If n = 1 then return (fp)

2. u— FFT([fo, f25 - -») @*,1/2), 0 «— FFT([f1, f3 . . ., |, 0%, 1n/2)
3. Return [ug + g, us + W1, Uy + @0z, . . . Upjp—y + @M 0y 0,
Uy — Vo, Uy — WO1, Uy — 0202, . o, Upja—1 — @M 0y 4]

Theorem 3.9. Algo. 4 requires O(nlog(n)) operations in k.

Proof. Similar to before, with the recurrence

T(n) = 2T (g) +0(n).

This allows us to rewrite Algo. 3 with the FFT.

11

3 Fast multiplication in k[X]

Algorithm 5 Evaluation/interpolation multiplication using FFT

Input: f= o+ + fiei Xk, g=go+ - + g X withk +1 < n
Output: h = hg + - - + hp1 X" such that h = fg

® <« primitive n’th root of unity

f « FFT(f,®), § < FFT(g, ®)

hefog

Return %FFT(E, oY)

Ll

Theorem 3.10. Multiplication in k[X] can be done with O(nlog n) operations in k if k is alge-
braically closed.

Remark 3.11. This complexity is currently the best known complexity for polynomial multi-
plication.

Remark 3.12. Let P be the permutation matrix such that

o feven
bf= (fodd)

and A be the diagonal matrix

Then the computations above yield that

DFT,, -ADFT,

2 (7 o)
A P)

This can be generalized to divisions by m instead of 2. Skipping over the details, this gives

DFT,, = (DFT” ADET,) P

I I r ..\ (I DFT,
I "l o™ ... A DFT,

DFTmn =1 o201 o1 ... | A2 : DFT,, -P.

This is a result due to Cooley and Tuckey, which can be used to refine Algo. 4 so that it
reduces an FFT of any size quickly to FFT’s of prime size.

12

3 Fast multiplication in k[X]

3.3 Exercises

Exercise 3.1. Work out the formulas for fast Fourier transform using 3-ary decomposition

ala Cooley-Tuckey. Implement the corresponding algorithm in a computer algebra system.

13

4 Fast multiplication in R[X]|

4.1 FFT outside of a field

FFT multiplication (Algos. 4 and 5) does not require that the base ring R be an algebraically
closed field, but that:

1. R contains a primitive n’th root of unity w;
2. n=1+1+---+ 1lisinvertible.
In this chapter, we will see how to perform FFT without those hypotheses.

This will be done by extending R with roots of unity, i.e. by working in rings of the form
R[Y]/{Y* = 1). Such rings are not in general fields, so in order to take advantage of the tech-
niques used for the FFT in fields, we need to extend the definition of a primitive root of unity
to rings.

Definition 4.1 (Primitive root of unity). Let R be a ring, @ € R and n € N. We say that w is a
primitive n’th root of 1if:
c " =1
« for all k < n, 0¥ — 1 is not a zero-divisor in R (i.e. if x € R is such that x(v* — 1) = 0,
then x = 0).

The second hypothesis is stronger than the corresponding requirement for fields, which was
that @* — 1 # 0. Note that this definition is equivalent to the previous one in the case of fields
(or integral domains), because they do not have non-zero zero-divisors.

Proposition 4.2. Let R be a ring, w € R and n = 2F € N such that o is a primitive n’th root of
1. Let f,g € R[X]. Then

* Fast Fourier Transform (Algo. 4) computes the evaluations of f at 1, w, ...,
w™? 4+ 1;

"1 modulo

o FFT multiplication (Algo. 5) computes fg modulo »™? + 1.

4.2 Schonhage-Strassen’s algorithm if 2 is invertible

In this section, assume that R has no n’th root of unity, but that 2 € R*.

Let f,g € R[X], with deg f + degg < n = 2F, as before we want to compute h = fg. Write
n = pq where p = 21k/21 and q= olk/2] sop~q=~n

14

4 Fast multiplication in R[X]

Write

f=F+FX?+FX+ ...
g=Go+G X1 +G X% + ...

with deg F; < ¢, deg G; < g, and define two polynomials in R[X, Y]

f=F+FY+FEY* +. ..
G=Go+G Y +G Y+

Then degxf,degxg’ < q, degyf,degyg’ < p,and f = f(X,Xq), g = g(X,X9). Leth = fg',
then deg, h < 2q and degy h < 2p.

Note 4.3. It suffices to compute & mod Y? + 1 because
degh = deg h(X,X?) < pq = n.

Note 4.4. Since degy h < 2q,
h(X,Y) = h(X,Y) mod X?9 + 1.

Hence, together with the previous note, we can compute in
(RIX1/{X?9 + 1)) [Y]/(YP + 1).

We denote by D the ring
D :=R[X]/(X*" +1).

Proposition 4.5. In the ring D, X is a 4q’th primitive root of unity. Furthermore, let

X* ifp=¢q

©= {X if p=2q.

Then w is a 2p’th primitive root of unity in D.

With this setting, if

f(Y)-g(Y) = h(Y) mod Y + 1

then

f(@Y) - g(@Y) = h(wY) mod (wY)’ +1=1-YP

15

4 Fast multiplication in R[X]

Algorithm 6 Schonhage-Strassen
Input: f,g € R[X] with deg f,degg < n = 2¥
Output: h = fg mod X" + 1
1. If k < 2 then compute h directly
2. Definep,q €N, f,g € D[Y] and w € D as above
3. Use Algo. 5 to compute h € D[y] with

h(wY) = f(0Y)§(©Y) mod YP — 1

using w? as a p’th root of unity in D and Algo. 6 recursively for multiplications in D
4. Return h = A(X, X7) mod X" + 1

Remark 4.6. The algorithm requires that 2 be invertible for the FFT step: each call to the FFT
multiplication algorithm is with a power of 2 as n.

Theorem 4.7. Algo. 6 requires O(nlog(n) log(log(n))) operations in R.
Remark 4.8. For all practical purposes, loglogn < 6.
Proof. Let n > 1 and suppose that

T(m) < cymlogmloglogm

for all m < n and some constant ¢;. Recall that n = 2k,p = 2[k/21 < 24/n, q = alk/2] < \/n.

The runtime function satisfies the recurrence
T(n) < pT(2q) + O(nlogn)

where pT(2q) is the cost of p component-wise multiplication of polynomials of degree at most
2q, and the trailing O(n log n) is the cost of the FFT.

16

4 Fast multiplication in R[X]

Let Ty(k) = T(2¥), and expand in terms of k :

k
Ti(k) < 2%/21T, (EJ + 1) + 2Kk

+1]1 k
o
& 2
[k/21+ K /2] k
<c 2 -2 —+110g(—
———— 2
—2k S e N—
<k+2 s%k
—————
<log k—log(4/3)

< ¢,2lK/21glk/2 41 (k

+ 1) + czzkk

+ 1) +c2Fk

<k log k—k log(4/3)+2 log k-2 log(4/3)

4 4
< ¢12Fk log(k) + ¢2F (Zlogk - Zlog(g)) +(cy — ¢1 1og(§))z’<k

<210g(4/3)

<(co—1 log(4/3))2% k

Without loss of generality we can assume that ¢; > 2c;/log4/3, so

Ty(k) < c12¥k log(k)

and indeed

4.

T(n) = O(nlognloglogn).

3 Schonhage-Strassen’s algorithm in the general case

The previous algorithm requires 2 to be invertible in order to divide the reverse DFT by 2*.
Without this assumption, we can skip that division, and Algo. 5 returns 2¥ fg. Analogously, we
can compute 3/ fg using a 3-adic FFT. Then, Euclid’s extended algorithm yields u,v € Z such
that

SO

u-28+p.3=1,

u-2kfg+v-31fg:fg.

Theorem 4.9. Polynomials in R[X] of degree less than n can be multiplied using O(n log nloglogn)
operations in R, for any commutative ring R with a unity.

Remark 4.10. This is the current world record.

17

4 Fast multiplication in R[X]

4.4 Multiplication time function

Definition 4.11. Let R be a ring. A function M : R — N is called multiplication time for R[X]
if there exists an algorithm that multiplies f,g € R[X] with deg f, degg < n using no more
than M(n) operations in R.

Finding the best possible M for various rings in an active field of research.

Proposition 4.12. We can assume that:

1. if R is infinite, M is worse than linear:

M) | Mm)
n m

ifn > m;
2. in particular,
M(mn) > mM(n)
and
M(m + n) = M(m) + M(n);
3. M is at most quadratic:
M(nm) < m*M(n)
4. M is at most the complexity of the general algorithm by Schonhage and Strassen:

M(n) = O(nlognloglogn).

4.5 Exercises

Exercise 4.1.

1. Implement Schénhage-Strassen’s algorithm for multiplication in F,[X], where p is an
odd prime.

2. What is the largest degree N such that two polynomials of degree n can be multiplied
in less than 10 minutes with the implementation?

3. Measure the runtime of the algorithm (or the number of operations) on input of vary-
ing size (at least up to N), and plot the results. Verify that the complexity is indeed
O(nlog(n)log(log(n))), and give an experimental estimate for the constant. Run the
same experiment with the built-in polynomial multiplication, how does it compare?

18

5 Fast multiplication in Z

Here, we are given two integers f,g € Z with at most n digits (in base 2), and we want to
compute h = fg.

5.1 Integer multiplication in theory

Remark that if
f=hi+2fiv 42" fuy,

f is the evaluation of the polynomial
f=fo+ iX+-+ frX*?

at X = 2.

This reduces integer multiplication to polynomial multiplication, with similar complexity
results.

Theorem 5.1 (Schonhage-Strassen). Integers of lengthn can be multiplied in time O(nlog nloglog n).

Remark 5.2. It is conjectured that the lower bound for the complexity of integer multiplication
is cnlog n.

The current best results are the following.

Definition 5.3. For x € R, the iterated logarithm of x is
log*(x) = max{k € N : log¥(x) < 1}.

Remark 5.4. For all practical purposes, log*(n) < 4.

Theorem 5.5 (Fiirer, 2007). Integers of length n can be multiplied in time
nlog n20Uog (M)

Remark 5.6. Beware of constants! In general,
200(m) % o(2f)y

Indeed
ocf(n) _ (zf(n))c

which will in general grow faster than 2/,

19

5 Fast multiplication in Z

In the recent years, researchers have focused on improving that constant, the current best
result is the following:

Theorem 5.7 (Harvey, van der Hoeven, 2018). Integers of length n can be multiplied in time
O(nlog n22log (n)y,

Remark 5.8. Forgetting the constants, we have

5 12
loglogn > 221°8'" = n > 2%

Remember that n is the number of digits of the integers we want to multiply!

5.2 Integer multiplication in practice

Those algorithms are only of theoretical interest. The following algorithm follows a more
pragmatic approach, which is usually superior.

Write F = (fp-1... fifo)w and G = (gn—1 . . . g19o)w in base w with w as large as possible. In
practice, one can for example choose w to be the largest possible processor word.

Define

f=fo+ X+ + frX*?
G=go+ g X+ +gna X"

so that f(w) = f and g(w) = g. Let
ﬁ:fg’zflo+}_11X+...

Note that 0 < h; < nw? for all i.
Assume that n < w/8 and fix three primes py, p,, p; between w/2 and w, for which the field

F,, contains a 2*’th root of unity for some large t. Then compute fg in Fp, [X] for i = 1,2,3,
and reconstruct the coefficients of A with the Chinese remainder theorem. Finally compute
h = h(w).

Example 5.9. On a 64-bits processor, let’s choose w = 2%*. Then
p1=95-27 -1
py=108-2" —1
p3=123-27 -1

are suitable primes, with ¢t = 57 and 55, 65 and 493 the respective 57°th roots of unity.

This is the method of choice for multiplying integers up to =~ 500 millions of bits on a 64-bits
architecture.

20

6 Fast multiplication in R|X, Y]

Given f,g € R[X, Y], we want to compute h = fg.

6.1 Isolating a variable

We can use Algo. 6 in R[X][Y]. But the complexity is bounded in number of operations in R[X],
not in R. In order to get a complete bound, we need an estimate for the degree growth in X.

If we define

dx = degy(h) = degy(f) + degyx(g)
dy := degy(h) = degy(f) + degy(9)

it suffices to compute the product in
RIX]/(XEH = Y]y - 1),
Let
D := R[X]/(X™*1 - 1).

If we use for example Algo. 6 to compute the multiplication in D[Y]/{(Y%**! — 1), it requires
M(dy) operations in D, each of them requires at most M(dx) operations in R.

Theorem 6.1. Polynomials f,g € R[X, Y], with degy(f),degy(g) < n and degy(f),degy(g) <
m, can be multiplied with M(n)M(m) operations in R.

6.2 Kronecker substitution

Algorithm 7 Multiplication using Kronecker substitution

Input: f,g € R[X] with degy(fg) < n, degy(fg) <m

Output: h = fg

f = fXT), g — gX,XT) € RIX]

Compute h = f - § € R[X] with a fast algorithm

Write b = h(© + hOX™ 4 h@x21n 4 ... 4 pm=Dx(m=Dn with deg(h?) < n
Return h = h© + VY + h®Y?2 4 ... 4 plm-Dym-1

Ll

Theorem 6.2. Algo. 7 requires M(mn) operations in R.

21

6 Fast multiplication in R[X, Y]

Proof. The only multiplication computed involves polynomials in R[X] with degree at most
nm.]

Remark 6.3. M(mn) may not be strictly less than M(m)M(n).

22

7 Fast division

Let K be a field. The task is, given f,g € K[X], to find ¢q,r € K[X] such that f = qg + r and
deg(r) < deg(g).

7.1 Horner’s rule

Horner’s rule is a technique for evaluating a polynomial f with degree m at some value v with
O(m) multiplications, instead of the naive m?. It avoids computing successive powers of v, and
instead relies on the following rewriting of f:

f=a+aX+ - +apX"

=aq +X(a1+X(---+X(am)...)).

The resulting algorithm is actually the naive Euclidean algorithm used to compute f divided
by g = X — v. The remainder of that division is f(v).

The same algorithm can be used for a polynomial g with degree n, and it then uses O(nm)
operations in K.

7.2 A Karatsuba-style algorithm: Jebelean’s algorithm

There is also a Karatsuba-style division algorithm. Assume that deg f < 2degg and deggisa
power of 2.

23

7 Fast division

Algorithm 8 Jebelean’s algorithm (1993)
Input: f,g € K[X], k € N, withdegg = n = 2/, deg f < 2n + k.
Output: g, r such that f = gX¥q + r and deg(r) < n+k

1. Ifdeg f < degg + k,thenreturng =0,r = f

2. If degg = 1, then use Horner’s algorithm
3. Write g = g(o) + g(l)X”/2 with degg(o) <2z # deg gV =

Compute gV, rV such that f = gVX"* g 4 () with deg rV < M4k

4. Find ¢V, rV) by calling Algo. 8 with f,g =gV andk = n+ k

Compute the true remainder u = f — gV X"*kg

5. Compute u = rV) — X"/27k g0 ¢() ysing Algo. 1

n

Compute ¢©, r¥ such that u = ¢ X2k g1 + O with deg r® < 2 + k

2
6. Find ¢©, % by calling Algo. 8 with f =u, g =g andk = 2 + k

Compute the true remainder r = u — ¢V X*g
7. Compute r = r® — g©g@x¥ using Algo. 1
8. Return g = ¢© + ¢WX™? and r

Theorem 7.1. Algo. 8 is correct.

Proof. We prove it by induction on n, then on k. The case n = 1 is clear, as is the case deg f <
n + k. Now assume that the algorithm is correct for all input of size < n or third argument > k.
Consider f,g € R[X], k € N with degg = n and deg f < 2n + k. In particular, deg g'") = 7.

So the call to Algo. 8 with f = f, g = g and k = n+k is correct, and the results are gV, r)
such that f = gVX"* ¢ + (1 deg(rV) < n + k, and

deg(q") = deg(f) - deg(X"g") < Z.
The polynomial u satisfies
u = r) _ xn/2ek g0 (1)

— f _ Xn+kg(1)q(1) _ Xn/2+kg(0)q(1)
_ f o xn2k g0y, (7.1)

and it has degree

n n n 3n
deg(u)<max(n+k,§+k+§+§) <?+k.

The call to Algo. 8 with f = u, g = g and k = 5 + k is correct, and deg r® < n+kand

24

7 Fast division

deg(q”) = 2 + k. So we get

u = X2k gD g0 4)

= X2k g g 4 x*50¢© 1+ (by definition of r)
= ngq(O) +r.

The polynomial r has degree
deg(r) <max(n+k,g+g+k) <n+k,
and putting it all together using Eq. (7.1), we find
F= Xk gg 4 xkgOg oy = Xk (Xn/Zq(l) + q(o)) g+r.

O

Theorem 7.2 (Jebelean, 1993). Algo. 8 requires at most 2Mg(n) multiplications in K where
Mk (n) is the number of multiplications performed by Algo. 1 (Karatsuba).

Remark 7.3. There is no O in that result.
Proof. Recall the recurrence relation
MK(ZH) S 3MK(H).

If we proceed by induction, the number of multiplications T(n) performed by Algo. 8 satisfies
the recurrence relation

T(n) = 2T (g) + 2My (f)

2
o o) e)
-)
= 2Mx(n).

O

Remark 7.4. The integer version of Algo. 8 is the best-performing division algorithm for inte-
gers of a certain size.

Remark 7.5. The total number of operations (including additions) is O(Mg(n) log(n)).

25

7 Fast division

7.3 Division with the cost of multiplication

We now want to perform division in time O(M(n)).

Definition 7.6. Let f € K[X] and k € N, the kth reversal of f is

revi(f) := XK f ()l() .

Example7.7. If f = fo + fiX + -+ + fuX", thenrev,(f) = fu + fao1 X + -+ + foX".
Remark 7.8. In general, revi(f) € K[X] if k > n.
Let f,g € K[X] with deg(f) = m, degg = n < m, and g, r be the quotient and remain-

der respectively of the division of f by g. Performing the change of variable X +— 1/X and
multiplying by X™ the equality f = qg + r gives

m l _wvn l m-n l m-n+1ly-n—1 l
] sl el

reVy f =1evyg - Fm_nq + X™ " rev, qr

)
rev,, f = rev,g - rev,,_n,q mod X™ "+,

Furthermore, since degg = n, we have (rev,g), # 0, so rev,g is invertible modulo X™"*1,
Therefore

eV, nq = revy, f - (rev,g)”™' mod X™ "L,

So what we need is a fast algorithm for inversion modulo X’: an algorithm which, given
u € K[X] with ug # 0 and I € N, computes v € K[X] such that uv = 1 mod X’.

Regard u € K[X] c K[[X]] as a formal power series, and consider the map

¢ K[[X]I K[[X]]

—
N = u-

—_—

(2N

Let v be a root of ¢, we can write
v=w+X'r

with w € K[X];—1, and w, seen as a power series, is invertible. Then

0 () 1 1 1
= vV)=u— -y- - —
¢ w+X!r w1+ Xr/w

1 r
=u-—+X'= -0ox"
w l)0

26

7 Fast division

$0
uw=1+x1 4 O(x"*") = 1 mod X".
w

So we have to find an approximation of order [of a root v of ¢. For this purpose, we use
Newton iteration: we compute successive approximations of the root, starting with

1
N R
U

and iterating with

(k) _ L
Skt _ oy - 0T gy M T m

o' (®) (L)Z

v(k)

=20 — 4. ()2,
This would give us an algorithm, if only we knew when to stop!

Theorem 7.9. Forallk > 0, u - v = 1 mod X?*.
Proof. Proof by induction: for k = 0, we have

u-09 =y - uio + O(X) =1 mod X.
If it is true for k > 0, then

1— ™ =1 - 420 —u - @9)?) = 1 - 20® + (W) = (1 —u- v(k))z

= O(X2k+1) =0 mod x>,
O

Remark 7.10. This theorem is a particular case of a more general fact: with a starting point
sufficiently close to a root, Newton iteration converges quadratically fast.

Algorithm 9 Inversion using Newton iteration
Input: u € K[X] withuy #0,n € N

Output: v € K[X] with u - v = 1 mod X"
1

1. v« w

2. For i from 1 to [log(n)], do
3. v — 20 — uv® rem X'
4. Returnv

Theorem 7.11. Algo. 9 requires O(M(n)) operations in K.

27

7 Fast division

Proof. Let T(n) be the number of operations required. Then

Mlog(n)] ' '
Ty <) 2M(2")+c2'
i=1
Mlog(n)]
< callogm+1 4 o Z M(2%)
< M)
~ n/2t

[log(n)]
(n)

<4en+2—-~ Z 2i
n i=1

———
<4n

< 4cn + 8M(n) = O(M(n)).

O

With this taken care of, we can now write down all the steps required to perform a fast
division.

Algorithm 10 Fast division
Input: f,g € K[X], k e N, withdeg f =m,degg <n, g #0
Output: g, r such that f = qg + r and deg(r) < deg(g)

If m < nthenreturng=0,r = f
Compute h = rev,(g)~! mod X™ "*! with Algo. 9

q «— revp(f)h
Return q = revp, n(g) and r = f — gq

Ll

Theorem 7.12. Algo. 10 requires O(M(m)) operations in K.

Remark 7.13. This result is the current world record for polynomial division.

Remark 7.14. In particular, if f,g,q € K[X] with deg(f),deg(g),deg(q) < n, then we can
compute (and reduce) f, g € K[X]/{q) with O(M(n)) operations in K.

If gcd(f,g) = 1, then we will see that f~! mod g can be computed using O(M(n) log(n))
operation in K (using the fast GCD algorithm).

7.4 Exercises

Exercise 7.1. Assume that the field K is algebraically closed. Find a bound for the complexity

of Algo. 8 if we use FFT instead of Karatsuba’s algorithm for the multiplication. Is it better?

28

7 Fast division

Exercise 7.2. How would you adapt Algo. 8 to work with any polynomial g (even if its

degree is not a power of 2)?

Exercise 7.3.

1. Write an analogue of Algo. 8 for polynomials such that deg(f) < 3 deg(g). What is its
complexity?

2. Generalize to any f, g € K[X]. What is the resulting complexity?

29

8 Computing with homomorphic images

This chapter does not introduce fast algorithms, but serves as a motivation for algorithms in
later chapters, namely multipoint evaluation, interpolation and half-GCD.

8.1 The problem of coefficient explosion

Let A € Q™" and assume that you want to solve the system

X1

Xn

This can be done in O(n®) operations in Q using fast linear algebra. However, in practice, for
large n, the computation will take very long.

The reason is expression swell: the algorithms multiplies and adds rational numbers which
become larger and larger. Additions and multiplications for rationals are defined as

g+£_ad+bc
b d bd
a c_a
b d bd

so after each operation, the coefficients size is roughly doubled. Reducing the fractions helps,
but not by a significant factor.

The typical situation is that the input is small (because it comes from actual data) and the
output is small (because frequently in applications, meaningful data tends to not be overcom-
plicated), but intermediate expressions will be meaningless and huge.

The idea to mitigate this problem is to reduce the problem to domains where objects have a
fixed size, so that the actual complexity does not deviate from the predicted number of opera-
tions.

8.2 Computations in Z using modular arithmetic

When doing operations in Z, multiplication doubles the size of the output.

For simplicity, consider a ring homomorphism f : Z — Z, and assume that we want to
compute f(x), avoiding expression swell inside f.

30

8 Computing with homomorphic images

We want to do the computations in Z/pZ, for p € Z \ {0}.

z f y 7

mod pJ(mod pJ/)[?

Z/pZ _97fmodp | Z/pZ

The diagram commutes, which means that given x € Z, g(x mod p) = f(x) mod p. But
what we want is f(x), not its equivalence class modulo p.

So we want to choose p such that f(x) can be recovered from f(x) mod p.
There are two interesting scenarios:

1. We know an a priori bound M(x) with | f(x)| < M(x). Then taking p > 2M(x) will ensure
that

(f(x) mod p) N {=M(x), =-M(x) + 1,..., M(x)} = {f(x)}.

2. We can efficiently check, given y € Z, whether f(x) = y. Then repeat the computation
with increasing p until y, defined as

() = (f(x) mod p) N {—%’,—g +1,...,§},

is the solution.

8.3 Computations in Q using rational reconstruction

We now turn back to the problem of Q, where both additions and multiplications double the
size of the output. We can do the same thing for a morphism f : @ — Q, using modular
inverses.

Assume that b and v are coprime to p, we have a commutative diagram:

x=7 > flx) =1+
Q ! y 0
mod p mod p| |?
z)p7 — 2T 77

b~'a mod p ———— v 'u mod p

Asin the case of Z, we want to choose p such that f(a/b) can be recovered from g(b~'a mod p).

For sufficiency, there are again two scenarios:

31

8 Computing with homomorphic images

1. We know a bound M(x) such that u? + v?> < M(x)?. Then taking p > M(x)? will ensure
that

{(w,z) € ZxN:z'w=0v'umod p} N {(w,2) : w* +z* < M(x)} = {(u,v)}.

2. We can efficiently check for a given y € Q whether f(x) = y. Then as in the case of Z,
we try increasing values of p until the result is found.

In both cases, in order to determine the intersection point, we need a way, given y € Z/pZ
to compute (u,v) € Z x N such that v™'u = y mod p and u? + v? is minimal.

Proposition 8.1. Consider a run of the Extended Euclid’s Algorithm onp andy. Let (u,v) € ZXxN
such thatv™'u = y mod p and u? + v? is minimal. Let g;, s;, t; be values computed at each step of
the algorithm, fori=1,...,1:

p291231p+t1y:1'p+0'y
Y=g =Sp+bhy=0-p+1-y
93:5‘3p+t3y

l=gi=sip+t1y
Then
{(b, a) such thatb™ a = y mod p} > {(gi,t;) : i € {2,...,1}} > (v, u).

Example 8.2. Consider the case p = 65521, y = 29771, and compute an inverse t of 29771
modulo 65521 using the Extended Euclid’s Algorithm, or in other words, a pair s,t € Z such
that

1 = 65521s + 29771t.

Here are the intermediate values:

g s t
65521 1
29771 1 0

5979 -2 1
5855 9 -4
124 -11 5

27 526 -239
16 -2115 961
11 2641 -1200
-4756 2161

1 12153 -5522

32

8 Computing with homomorphic images

Then, modulo 65521,
29771 5979 5855 124 1

29771 = = =
2 9 11 12153

and the minimal pair of numerator and denominator for 29771 is given halfway through the
algorithm: it is (—124, 11).

Remark 8.3. It means that the Extended Euclid’s Algorithm is useful beyond returning the
Bézout coefficients. If we are looking for a rational fraction equal to x mod p, given a bound
on the size of the coefficients, we can find it by examining all lines in the algorithm. And, for the
particular case where we want both coefficients to have roughly the same size, the relevant line
will be roughly halfway through the algorithm, and can be found using half-GCD algorithms.

8.4 Computation with large moduli using Chinese
Remaindering

We saw that computations in Z and Q can be done in Z/pZ, for p € N large enough compared
to a bound M(x) on the wanted result. But if M(x) is large, p will need to be large, again making
the computations expensive.

It is possible to mitigate this problem using the Chinese Remainder Theorem:
(n mod p) N (n mod q) = n mod lem(p, q).

So by running the computations modulo p and g, we can reconstruct the result modulo lem(p,).

We still need to be able to find the canonical (small) representative of n modulo lem(p, g),
given the representatives modulo p and q.

For simplicity, assume that p and q are coprime, so that lem(p, q) = pq. We are given n,,n, €
Z, and we want to find n € Z such that

{n mod p = n, mod p

nmod q = ng mod gq.
Since ged(p, q) = 1, there exists s, t € Z such that
sq+1tq=1.
Let
n=n,+(ng—ny)spe”z

it is congruent to n, modulo p and to nj, + (n4y — n,) = ng modulo g. So we can just take the
canonical representative of n modulo pq.

This can be generalized to more moduli.

33

8 Computing with homomorphic images

Algorithm 11 Chinese Remainder reconstruction

Input:
c Ul,...,Up €Z
* P1,....Pn € Z, pairwise coprime

Output: u € Z such that u mod p; = u; mod p; fori=1,...,n
U —u
mee1
For k from 2 to n do
m e m-pr_
s «— m~! mod py

u «— ((ux — u)s rem py)m

N e e

Return u

Remark 8.4. It means that in the second scenarios, both for Z and Q, when computing modulo
p for increasing values of p, we do not have to throw away results for values of p which were
too small. We can use them to reconstruct larger moduli.

Remark 8.5. For example, if we take py, ..., pso to be the first 20 primes, we can reconstruct
results modulo

proprp=2-3---71=56-10% ~1.8.2%

8.5 Computations in K[X] and K(X)

In K[X] and K(X), we face the same problem as in Z and Q respectively. We can use the
same techniques as in the case of integers to reduce to problems over K[X]/(P) for some small
irreducible polynomial P.

A good choice for P is X — a, with a € K, and then K[X]/(P) = K. In that case, the oper-
ations of reducing modulo X — a;, a; € K, i € {0, ...,n}, running the computations in K and
reconstructing the resulting polynomial constitute the evaluation/interpolation method seen
before.

Remark 8.6. Algo. 11 for polynomials is Newton