Computer Algebra 2: homework for the
winter holidays

Due date: 08 January 2019 at midnight (Linz time)

1 General instructions

This exercise sheet contains implementation exercises left as homework. It is quite long, so if
necessary, pick the exercises that you find interesting and focus on doing those perfectly.

A KTgXdocument may be attached to your submission with additional explanations, remarks
and answers to questions.

Early submissions will receive early feedback, and resubmission is allowed (and encouraged).

All functions must be documented, see this page' for guidelines. At the very minimum, the
documentation must include a short description of the function, its input(s) and one or several
examples.

I strongly recommend that you use Sage® for the implementations, and even if you don’t
know or master it, this kind of exercises is a good way to get familiar with it. I will however
not penalize it if a student does not know Sage and chooses to use another software instead.
Please note that in that case, I will expect the code to be excessively documented to help my
reading.

I am of course available for any questions that you may have during the realization of this
work, including basic question on the computer algebra system.

2 Problems

Problems 2 and 5 are straightforward implementations of algorithms which were detailed in class.
Problems 1 and 4 are implementations of algorithms which were described in class, but where some
details may have been left out. Problem 3 is about describing new algorithms, based on the ones
seen in class.

Whenever an algorithm requires computation over F, for a prime p, you may use built-in
functions for the arithmetic. Those algorithms should work for all p.

Ihttps://tinyurl.com/sagedoc
Zhttps://www.sagemath.org/


https://tinyurl.com/sagedoc
https://www.sagemath.org/

NN U A DN

For example, the required function in Problem 1 should have the following specifications:
« Input: f,g € F,[X]
« Output: h = fg

And calling the function like this (in Sage) should work:
sage: p = 65521

sage: R.<x> = PolynomialRing(GF(p))
sage: f = R.random_element (10)
sage: g = R.random_element (10)
sage: h = SchonhageStrassen(f,g)
sage: print(h)

Problem 1.

1. Implement Schonhage-Strassen’s algorithm for multiplication in F,[X], where p is a
prime. The function is not allowed to call the built-in polynomial multiplication routine.

2. What is the largest degree N such that two polynomials of degree n can be multiplied
in less than 10 minutes with your algorithm?

3. Measure the runtime of the algorithm on input of varying size (at least up to N), and
plot the results. Verify that the complexity is indeed O(nlog(n) log(log(n))), and give
an experimental estimate for the constant. Run the same experiment with the built-in
polynomial multiplication, how does it compare?

Problem 2. Let p be a prime. Let ¢ : F,[X] — F,[X] be a degree preserving ring morphism.
Write a function evaluate_transform which takes as input ¢ and a polynomial f, and com-
putes ¢(f). The function is not allowed to call ¢ on any polynomial with positive degree. The
function should make use of the algorithms described in Chapter 9.

Problem 3.

1. Describe the integer equivalent of the algorithms of Chapter 9, for fast simultaneous
modular reduction and fast Chinese remaindering.

2. Let ¢ : Z — Z be a ring morphism. Write a function evaluate_map which takes as
input ¢ and an integer n, and computes ¢(n). The function may use the fast built-in
integer multiplication.

3. The function of the previous question should not call ¢ on any large input, but “large”
may be hard to define precisely. Let F(n) be the complexity of a call of F on an input of
size n. What is the theoretical complexity of the algorithm?

4. Verify, by measuring runtimes with large n, that the experimental complexity approaches
the theoretical complexity. This experiment depends on the choice of ¢, what kind of
property can you give ¢ to make the results more significant?

Problem 4.



1. Implement Gram-Schmidt orthogonalization and the LLL algorithm, using calls to the

Gram-Schmidt algorithm for steps 7 and 10. The functions may use the built-in functions
for fast integer arithmetic.

2. Refine the implementation to perform steps 7 and 10 in quadratic time.

3. Pick one of the applications presented in class or in the notes, and implement it. If

necessary in order to reach interesting examples, you may use the built-in implementation
of LLL.

Problem 5. Let p be a prime. Implement Berlekamp’s algorithm for factorization over

F,[X]. The function may use the built-in algorithms for polynomial arithmetic, in particular for
computing ged’s.



	General instructions
	Problems

