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Abstract

A cofactor representation of an ideal element, that is, a representation in terms of the
generators, can be considered as a certificate for ideal membership. Such a representation
is typically not unique, and some can be a lot more complicated than others. In this
work, we consider the problem of computing sparsest cofactor representations, i.e.,
representations with a minimal number of terms, of a given element in a polynomial
ideal. While we focus on the more general case of noncommutative polynomials, all
results also apply to the commutative setting.

We show that the problem of computing cofactor representations with a bounded
number of terms is decidable and NP-complete. Moreover, we provide a practical
algorithm for computing sparse (not necessarily optimal) representations by translat-
ing the problem into a linear optimization problem and by exploiting properties of
signature-based Gröbner basis algorithms. We show that for a certain class of ideals, rep-
resentations computed by this method are actually optimal, and we present experimental
data illustrating that it can lead to noticeably sparser cofactor representations.

Keywords: Noncommutative polynomials, Signature Gröbner basis, Automated proofs,
Proof simplification, Linear programming

1. Introduction

In polynomial algebra, the ideal membership problem is one of the most funda-
mental problems with many important applications from polynomial system solving
over polynomial identity testing to automated reasoning. In case of noncommutative
polynomials in the free algebra, this last application is particularly relevant and has
been focus of recent research [HW94, SL20, CHRR20, RRHP21, BHR23]. Several
frameworks have been developed that allow to prove the correctness of statements about
linear operators (such as matrices, homomorphisms, bounded operators, etc.) by veri-
fying ideal membership of noncommutative polynomials. In this setting, any cofactor
representation, that is, any representation of an ideal element as a linear combination of
the generators, can be considered as a proof of the corresponding operator statement, and
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noncommutative Gröbner bases can be used to compute such representations [HRR19],
see also [LSAZ20] and references therein for available software.

In general, cofactor representations are not unique and different representations can
differ drastically in their complexity. We could observe empirically that representations
computed by Gröbner bases are often significantly longer than necessary. In this work,
we discuss the problem of finding sparsest cofactor representations of an ideal element,
that is, representations with a minimal number of terms. We focus on the situation
of noncommutative polynomials, as we are particularly interested in computing short
proofs of operator statements. However, all techniques also apply analogously to
commutative polynomials.

Although ideal membership in the free algebra is only semidecidable, we show that
the problem of computing cofactor representations with the number of terms bounded
by N ∈ N is decidable, yet NP-complete. This yields a first (impractical) algorithm for
computing sparsest cofactor representations (Algorithm 1).

We then describe how to obtain a practical algorithm for computing sparse (not
necessarily sparsest) representations by making two simplifications:

1. We restrict the search space to a finite dimensional subspace by only considering
cofactor representations with terms smaller than a designated bound.

2. We use the sum of the absolute values of the coefficients, i.e., the `1-norm, of a
representation as a complexity measure.

With these simplifications, we translate the problem of finding sparse cofactor repre-
sentations into solving a linear programming problem. Our main result is Algorithm 3,
which computes, starting from any given cofactor representation, a minimal one w.r.t.
the conditions (1) and (2).

We also show that the second simplification does in fact impose no restriction for a
class of ideals that appears frequently when translating operator statements. In particular,
we prove that, under certain assumptions satisfied by most examples studied in practice,
Algorithm 3 computes a sparsest representation among all representations satisfying
condition (1). Finally, we demonstrate the effectiveness of Algorithm 3 on several
examples coming from actual operator statements.

Our algorithm relies on information provided by noncommutative signature-based
Gröbner basis algorithms. Initially developed in the commutative setting to improve
Gröbner basis computations, signature-based algorithms have been subject of extensive
research, see [EF17] and [Lai22]. Recently, the authors proposed a generalization of
these algorithms to free algebras over fields [HV22] or rings [HV23].

Signature-based algorithms compute, in addition to a Gröbner basis, some informa-
tion on how the polynomials in that basis were computed. This additional information
allows the algorithms not only to predict and avoid redundant computations, but also
to compute a Gröbner basis of the syzygy module of the generators. In particular,
signature-based algorithms compute this basis in a very structured way, and precisely
this structure is what we exploit in our algorithm.

To the best of our knowledge, the problem at hand has not been studied in this
form yet. While the complexity of the ideal membership problem itself has been
studied extensively (especially in the commutative setting) [MM82, May89, MT17],
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the problem of finding sparse cofactor representations seems to be unexplored. Proof
simplification in automated theorem proving in general was addressed in e.g., [Ver01,
Kin19].

2. Preliminaries

We recall basic definitions regarding noncommutative polynomials and signature-
based Gröbner basis algorithms in the free algebra. For more details, we refer to
[HV22]. For an introduction to noncommutative Gröbner bases without signatures,
see [Xiu12, Mor16].

2.1. Free algebra

Throughout this paper, X is a finite set of indeterminates and 〈X〉 is the free monoid
over X. For m ∈ 〈X〉, we denote by |m| the length of m. Let K be a field and K〈X〉
be the free algebra over X. We consider the elements in K〈X〉 as noncommutative
polynomials, where monomials are given by words over X and multiplication is given
by concatenation of words. Note that K〈X〉 is not Noetherian if |X| > 1. For F ⊆ K〈X〉,
we denote by (F) the (two-sided) ideal generated by F.

A monomial ordering on 〈X〉 is a well-ordering ≤ compatible with the multiplication
in 〈X〉, that is, w ≤ w′ implies awb ≤ aw′b for all a, b,w,w′ ∈ 〈X〉. We fix a monomial
ordering ≤.

Example 2.1. The degree lexicographic ordering ≤deglex is a monomial ordering on 〈X〉
where two words w,w′ ∈ 〈X〉 are first compared by their lengths and ties are broken by
comparing the variables in w and w′ from left to right using the lexicographic ordering
x1 <lex · · · <lex xn.

For f ∈ K〈X〉, the support of f , denoted by supp( f ), is the set of all monomials
appearing in f . For f , 0, the leading monomial lm( f ) of f is the maximal element
w.r.t. ≤ in supp( f ) and the degree deg( f ) of f is deg( f ) = maxm∈supp( f ) |m|. Additionally,
we set deg(0) = −1.

2.2. Free bimodule

We fix a family of polynomials ( f1, . . . , fr) ∈ K〈X〉r, generating an ideal I =

( f1, . . . , fr). We extend the previous definitions to the free K〈X〉-bimodule Σ of rank
r ∈ N, given by Σ = (K〈X〉 ⊗ K〈X〉)r. The canonical basis of Σ is ε1, . . . , εr, where
εi = (0, . . . , 0, 1 ⊗ 1, 0, . . . , 0) with 1 ⊗ 1 appearing in the ith position for i = 1, . . . , r.

The set M(Σ) of module monomials in Σ is given by M(Σ) = {aεib | a, b ∈ 〈X〉, i =

1, . . . , r}. Every element α ∈ Σ has a unique representation of the form α =
∑d

i=1 ciaiε ji bi

with nonzero ci ∈ K and pairwise different aiε ji bi ∈ M(Σ). We denote its support by
supp(α) = {aiε ji bi | i = 1, . . . , d} and associate to it the polynomial α B

∑d
i=1 ciai f ji bi ∈

I. With this, the (weighted) degree of α is deg(α) = maxi deg(ai f ji bi).
A module ordering on M(Σ) is a well-ordering ĺ compatible with scalar multiplica-

tion, that is, µ ĺ µ′ implies aµb ĺ aµ′b for all µ, µ′ ∈ M(Σ) and a, b ∈ 〈X〉. We fix a
module ordering ĺ.
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Example 2.2. The degree-over-position-over-term ordering ĺDoPoT is a module ordering
where two module monomials aεib, a′ε jb′ ∈ M(Σ) are first compared by their degrees
and ties are broken by comparing the tuples (i, a, b) and ( j, a′, b′) lexicographically
using a monomial ordering for the monomial comparisons.

Definition 2.3. The signature s(α) of a nonzero α ∈ Σ is the maximal element w.r.t. ĺ

in supp(α).

2.3. Signature-based algorithms

For the rest of this work, we assume that the monomial ordering ≤ and the module
ordering ĺ satisfy:

• ≤ and ĺ are compatible in the sense that a < b iff aεi ă bεi iff εia ă εib for all
a, b ∈ 〈X〉 and i = 1, . . . , r;

• ĺ is fair, meaning that the set {µ′ ∈ M(Σ) | µ′ ă µ} is finite for all µ ∈ M(Σ);

Example 2.4. The module ordering ĺDoPoT is fair and compatible with ≤deglex.

A labeled polynomial f [α] is a pair ( f , α) ∈ I × Σ with f = α. We call the set
I[Σ] B { f [α] | f ∈ I, α = f } the labeled module generated by f1, . . . , fr. It forms a
K〈X〉-subbimodule of I × Σ with component-wise addition and scalar multiplication.

A syzygy of I[Σ] is an element γ ∈ Σ such that γ = 0. The set of syzygies of I[Σ],
denoted by Syz(I[Σ]), forms a K〈X〉-subbimodule of Σ. We recall the notion of Gröbner
basis of Syz(I[Σ]).

Definition 2.5. A set H ⊆ Syz(I[Σ]) is a Gröbner basis of Syz(I[Σ]) (up to signature
σ ∈ M(Σ)) if for all nonzero γ ∈ Syz(I[Σ]) (with s(γ) ă σ), there exist d ∈ N and γi ∈ H,
ci ∈ K, ai, bi ∈ 〈X〉 such that γ =

∑d
i=1 ciaiγibi and s(aiγibi) ĺ s(γ) for all i = 1, . . . , d.

In general, a syzygy module need not have a finite Gröbner basis. Nevertheless,
Gröbner bases of Syz(I[Σ]) can be enumerated by increasing signatures using signature-
based algorithms.

Theorem 2.6. There exists an algorithm to correctly enumerate a Gröbner basis of
Syz(I[Σ]) in increasing signature order. In particular, for all σ ∈ M(Σ), stopping the
algorithm at the first syzygy with signature ľ σ yields a finite Gröbner basis of Syz(I[Σ])
up to signature σ.

Proof. The algorithm is [HV22, Algo. 1]. Its correctness is proved in [HV22, Thm. 42]
and the fact that the signatures increase throughout is proved in [HV22, Lem. 43].

The algorithm uses signature-based Gröbner techniques, and also enumerates a
(possibly infinite) labeled Gröbner basis of I[Σ]. The definition and construction of
labeled Gröbner bases are beyond the scope of this paper, but we note that among their
properties, a labeled Gröbner basis is a set G[Σ] ⊆ I[Σ] such that the set { f | f [α] ∈ G[Σ]}

is a Gröbner basis of I. In particular, given f ∈ I, performing polynomial reductions
by G[Σ] to reduce f to 0 and adding the labeling of the reducers yields a cofactor
representation of f w.r.t. f1, . . . , fr.
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Remark 2.7. The algorithm mentioned in the proof of Theorem 2.6 is inefficient as it
has to perform a lot of expensive module arithmetic. A more efficient way of realizing
Theorem 2.6 is to combine [HV22, Algo. 2,4] for computing signature Gröbner bases.
These algorithms work with pairs ( f , s(α)) instead of labeled polynomials f [α] and
reconstruct the full module representations a posteriori, avoiding a lot of module
arithmetic in this way.

A finite Gröbner basis of Syz(I[Σ]) up to signature σ, as output by the signature-
based algorithm, provides an effective description of all syzygies with signature ă σ.
This is the crucial property of signature-based algorithms that we exploit in Section 4 to
compute sparse cofactor representations.

3. Decidability and complexity

For the rest of this section, we fix a family of polynomials ( f1, . . . , fr) ∈ K〈X〉r

generating an ideal I. Any cofactor representation of an ideal member f ∈ I can be
identified with an element α ∈ Σ such that α = f . The weight of such a representation is
given by the `0-“norm” ‖α‖0 B |supp(α)|. Then, with the set R( f ) B {α ∈ Σ | α = f } of
(cofactor) representations of f , a sparsest (cofactor) representation of f corresponds to
a minimal element w.r.t. ‖·‖0 in R( f ). We denote the set of all such minimal elements by
R0( f ). If f < I, we set R( f ) = R0( f ) = ∅.

Remark 3.1. Ideal membership in the free algebra is only semidecidable. Consequently,
we can also not decide whether R( f ) = ∅ or not.

Remark 3.2. The function ‖·‖0 is not a norm as it is not homogeneous, but one can
associate to it a metric called Hamming distance.

In the following, we study the decidability and complexity of computing cofactor
representations of bounded weight. To this end, we assume that the coefficient field K is
computable, in the sense that the basic arithmetic operations as well as equality testing
are effective. This means in particular that linear systems can be solved effectively using,
for example, Gaussian elimination. With this, we consider the following problem.

Problem 3.3 (Sparse cofactor representation).
Input: f , f1, . . . , fr ∈ K〈X〉, N ∈ N
Output: a cofactor representation α ∈ R( f ) with ‖α‖0 ≤ N if one exists, otherwise
False.

We show that Problem 3.3 is decidable, and we give an algorithm reducing it to
Problem 3.4 below of finding sparse solutions of linear systems, formally also known
as the Min-RVLS (MINimum Relevant Variables in Linear System) problem. This not
only yields an algorithm for computing sparsest cofactor representations if f ∈ I, but it,
in principle, also provides a semidecision procedure for ideal membership. We focus on
the first application here.

Problem 3.4 (Sparse solution of linear system [Min-RVLS]).
Input: A ∈ Km×n,b ∈ Km, N ∈ {0, . . . , n}
Output: a vector y ∈ Kn with Ay = b and ‖y‖0 ≤ N if one exists, otherwise False.
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Problem 3.4 arises in many areas [CDS01, CT05, Don06]. It is clearly decidable,
for instance by looping over all N-subsets of {1, . . . , n} for possible sets of nonzero coef-
ficients of solutions. Furthermore, in many cases, most notably for K = Q, it is known
to be NP-hard, with the corresponding decision problem being NP-complete [GJ79,
Problem MP5].

In order to reduce the sparse cofactor representation problem to linear algebra, we
need to constrain the solutions to a finite dimensional vector space, which requires to
bound the degree of a solution. The degree of elements in R( f ) can be arbitrarily large,
but we can bound the degree of minimal representations. A cofactor representation
α =

∑d
i=1 ciaiε ji bi ∈ R( f ) is minimal if no sub-sum is a syzygy, that is,

∑
i∈J ciai f ji bi , 0

for all non-empty subsets J ⊆ {1, . . . , d}. To obtain the degree bound, we recall the
notion of (polynomial) rewriting introduced in [RRHP21, Def. 2].

Definition 3.5. Let f , g ∈ K〈X〉 and a, b ∈ 〈X〉 such that supp( f ) ∩ supp(agb) , ∅. For
every c ∈ K, we say that f can be rewritten to f + cagb ∈ K〈X〉 by g.

Furthermore, we say that f can be rewritten to h by G ⊆ K〈X〉 if there are
h0, . . . , hd ∈ K〈X〉, hd = f , h0 = h and g1, . . . , gd ∈ G such that hk can be rewrit-
ten to hk−1 by gk for all k = 1, . . . , d.

Rewriting can be considered as a weaker form of polynomial reduction, not requiring
that a polynomial gets “simplified” by a rewriting step. Nevertheless, f can be rewritten
to zero by { f1, . . . , fr} if and only if f ∈ I, see [RRHP21, Lem. 4]. More importantly,
we can show that any minimal representation of f can be obtained by rewriting f to 0
by { f1, . . . , fr} and logging the rewriting steps.

Lemma 3.6. Let f ∈ ( f1, . . . , fr) and α =
∑d

i=1 ciaiε ji bi ∈ R( f ) be a minimal represen-
tation of f . Furthermore, for k = 0, . . . , d, let hk =

∑k
i=1 ciai f ji bi. In particular, hd = f

and h0 = 0. Then, possibly after reordering the summands of α, hk can be rewritten to
hk−1 by { f1, . . . , fr} for all k = 1, . . . , d.

Proof. We perform induction on the weight d of a minimal representation of f . For
d = 0 there is nothing to prove. Assume now that d > 0 and that the result is proven
for polynomials with a minimal representation of weight d − 1. Because α is a minimal
representation, f cannot be 0. Since f = α =

∑d
i=1 ciai f ji bi, the support of f is

contained in the union of the supports of the ai f ji bi, and there exists 1 ≤ k ≤ d such
that supp( f ) ∩ supp(ak f jk bk) , ∅. Possibly after reordering the summands of α, we can
assume k = d. So f can be rewritten to hd−1 = f − cdad f jd bd using f jd ∈ { f1, . . . , fr}.
Furthermore, hd−1 =

∑d−1
i=1 ciai f ji bi has a minimal representation of weight d−1, because

adding one term results in a minimal representation of weight d for f . So, by induction
hypothesis, this representation of hd−1 is (up to reordering of the summands) a sequence
of rewritings by { f1, . . . , fr}.

Another crucial property of rewriting is that we can bound the degree of the output
in terms of the degree of the input and the degree difference of the rewriter. The degree
difference degdiff(g) of a nonzero g ∈ K〈X〉 is degdiff(g) = deg(g) − degmin(g), where
degmin(g) = minm∈supp(g) |m|.

Lemma 3.7. Let f , g ∈ K〈X〉 and c ∈ K, a, b ∈ 〈X〉. If f can be rewritten to h = f +cagb
by g, then max(deg(h), deg(agb)) ≤ deg( f ) + degdiff(g).
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Proof. By definition, there exists a monomial m in supp(g) such that amb ∈ supp( f ),
so |amb| ≤ deg( f ), or equivalently |a| + |b| ≤ deg( f ) − |m|. Since m ∈ supp(g), |m| ≥
degmin(g), and all in all,

deg(agb) = |a| + |b| + deg(g)
≤ deg( f ) − degmin(g) + deg(g) = deg( f ) + degdiff(g).

As deg(h) ≤ max(deg( f ), deg(agb)) and degdiff(g) ≥ 0, we conclude that also deg(h) ≤
deg( f ) + degdiff(g).

Combining Lemma 3.6 and 3.7, we obtain a bound on the degree of minimal cofactor
representations of f of bounded weight. Since any sparsest cofactor representation is, in
particular, minimal, this also yields a bound on the degree of sparsest representations.

Corollary 3.8. Let f ∈ ( f1, . . . , fr), N ∈ N and α ∈ R( f ) be a minimal representation
of f . If ‖α‖0 ≤ N, then deg(α) ≤ deg( f ) + N maxi degdiff( fi).

Proof. Write α as α =
∑d

i=1 ciaiε ji bi. By definition, deg(α) = maxi deg(ai f ji bi), and,
according to Lemma 3.6, each ai f ji bi is a rewriter in a rewriting sequence from f to 0.
Thus, Lemma 3.7 shows inductively that deg(α) ≤ deg( f ) + ‖α‖0 maxi degdiff( fi) and
the result follows since ‖α‖0 ≤ N.

As a consequence, we can state an algorithm for computing a cofactor representation
of weight bounded by N ∈ N, reducing to the problem of finding a sparse solution of a
linear system.

Algorithm 1: Sparse cofactor representation
Input: f , f1, . . . , fr ∈ K〈X〉, N ∈ N
Output: α ∈ R( f ) with ‖α‖0 ≤ N if one exists, otherwise False

1 D← deg( f ) + N maxi degdiff( fi) ;
2 L← {a fib | a, b ∈ 〈X〉, deg(a fib) ≤ D, i = 1, . . . , r} ;
3 return a K-linear combination of elements of L equal to f with ≤ N nonzero

summands if one exists, otherwise False;

Corollary 3.9. Algorithm 1 terminates and is correct.

Proof. The algorithm reduces the problem to that of finding sparse solutions of a linear
system. This problem is decidable (recall that K is computable), so the algorithm
terminates.

There exists a representation of f of weight ≤ N if and only if there exists a minimal
representation α of f of weight ≤ N. By Corollary 3.8, this representation is given by a
linear combination of weight ‖α‖0 ≤ N consisting of elements of L. So the algorithm is
correct.

It is also possible to describe a reduction of Problem 3.4 to Problem 3.3, which
allows us to characterize the complexity of the problem of finding sparse representations
in terms of the complexity of Problem 3.4. For the practically most relevant case of
K = Q we arrive at the following theorem.
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Theorem 3.10. The problem of, given f , f1, . . . , fr ∈ Q〈X〉 and N ∈ N (in unary form),
deciding whether there exists a cofactor representation of f of weight at most N, is
NP-complete.

Proof. Over Q, the decision problem associated to Problem 3.4 is NP-complete [GJ79,
Problem MP5]. Given an input A,b,N to that problem, introduce one variable xi for
each row of A, interpret each column of A as the polynomial f j =

∑
i Ai, jxi, and the right-

hand side as the polynomial f =
∑

i bixi. There is a one-to-one correspondence between
solutions with N nonzero entries to the linear systems, and cofactor representations of f
with weight N . So the problem of finding a representation of weight at most N is also
NP-hard.

Furthermore, if there exists a representation of weight ≤ N, then there exists one
with degree ≤ deg( f ) + N maxi degdiff( fi), which makes it polynomial size in N and
the size of the input polynomials. The validity of that representation can be verified in
polynomial time. So the problem is NP, and therefore NP-complete.

Remark 3.11. The requirement that N be given in unary format is necessary because
unlike Problem 3.4, the input of Problem 3.3 is not at least of size N. If N is given
in binary format, the decision problem is still NP-hard but no longer NP, because the
degree bound is not polynomial in log(N). Also note that Algorithm 1 does not provide
a polynomial time reduction of Problem 3.3 to Problem 3.4, even as a function of N.

We note that the last step of Algorithm 1 is infeasible for non-trivial examples. To
illustrate this point, we consider the following simple statement about the Moore-Penrose
inverse.

Theorem 3.12 ([Hog13, Ch. 5.7 Fact 11]). Let A be an invertible matrix with inverse B.
Then B is the Moore-Penrose inverse of A.

Proof. Let A† be the Moore-Penrose inverse of A. So in particular, AA†A = A, and
hence B = BAB = BAA†AB = BAA† = A†.

Example 3.13. Theorem 3.12 can be encoded in terms of the ideal membership b − a† ∈
(F) with F = {ab − 1, ba − 1, aa†a − a, a†aa† − a†, (a†)∗a∗ − aa†, a∗(a†)∗ − a†a} in the
algebra Q〈a, a∗, a†, (a†)∗, b〉.

The proof given above is then equivalent to the following cofactor representation of
b − a† certifying the ideal membership:

b − a† = a†(ab − 1) − b(ab − 1) − b(aa†a − a)b + (ba − 1)a†ab. (1)

This cofactor representation consists of 4 terms. To see if there exists a representation
with ≤ 3 terms, we can call Algorithm 1 with N = 3. The set L contains polynomials of
degree at most D = 7, and it consists of 88 672 elements. This is too large to test all
3-subsets exhaustively.

Using the techniques of Section 4, we will see that a much smaller set of elements is
sufficient and by applying the results of Section 4.5, we will be able to verify that (1) is
in fact a sparsest representation of b − a†. This shows that the proof given above is a
shortest proof of the theorem.
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4. Computing sparse representations

For the rest of this work, we restrict ourselves to the case K = Q. We have seen in
the previous section that computing sparsest cofactor representations is equivalent to the
NP-hard problem of finding sparsest solutions of a linear system. Several methods have
been proposed to obtain approximate solutions of the latter [CW92, MZ93, CDS01] by
using other measures as proxies for the sparsity of a solution and by minimising over
them. One of these methods, called Basis Pursuit [CDS01], uses the `1-norm as an
approximation for the sparsity of a solution.

In the following, we follow the Basis Pursuit approach and use the `1-norm ‖α‖1 B∑d
i=1 |ci| of α =

∑d
i=1 ciaiε ji bi as a surrogate complexity measure of a cofactor represen-

tation. The advantage of this approach is that an `1-minimal solution of a linear system
over Q can be found efficiently using linear programming. Additionally, we use the
effective description of the syzygy module provided by signature-based algorithms to
reduce the size of the linear system that we have to consider.

Based on Corollary 3.8, it suffices to consider only cofactor representations up to
a degree bound when computing minimal representations. Here, we, more generally,
restrict to representations with signature less than a designated bound σ ∈ M(Σ).
Since the module ordering is assumed to be fair, this ensures that we work in a finite
dimensional vector space. If the module ordering is also compatible with the degree, i.e.,
if deg(α) ≤ deg(β) implies α ĺ β, this includes all cofactor representations of degree
< deg(σ).

So, formally, we seek a minimal element w.r.t. ‖·‖1 in the set R( f , σ) B {α ∈ R( f ) |
s(α) ă σ} of cofactor representations of f up to signature σ ∈ M(Σ). We denote the set
of all such `1-minimal elements by R1( f , σ). Analogously, we let R0( f , σ) be the set of
all minimal elements w.r.t. ‖·‖0 in R( f , σ).

The results in this section rely on the fact that we have some α ∈ R( f , σ). However,
in general, for σ too small, the set R( f , σ) can be empty, even if R( f ) , ∅. To resolve this
issue, we assume that we have a cofactor representation α ∈ R( f ) and that σ is chosen
so that σ ą s(α). Note that this assumption, in particular, implies that f ∈ ( f1, . . . , fr).
Such α can be obtained, for example, by reducing f to zero using a (partial) labeled
Gröbner basis and keeping track of the reductions. With this in mind, we assume that
R( f , σ) , ∅.

In the following, we describe Algorithm 3, which allows to compute an element
in the set R1( f , σ). To this end, we denote by I[Σ] the labeled module generated by
f1, . . . , fr and by Hσ a Gröbner basis of Syz(I[Σ]) up to signature σ.

The general idea of Algorithm 3 is still to reduce the problem of computing sparse
cofactor representations to computing certain solutions of a linear system. However,
instead of choosing all polynomials a fib to form the linear system like Algorithm 1
does, we use the information provided by Hσ to trim this set. More precisely, we find a
finite set of module monomials B = {µ1, . . . , µd} ⊆ M(Σ) such that Ri( f , σ), i = 0, 1, has
non-empty intersection with the Q-vector space generated by B and then only consider
the polynomials {µ1, . . . , µd} to form the linear system. Furthermore, we now no longer
seek a sparsest solution of the resulting system but an `1-minimal solution, which can
be found with linear programming.
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It remains to discuss how to find a suitable basis B and how to translate the problem
of finding `1-minimal solutions of a linear system into a linear programming problem.

4.1. Finding a suitable basis B

Algorithm 1 essentially uses the basis B = {aεib | a, b ∈ 〈X〉, i = 1, . . . , r, s(aεib) ă

σ}, which leads to finite dimensional, yet infeasibly large, linear systems. Using a
Gröbner basis of Syz(I[Σ]) up to signature σ, we can drastically reduce the dimension of
the search space. To this end, we extend the notion of rewriting to module elements.

Definition 4.1. Let α, β ∈ Σ and a, b ∈ 〈X〉 such that supp(α) ∩ supp(aβb) , ∅. For
every c ∈ Q, we say that α can be rewritten to α + caβb by β.

Furthermore, we say that α can be rewritten to β by H ⊆ Σ if there are β0, . . . , βd ∈ Σ,
βd = α, β0 = β and γ1, . . . , γd ∈ H such that βk can be rewritten to βk−1 by γk for all
k = 1, . . . , d.

With this, we can state a module version of Lemma 3.6. We note that we state all
results in this section for both the `0-“norm” and the `1-norm to emphasize that they
hold for both complexity measures likewise and that the restriction to ‖·‖1 only comes
later for the linear programming.

Lemma 4.2. Let i ∈ {0, 1}. Furthermore, let α ∈ R( f , σ), αi ∈ Ri( f , σ), and let Hσ be a
Gröbner basis of Syz(I[Σ]) up to signature σ. Then α can be rewritten to αi by Hσ. In
particular, this rewriting can be done so that the signature of every rewriter a jγ jb j is
less than σ.

To prove Lemma 4.2, we make use of the fact that the `0-“norm” and the `1-norm
are linear for elements of disjoint support.

Lemma 4.3. Let α, β ∈ Σ such that supp(α) ∩ supp(β) = ∅. Then ‖α + β‖i = ‖α‖i + ‖β‖i
for i = 0, 1.

Proof of Lemma 4.2. The difference α − αi is a syzygy with signature ă σ. Since Hσ

is a Gröbner basis of Syz(I[Σ]) up to signature σ, there exist d ∈ N and γ j ∈ Hσ, c j ∈ Q,
a j, b j ∈ 〈X〉 such that αi = α −

∑d
j=1 c ja jγ jb j and s(a jγ jb j) ĺ max{s(α), s(αi)} ă σ for

all j. Now, we essentially follow the proof of Lemma 3.6 and perform induction on d.
The case d = 0 is clear. Assume now that d > 0 and that the result is proven for all

pairs (α, αi) such that α−αi has a representation with d−1 terms. Let β =
∑d

j=1 c ja jγ jb j.
If β = 0, we are done since α = αi. So assume β , 0, which implies ‖β‖i > 0. Then we
must have supp(α)∩supp(β) , ∅, as otherwise Lemma 4.3 would yield the contradiction
‖αi‖i = ‖α − β‖i = ‖α‖i + ‖β‖i > ‖α‖i ≥ ‖αi‖i, where the last inequality follow from the
minimality of ‖αi‖i. Thus, we have supp(α) ∩ supp(a jγ jb j) , ∅ for some 1 ≤ j ≤ d.
W.l.o.g. assume j = d. Hence, α can be rewritten to βd−1 = α − cdadγdbd by γd ∈ Hσ.
Note that s(adγdbd) ă σ. Since βd−1 − αi =

∑d−1
j=1 c ja jγ jb j has a representation with

d − 1 terms, the induction hypothesis implies that βd−1 can be rewritten to αi by Hσ

using only rewriters a jγ jb j with signature ă σ.

Lemma 4.2 says that any α ∈ R( f , σ) can be rewritten to each element in Ri( f , σ),
i = 0, 1, by Hσ using only rewriters with signature bounded by σ. Consequently,
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to find a suitable basis B, it suffices, starting from some α, to only choose those
syzygies that can appear in such rewriting sequences. Finding these elements is a purely
combinatorial problem that can be solved without performing any actual rewriting steps.
This leads to Algorithm 2, in which we collect precisely all those relevant syzygies.
Algorithm 2 can be considered as an adaptation of the symbolic preprocessing in the F4
algorithm [Fau99]. In the following, for V ⊆ Σ, let supp(V) =

⋃
γ∈V supp(γ).

Algorithm 2: Finding relevant syzygies

Input: α ∈ R( f , σ), Hσ a GB of Syz(I[Σ]) up to sig. σ
Output: V ⊆ Syz(I[Σ]) s.t. Ri( f , σ) ⊆ α + spanQ(V), i = 0, 1

1 V ← ∅;
2 todo← supp(α); done← ∅;
3 while todo , ∅ :
4 select µ ∈ todo, remove it, and add it to done;
5 new← {aγb | a, b ∈ 〈X〉, γ ∈ Hσ, µ ∈ supp(aγb), s(aγb) ă σ};
6 todo← todo ∪ (supp(new) \ done);
7 V ← V ∪ new;
8 return V;

Proposition 4.4. Algorithm 2 terminates and is correct.

Proof. The conditions on the elements in new ensure that only module monomials
smaller than σ are inserted into todo. Furthermore, each monomial is processed at
most once. Consequently, termination follows from the fact that there are only finitely
many monomials smaller than σ (recall that ĺ is fair). Correctness follows from
Lemma 4.2.

Using Algorithm 2, we can set B = supp(α)∪ supp(V) as a basis of the search space,
where V is the output of the algorithm given α and Hσ as input. In many cases, this set
is small enough to reasonably work with.

4.2. Detecting redundant syzygies
As an optional step, we can remove redundant elements from V before forming the

basis B in order to obtain a smaller basis, and thus, a smaller linear program to solve.
More precisely, since we only want to compute one element in Ri( f , σ), i = 0, 1, we
can remove syzygies as long as we can ensure that there remains at least one rewriting
sequence from α to at least one element in Ri( f , σ). We mention two basic techniques
that turned out useful in practice.

The first technique allows to remove syzygies from V that consist mostly of terms
that appear in no other element. Such syzygies cannot lead to simpler representations.
To make this statement precise, for W ⊆ V and β =

∑
j c jµ j ∈ W with c j ∈ Q, µ j ∈ M(Σ),

we denote

βU B
∑

jc jµ j with j such that µ j < supp((V ∪ {α}) \ {β}),
βV B

∑
jc jµ j with j such that µ j ∈ supp((V ∪ {α}) \W).

11



Intuitively, the element βU contains all those terms of β that are unique to β and that
appear in no other element of V ∪ {α}, and βV contains those terms that appear in β as
well as in elements outside of W.

Proposition 4.5. Let i ∈ {0, 1}. Furthermore, let α ∈ R( f , σ) and V ⊆ Syz(I[Σ]) such
that

(α + spanQ(V)) ∩ Ri( f , σ) , ∅.

If W ⊆ V satisfies ‖βV‖i ≤ ‖βU‖i for all β ∈ W, then

(α + spanQ(V \W)) ∩ Ri( f , σ) , ∅.

Proposition 4.5 provides a sufficient condition for a subset W ⊆ V to be redundant.
In order to prove this, we need the following two lemmas. The first one states that the
required property of W extends to the whole linear span. To this end, we extend the
definition of βU and βV to elements β =

∑
j b jβ j ∈ spanQ(W), where b j ∈ Q and β j ∈ W,

by βU B
∑

j b jβ j,U and βV B
∑

j b jβ j,V .

Lemma 4.6. Let V,W be as in Prop. 4.5. If β ∈ spanQ(W), then ‖βV‖i ≤ ‖βU‖i.

Proof. Write β =
∑

j b jβ j with nonzero b j ∈ Q and β j ∈ W. By assumption ‖β j,V‖i ≤

‖β j,U‖i for all j. Furthermore, all β j,U have pairwise different supports as they consist of
the monomials that are unique to each β j. So Lemma 4.3 implies that ‖·‖i is linear on
linear combinations of the β j,U . Using this and the triangular inequality, we get with
c j = 1 if i = 0 and c j = |b j| if i = 1:

‖βV‖i ≤
∑

j‖b jβ j,V‖i =
∑

jc j‖β j,V‖i

≤
∑

jc j‖β j,U‖i =
∑

j‖b jβ j,U‖i = ‖βU‖i.

The second lemma provides a lower bound on the norm of sums γ+β ∈ α+spanQ(W).

Lemma 4.7. Let α,V,W be as in Prop. 4.5. If β ∈ spanQ(W) and γ ∈ α+ spanQ(V \W),
then ‖γ + β‖i ≥ ‖γ‖i − ‖βV‖i + ‖βU‖i.

Proof. Let β′ = β− (βU + βV ). By definition, βU and β′ have pairwise different supports.
Furthermore, γ + βV does not share a monomial with βU and β′ as supp(γ + βV ) ⊆
supp ((V ∪ {α}) \W) and all monomials of β that lie in this set are collected in βV .
Therefore, Lemma 4.3 and the inverse triangle inequality imply

‖γ + β‖i = ‖γ + βV‖ + ‖βU‖i + ‖β′‖i

≥ ‖γ + βV‖ + ‖βU‖i ≥ ‖γ‖i − ‖βV‖i + ‖βU‖i.

Proof of Proposition 4.5. We claim that removing, if present, elements from W from a
representation δ ∈ α + spanQ(V) cannot increase the norm. This implies the assertion of
the proposition. To prove our claim, write δ as δ = γ + β with γ ∈ α + spanQ(V \W)
and β ∈ spanQ(W). Now, Lemma 4.6 and 4.7, show that ‖δ‖i = ‖γ + β‖i ≥ ‖γ‖i − ‖βV‖i +

‖βU‖i ≥ ‖γ‖i.
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The redundancy test provided by Proposition 4.5 is computationally fairly cheap
to check for a given set W ⊆ V . However, finding suitable candidates for W is not so
trivial. In our implementation, we test all singletons {β} ⊆ V and all subsets {β, γ} ⊆ V
where supp(β) ∩ supp(γ) , ∅ and where β and γ consist to at least a third of unique
monomials that appear in no other element in V . This empirically provided the best
trade-off between efficiency in applying the criterion and the effect it had on pruning V .

The second method does not directly allow to detect redundant elements in V . Instead
it can be considered as an auxiliary technique that can cause additional applications of
Proposition 4.5. The idea is to replace elements in V by linear combinations so that the
number of occurrences of certain monomials is reduced. In particular, by exploiting the
fact that

spanQ(V ∪ {α − β, γ + β}) = spanQ(V ∪ {α − β, α + γ}), (2)

we can reduce the number of occurrences of β at the cost of increasing the occurrences
of α.

In our implementation, we apply this technique to all binomial syzygies µ − σ ∈ V .
After removing all occurrences ofσ, Proposition 4.5 allows to delete the binomial syzygy
from V . Additionally, we apply (2) randomly to elements α − β where ‖β‖i > c‖α‖i for
fixed c > 1. Often, this process triggers further invocations of Proposition 4.5 to remove
elements from V . Table 1 shows the efficiency of the two methods presented in this
section.

4.3. Translation into linear program

Once we have obtained a reasonable basis of module monomials B = {µ1, . . . , µd}

such that the Q-vector space generated by B has non-empty intersection with Ri( f , σ),
i = 0, 1, we can set up a linear system Ay = b, where A is the matrix of size s × d, with
s = |

⋃
j supp(µ j)|, whose jth column contains the coefficients of µ j. Similarly, b is a

vector of size s containing the coefficients of f . The matrix A bears resemblance to the
matrices appearing in Gröbner basis computations such as the F4 algorithm, aside from
two main differences. In Gröbner basis computations, polynomials are encoded as the
rows of a matrix and the columns have to be ordered w.r.t. the (polynomial) monomial
ordering. In our approach, polynomials are encoded as the columns and the order of the
columns is irrelevant.

Every `i-minimal solution of Ay = b corresponds to an element in Ri( f , σ). As
noted before, computing `0-minimal, i.e., sparsest, solutions is NP-hard. Therefore, we
restrict ourselves to the case i = 1 and consider the problem

(P1) : min
y
‖y‖1 subject to Ay = b,

where ‖x‖1 =
∑

j |x j|. It is well-known that (P1) can be recast as a linear program, see
e.g. [CDS01, Sec. 3.1]. A linear program (in standard form) [Sch98] is an optimization
problem for v ∈ Qt of the form

(LP) : min
v

cT v subject to Uv = w, v ≥ 0,
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where v ≥ 0 is to be understood component-wise. The problem (P1) can be equivalently
formulated as a linear program by setting

t = 2d, cT = (1, . . . , 1), U = (A | −A), v =

(
p
q

)
, w = b,

with vectors p,q ∈ Qd. This linear program can then be solved efficiently using the
simplex algorithm [Dan51] or interior-point methods [PW00] and a solution y of (P1) is
given by y = p − q.

4.4. Putting everything together
Finally, we combine the results of the previous sections to form Algorithm 3 for

computing an element in R1( f , σ). In the algorithm, I[Σ] denotes the labeled module
generated by f1, . . . , fr.

Algorithm 3: `1-minimal cofactor representation
Input: ( f1, . . . , fr) ∈ Q〈X〉r, f ∈ ( f1, . . . , fr), σ ∈ M(Σ), α ∈ R( f , σ)
Output: an element in R1( f , σ)

1 Hσ ← GB of Syz(I[Σ]) up to sig. σ;
2 V ← apply Algorithm 2 to α and Hσ;
3 V ← prune V using the techniques from Section 4.2;
4 {µ1, . . . , µd} ← supp(V ∪ {α});
5 A← matrix with columns containing the coeffs of µ1, . . . , µd;
6 b← vector containing the coefficients of f ;
7 v← solution of the linear program (LP) with

cT = (1, . . . , 1), U = (A | −A), v =

(
p
q

)
, w = b;

8 return
∑d

i=1(pi − qi)µi;

Theorem 4.8. Algorithm 3 terminates and is correct.

Proof. Termination follows from the fact that Hσ can be computed in finite time by
Theorem 2.6, and from Proposition 4.4. Correctness follows from the discussions in
Section 4.1, 4.2 and 4.3.

Remark 4.9. Algorithm 3 weighs each monomial µi equally by a weight of 1. It is also
possible to weigh the monomials differently by changing the vector c so that ci encodes
the weight of µi. This allows, for example, to weigh monomials by their degree, yielding
representations that prefer monomials with small degree. In this case, the output of the
algorithm is no longer guaranteed to be in R1( f , σ).

4.5. Special case: totally unimodular matrices
In general, the output of Algorithm 3 need not be a sparsest representation of f up

to signature σ, i.e., it need not be an element in R0( f , σ). In this section, we discuss a
special case when this indeed true. To this end, we consider the linear system Ay = b
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constructed in Algorithm 3. We are interested in situations where the augmented matrix
(A | b) is totally unimodular as defined below.

Definition 4.10. A matrix T ∈ {−1, 0, 1}m×n is called totally unimodular if every square
submatrix of T has determinant 0 or ±1.

Theorem 4.11. Let A and b as constructed in Algorithm 3. If the augmented matrix
(A | b) is totally unimodular, then the output of Algorithm 3 is an element in R0( f , σ).

In order to prove the theorem, we take a closer look at the coefficients of the sparsest
and `1-minimal solutions of Ay = b. It is well-known that totally unimodular coefficient
matrices and integer right-hand sides yield integer optima for linear programs [Sch98,
Thm. 19.1]. The following lemma, extends this statement under slightly stricter assump-
tions.

Lemma 4.12. Let the augmented matrix (A | b) be totally unimodular. If Ay = b is
solvable, then any sparsest or `1-minimal solution y satisfies y ∈ {−1, 0, 1}d.

Proof. Since removing linearly dependent rows does not change the solution set of a
solvable system, we can assume that A has full row rank s = rank(A).

Sparsest solution. The columns of A corresponding to the nonzero entries of y have
to be linearly independent (otherwise there would exist a sparser solution). We can
extend them by further columns of A to obtain an invertible s × s matrix A′. Then
A′y′ = b, where y′ contains those coordinates of y that correspond to the columns of
A that are in A′. By assumption det(A′) = ±1. Furthermore, the matrix A′i obtained by
replacing the ith column of A′ by b is – up to permutation of columns – a submatrix
of (A | b). Consequently, det(A′i) ∈ {−1, 0, 1} and applying Cramer’s rule shows
y′i =

det(A′i )
det(A′) ∈ {−1, 0, 1}. Then the result follows since any coordinate of y which does

not appear in y′ has to be zero.
`1-minimal solution. We consider the equivalent linear program (LP) and note that

y ∈ {−1, 0, 1}d if and only if v ∈ {0, 1}2d. If v is a solution of (LP), then it has to be a
basic feasible solution. This means ‖v‖0 ≤ s and that the columns of U that correspond
to the nonzero coordinates of v can be extended to an invertible s × s submatrix U′ of
U. Since (U | b) = (A | −A | b) is totally unimodular, the same arguments as in the
other case show that v ∈ {−1, 0, 1}2d, and the statement follows from the non-negativity
constraint of (LP).

Using this lemma, we can now prove Theorem 4.11.

Proof of Theorem 4.11. By construction, the system Ay = b has a solution. For i = 0, 1,
let αi be the module element corresponding to an `i-minimal solution of the system.
Note that, again by construction, αi ∈ Ri( f , σ). By Lemma 4.12, αi contains only
nonzero coefficients ±1, which implies that ‖αi‖0 = ‖αi‖1 for i = 0, 1, and the result
follows.

In most applications, all polynomials involved are of the form a − b with a, b ∈
〈X〉 ∪ {0} encoding identities of operators of the form A = B. Such polynomials are
called pure difference binomials. The following corollary of Theorem 4.11 ensures that
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Algorithm 3 computes a sparsest representation up to signature σ provided that the input
polynomials are pure difference binomials.

Corollary 4.13. Let f , f1, . . . , fr ∈ Q〈X〉 be pure difference binomials, σ ∈ M(Σ) and
α ∈ R( f , σ). Given these elements as input, the output of Algorithm 3 is an element in
R0( f , σ).

Proof. Let A, b as constructed in Algorithm 3. By assumption on f , f1, . . . , fr, each
column of (A | b) contains at most one entry +1 and at most one entry −1 with all other
entries being 0. Each square submatrix U of (A | b) either contains a zero column (then
U is singular), a column with one nonzero entry (then expansion of det(U) along this
column yields inductively det(U) ∈ {−1, 0, 1}), or each column of U contains exactly
one entry +1 and one entry −1 (then 1T U = 0 showing that U is singular). Thus, (A | b)
is totally unimodular and the result follows from Theorem 4.11.

Example 4.14. We revisit Example 3.13. All polynomials that appear in this example
are pure difference binomials. Hence, Corollary 4.13 implies that Algorithm 3 yields
a sparsest cofactor representation up to the used signature bound σ. In particular, if a
degree-compatible module ordering is used and σ is chosen so that deg(σ) > 7, then by
Corollary 3.8 the computed representation is a sparsest one (independent of any bound).

Applying Algorithm 3 to Example 3.13, with the cofactor representation given in (1)
and a suitable signature bound σ, yields again (1), showing that this is a sparsest cofactor
representation. The basis used to form the linear system only consists of 300 elements,
compared to the 88 672 that Algorithm 1 would need.

5. Experimental results

We have written a prototype implementation of Algorithm 3 for SageMath1 using
our package SignatureGB1 for the signature-based computations and the IBM ILOG
CPLEX optimization studio [IBM23] for the linear programming.

In Table 1, we compare the weight of cofactor representations computed by Algo-
rithm 3 to those found by other approaches. In particular, we compare our algorithm to
tracing standard Gröbner basis computations and reductions, and to tracing reductions
done with a signature Gröbner basis.

As benchmark examples, we recover short proofs of the following (recent) results in
operator theory on the Moore-Penrose inverse.

• SVD encodes [Hog13, Ch. 5.7 Fact 4], which provides a formula for the Moore-
Penrose inverse of a matrix in terms of the matrix’s singular value decomposition.

• ROL encodes the implication (2) ⇒ (1) in [KDC07, Thm. 3], which provides
a sufficient condition for the identity (AB)† = B†A† to hold, where X† is the
Moore-Penrose inverse of an element in a ring with involution.

1Available at https://clemenshofstadler.com/software/
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• ROL-n encodes the implication (n) ⇒ (1) in [DD10, Thm. 2.1]. This family
provides several sufficient conditions for the identity (AB)† = B†A† to hold,
where X† is the Moore-Penrose inverse of bounded operators on Hilbert spaces.

• Hartwig-n encodes the implication (n) ⇒ (1) in [CIHHP+21, Thm. 2.3]. This
family provides several sufficient conditions for the identity (ABC)† = C†B†A†

to hold, where X† is the Moore-Penrose inverse of an element in a ring with
involution.

• Ker encodes part of [RP87, Thm. 1], which characterises the existence of Moore-
Penrose inverses in additive categories with involution in terms of kernels of
morphisms.

• SMW encodes [Den11, Thm. 2.1], which generalises the Sherman–Morrison–Woodbury
formula in terms of the Moore-Penrose inverse.

• Sum encodes [Li08, Lem. 1], which provides a sufficient condition for the identity
(A + B)† = A† + B† to hold, where X† is the Moore-Penrose inverse of an element
in a C∗-algebra.

For all examples, ≤deglex is used in combination with the degree-compatible ordering
ĺDoPoT for the signature-based computations.

The first columns of Table 1 contain information about the ideals that arise when
translating the operator statements. In particular, we list the number of generators of
each ideal and their maximal degree. Moreover, in the column for Algorithm 3, we
provide information on the used signature bound. A value n in this column indicates that
we consider only cofactor representations of degree < n. The degree bounds were chosen
so that the computation would finish for the larger examples Hartwig-n within a few
hours on a regular laptop and for the remaining smaller examples within a few minutes.
We note that these degree bounds are strictly smaller than those that Corollary 3.8
yields, but the latter were computationally infeasible. Nevertheless, Table 1 shows that
Algorithm 3 still allows to find sparser representations for all considered examples.

Apart from the last three (Ker, SMW, Sum), all benchmark examples only consist of
pure difference binomials. For those, Corollary 4.13 implies that the representations
computed by Algorithm 3 are the sparsest up to the respective degree bounds. For the
remaining examples, the algorithm can still be used to find `1-minimal representations,
which are heuristically also sparse, but without guarantee that they are the sparsest.

We also tested an adapted version of Algorithm 3 as described in Remark 4.9 that
minimizes the total number of symbols appearing in a cofactor representation. For most
benchmark examples, the thereby computed representations have the same (minimal)
weight as those found with the standard version of the algorithm, but the total number
of symbols decreases by up to 15%. Only for ROL-3 does the weight increase by one,
while the number of symbols decreases from 196 to 172.

In the last columns of Table 1, we compare the size of the matrix A constructed in
Algorithm 3 with and without applying the pruning techniques discussed in Section 4.2.
We also list the ratio between the number of nonzero entries in the pruned matrix and the
number of nonzero entries in the original matrix. As the table shows, in some examples
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Example #gens deg GB SigGB
Algo. 3
(bound) w/o pruning w/ pruning ratio , 0

SVD 32 3 51 39 25 (10) 127 k × 397 k 118 k × 328 k 0.83
ROL 28 5 80 39 30 (12) 22 k × 101 k 22 k × 56 k 0.55

ROL-2 28 5 20 21 15 (12) 24 k × 107 k 23 k × 60 k 0.56
ROL-3 28 5 49 44 31 (12) 19 k × 87 k 18 k × 46 k 0.53
ROL-4 28 5 59 46 33 (12) 68 k × 236 k 64 k × 137 k 0.58
ROL-5 28 5 28 30 22 (12) 33 k × 134 k 31 k × 80 k 0.60
ROL-6 28 5 39 39 30 (12) 22 k × 99 k 21 k × 55 k 0.56
ROL-7 40 9 85 23 17 (12) 18 k × 86 k 17 k × 46 k 0.54
ROL-8 44 7 241 19 17 (12) 258 k × 962 k 249 k × 560 k 0.58

Hartwig-4 23 15 316 54 46 (18) 353 k × 1 739 k 349 k × 1 460 k 0.84
Hartwig-5 26 15 99 43 35 (17) 407 k × 1 642 k 398 k × 1 374 k 0.84
Hartwig-6 24 15 86 33 29 (17) 218 k × 958 k 217 k × 808 k 0.84

Ker 12 3 49 34 23 (12) 51 k × 143 k 51 k × 129 k 0.90
SMW 36 7 63 42 39 (12) 44 k × 114 k 44 k × 94 k 0.83
Sum 20 3 313 178 85 (9) 11 k × 18 k 11 k × 17 k 0.93

Table 1: Comparison of weights of cofactor representations computed by standard Gröbner bases
(GB), by signature Gröbner bases (SigGB), and by Algorithm 3 (Algo. 3). Size comparison of
the coefficient matrix A (rounded to thousands) in Algorithm 3 with and without applying the
pruning techniques from Sec. 4.2.

the size of the resulting linear system can be reduced drastically, cutting the number of
nonzero entries almost in half.
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