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ABSTRACT
We generalize signature Gröbner bases, previously studied in the

free algebra over a field or polynomial rings over a ring, to ideals in

the mixed algebra 𝑅 [𝑥1, . . . , 𝑥𝑘 ]⟨𝑦1, . . . , 𝑦𝑛⟩ where 𝑅 is a principal

ideal domain. We give an algorithm for computing them, combining

elements from the theory of commutative and noncommutative

(signature) Gröbner bases, and prove its correctness.

Applications include extensions of the free algebra with commu-

tative variables, e.g., for homogenization purposes or for performing

ideal theoretic operations such as intersections, and computations

over Z as universal proofs over fields of arbitrary characteristic.

By extending the signature cover criterion to our setting, our al-

gorithm also lifts some technical restrictions from previous noncom-

mutative signature-based algorithms, now allowing e.g., elimina-

tion orderings. We provide a prototype implementation for the case

when 𝑅 is a field, and show that our algorithm for the mixed algebra

is more efficient than classical approaches using existing algorithms.
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1 INTRODUCTION
Gröbner bases are an essential tool in computational algebra. They

are best known in algebras of commutative polynomials over fields [3],

but have also been extended to various settings, including polyno-

mials over rings [24, 30, 33, 43], modules [34], skew polynomial

rings [13], and noncommutative polynomials in the free algebra

over fields [36] or over rings [4, 5, 28, 32, 37, 39, 40, 44]. In this last
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setting, Gröbner bases have proven to be a key tool in reducing and

proving operator identities [6, 18, 19, 45, 46].

In parallel to those generalizations, the last 20 years have seen

the development of a new paradigm for computing Gröbner bases,

with the concept of signatures [8, 11, 27]. This approach, which

improves upon the idea of tracing syzygies presented in the earlier

work [35], has had a significant impact on the field, leading to

advances also in other algorithmic tools such as staggered linear

bases [16, 17], initially introduced in [15].

Beyond their original purpose of optimizing the algorithms, it

was more recently observed that the data of signatures also has

direct applications. For instance, they have been used in computa-

tional geometry [9], and they allow to perform a number of opera-

tions on the syzygy module of a family of polynomials, without the

additional cost of module Gröbner bases computations [14]. In par-

ticular, the data of a Gröbner basis with its signatures makes it pos-

sible to easily get a proof that an element lies in an ideal, by recon-

structing a representation in terms of the original generators [22].

This potential has led to signature Gröbner bases being general-

ized beyond commutative polynomials over fields, for instance to

polynomials over rings [10, 12], to solvable noncommutative alge-

bras [47], and recently to the free algebra [21].

In this paper, we consider two generalizations of signature Gröb-

ner bases in the free algebra at once. First, we consider the case of

noncommutative polynomials with some commutative variables,

namely elements in 𝑅 [𝑋 ]⟨𝑌 ⟩ = 𝑅 [𝑥1, . . . , 𝑥𝑘 ]⟨𝑦1, . . . , 𝑦𝑛⟩. Such ob-

jects arise, for example, when introducing auxiliary variables such

as homogenization variables or parameters (e.g., when computing

the intersection of ideals or the homogeneous part of an ideal). The

naive approach, consisting of adding the commutator relations to

the input polynomials, is inefficient with signatures, because the

information of these relations is not propagated to the signatures.

In addition, we relax the conditions on the base ring, no longer re-

quiring it to be a field, but only a principal ideal domain (PID). This,

in particular, allows computations over Z, which can be considered

universal as they remain valid in arbitrary characteristic. Further-

more, 𝑅 [𝑋 ]⟨𝑌 ⟩ provides a natural setting for studying many finitely

presented structures, such as Iwahori-Hecke algebras [23, 28] or

(discrete) Heisenberg groups [31].

In the noncommutative case, a difficulty is that most ideals do

not admit a finite Gröbner basis, and even among those that do,

most do not admit a finite Gröbner basis of the module of syzygies.

In [21], the authors proposed an algorithm taking advantage of

the data encoded within signatures, and of the structure of the

syzygy module, to define and compute signature Gröbner bases

which may be finite. This is the combined effect of two properties of

noncommutative polynomials: the definition of S-polynomials [1]

implicitly includes Buchberger’s coprime criterion, which ensures

that one can only form finitely many S-polynomials with any given
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pair of polynomials; and the signature F5 criterion makes it possible

to identify a large number of structural syzygies.

In the case without signatures, when attempting to generalize

Gröbner bases, it is frequent that, for structural reasons, Buch-

berger’s criterion can no longer eliminate all but finitely many

S-polynomials. This was already observed for classical noncommu-

tative Gröbner bases over rings [28, 32], and also carries over to the

generalizations at hand: Buchberger’s criterion requires also the co-

efficients to be coprime, and the subsequently weakened criterion

cannot ensure that only finitely many S-polynomials remain. In ad-

dition, when working with Gröbner bases over PIDs, one needs to

compute so-called G-polynomials for each pair of polynomials, and

there will typically be infinitely many such G-polynomials.

In this paper, we describe an algorithm for computing signature

Gröbner bases for polynomials in the mixed algebra 𝑅 [𝑋 ]⟨𝑌 ⟩. The
algorithms and data structures combine elements from [32] for the

combinations and reductions, [21] for managing signatures in the

free algebra, and [12] for managing signatures with coefficients in a

PID. With the limitations exposed above, one cannot hope that the

algorithm terminates, but we show that it correctly enumerates a

signature Gröbner basis, as well as a basis of the module of syzygies.

The proof combines elements from the theory of signatures over the

free algebra and of signatures over PIDs in the commutative case.

A feature of the algorithm is that it relies on the signature cover

criterion [12, 14] instead of requiring that every element reduces to

0. As in the commutative case, this allows to decouple the selection

strategy used for selecting S- and G-polynomials from the order on

the signatures. As a consequence, the algorithm does not have to

process S- and G-polynomials by increasing signature. This is partic-

ularly important in the noncommutative case, where all algorithms

require that the selection strategy is so-called fair. This is a strong

requirement excluding for instance elimination orderings. As such,

the new algorithm with the selection strategy decoupled from the

signature order is the first algorithm that allows to enumerate a

signature Gröbner basis in the free algebra for any monomial order.

2 THE MIXED ALGEBRA
Let 𝑅 be a commutative principal ideal domain (PID) with 1. We

assume that 𝑅 is computable, in the sense that all arithmetic op-

erations, including gcd-computations and the computation of Bé-

zout coefficients, can be performed effectively. Classical examples

of such rings are the integers Z or the univariate polynomial ring

𝐾 [𝑥] over a field 𝐾 , with the extended Euclidean algorithm.

We denote by 𝐴 = 𝑅 [𝑋 ]⟨𝑌 ⟩ the mixed algebra of polynomials

in commutative (or central) variables 𝑥1, . . . , 𝑥𝑘 and noncommu-

tative variables 𝑦1, . . . , 𝑦𝑛 . Formally, this algebra is the quotient

𝑅⟨𝑋,𝑌 ⟩/(𝑥𝑖𝑦 𝑗 −𝑦 𝑗𝑥𝑖 , 𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖 | ∀𝑖, 𝑗). Note that, in this algebra,

𝑥𝑖 𝑓 = 𝑓 𝑥𝑖 for all 𝑓 ∈ 𝑅 [𝑋 ]⟨𝑌 ⟩, but in general 𝑦𝑖 𝑓 ≠ 𝑓 𝑦𝑖 .

A (mixed) monomial in 𝐴 is a product 𝑣𝑤 with 𝑣 = 𝑥
𝛼1

1
· · · 𝑥𝛼𝑘

𝑘
a (commutative) monomial in 𝑋 and𝑤 = 𝑦𝑖1𝑦𝑖2 · · ·𝑦𝑖𝑙 a (noncom-

mutative) word in 𝑌 . We denote by [𝑋 ] the set of all commutative

monomials in 𝑋 and by ⟨𝑌 ⟩ the set of all noncommutative words

in 𝑌 . A term in 𝐴 is the product of a nonzero coefficient in 𝑅 and

a mixed monomial in 𝐴. We denote by 𝑀 (𝐴) the set of all mixed

monomials of 𝐴, and by 𝑇 (𝐴) the set of all terms of 𝐴.

Divisibility of mixed monomials and terms in 𝐴 is defined com-

ponentwise: given 𝑐, 𝑑 ∈ 𝑅, 𝑢, 𝑣 ∈ [𝑋 ] and 𝑎, 𝑏 ∈ ⟨𝑌 ⟩, 𝑐𝑢𝑎 divides
𝑑𝑣𝑏 if and only if 𝑐 divides 𝑑 , 𝑢 divides 𝑣 , and 𝑎 is a subword of 𝑏.

A monomial ordering ≤ is a total ordering on 𝑀 (𝐴) which is

compatible withmultiplication, that is,𝑚 ≤ 𝑚′ implies𝑎𝑚𝑏 ≤ 𝑎𝑚′𝑏
for all 𝑎, 𝑏,𝑚,𝑚′ ∈ 𝑀 (𝐴), and is such that every non-empty set has

a minimal element (well-ordering). A monomial ordering naturally

defines a partial ordering on 𝑇 (𝐴), called a term ordering. For ease

of notations, we extend the definition of monomial and term to

contain 0, which is assumed to be smaller than all other elements.

Given a family (𝑓1, . . . , 𝑓𝑟 ) ∈ 𝐴𝑟 of polynomials in 𝐴, we let

𝐼 = (𝑓1, . . . , 𝑓𝑟 ) be the (two-sided) ideal generated by 𝑓1, . . . , 𝑓𝑟 .

Furthermore, we consider the free 𝐴-bimodule Σ = (𝐴 ⊗𝑅 [𝑋 ] 𝐴)𝑟 ,
see also [7, Sec. 0.11]. We denote its canonical basis by 𝜀1, . . . , 𝜀𝑟 ,

and we equip it with an 𝐴-bimodule homomorphism · : 𝜀𝑖 ↦→ 𝑓𝑖 .

A labeled polynomial is a pair (𝑓 , 𝛼) ∈ 𝐼 × Σ with 𝑓 = 𝛼 , denoted

𝑓 [𝛼 ] . The labeled module generated by 𝑓1, . . . , 𝑓𝑟 is the set of all

labeled polynomials and denoted by 𝐼 [Σ] . It is isomorphic to Σ as

an 𝐴-bimodule.

An element 𝛼 ∈ Σ with 𝛼 = 0 is called a syzygy of 𝐼 [Σ] . The set
of all syzygies of 𝐼 [Σ] , denoted by Syz(𝐼 [Σ] ), forms an 𝐴-bimodule.

A (module) monomial in Σ is a product 𝑢𝑎𝜀𝑖𝑏 where 𝑢 ∈ [𝑋 ] and
𝑎, 𝑏 ∈ ⟨𝑌 ⟩. A term in Σ is the product of a nonzero coefficient and a

monomial. The set of all monomials (resp. terms) in Σ is denoted

by 𝑀 (Σ) (resp. 𝑇 (Σ)). Every 𝛼 ∈ Σ has a unique representation

𝛼 =
∑𝑑
𝑖=1 𝑐𝑖𝑢𝑖𝑎𝑖𝜀 𝑗𝑖𝑏𝑖 with nonzero 𝑐𝑖 ∈ 𝑅 and pairwise different

𝑢𝑖𝑎𝑖𝜀 𝑗𝑖𝑏𝑖 ∈ 𝑀 (Σ).
A module ordering is a total ordering on 𝑀 (Σ) which is com-

patible with multiplication and a well-ordering. A module order-

ing is called fair if for any monomial 𝜇, the set of all monomials

that are smaller than 𝜇 is finite. Given a monomial ordering ≤ on 𝐴

and a module ordering ĺ on Σ, the orders are said to be compati-

ble if for all 𝑢, 𝑣 ∈ [𝑋 ], 𝑎, 𝑏 ∈ ⟨𝑌 ⟩, 𝑖 ∈ {1, . . . , 𝑟 } we have 𝑢𝑎 < 𝑣𝑏

iff 𝑢𝑎𝜀𝑖 ă 𝑣𝑏𝜀𝑖 iff 𝑢𝜀𝑖𝑎 ă 𝑣𝜀𝑖𝑏.

As for polynomials, we extend module orderings to partial or-

derings on terms. More precisely, for 𝜇, 𝜎 ∈ 𝑀 (Σ) and 𝑐, 𝑑 ≠ 0 ∈ 𝑅,
we write 𝑐𝜇 ≃ 𝑑𝜎 if 𝜇 = 𝜎 , and 𝑐𝜇 ĺ 𝑑𝜎 if 𝜇 ă 𝜎 or 𝑐𝜇 ≃ 𝑑𝜎 .

Given a monomial ordering, the leading term lt(𝑓 ) of 𝑓 ∈ 𝐴 is

the largest term appearing in the support of 𝑓 . The leading mono-

mial lm(𝑓 ) and the leading coefficient lc(𝑓 ) are the corresponding
monomial and coefficient, respectively. Given a module ordering,

the signature sig(𝛼) of a module element 𝛼 is the largest term ap-

pearing in the support of 𝛼 . Note that signatures include coeffi-

cients and that they are compatible with scalar multiplication, i.e.,

sig(𝑡𝛼𝑡 ′) = 𝑡sig(𝛼)𝑡 ′ for 𝑡, 𝑡 ′ ∈ 𝑇 (𝐴).

3 SIGNATURE GRÖBNER BASES
Wefix (𝑓1, . . . , 𝑓𝑟 ) ∈ 𝐴𝑟 and let 𝐼 [Σ] be the labeledmodule generated

by 𝑓1, . . . , 𝑓𝑟 . As in other settings, signature Gröbner bases in 𝐴 are

characterised by the fact that all elements in 𝐼 [Σ] are reducible in a

way that does not increase the signature. Such reductions are called

sig-reductions and are defined below. In the setting of coefficient

rings several notions of reductions exist (weak, strong, and also

modular reductions by the coefficients). In this work, we focus on

strong reductions requiring divisibility of the leading coefficients.

Definition 3.1. Let 𝑓 [𝛼 ] , 𝑔[𝛽 ] ∈ 𝐼 [Σ] . A combination ℎ [𝛾 ] =

𝑓 [𝛼 ] − 𝑡𝑔[𝛽 ]𝑏 with 𝑡 ∈ 𝑇 (𝐴), 𝑏 ∈ ⟨𝑌 ⟩ is a (top) sig-reduction if
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lt(𝑡𝑔𝑏) = lt(𝑓 ) > lt(ℎ) and sig(𝑡𝛽𝑏) ĺ sig(𝛼). The sig-reduction
is regular if sig(𝑡𝛽𝑏) ă sig(𝛼), and singular if sig(𝑡𝛽𝑏) = sig(𝛼).
If such a combination exists, 𝑓 [𝛼 ] is called (regular/singular) sig-

reducible by 𝑔[𝛽 ] .

As usual, an element 𝑓 [𝛼 ] is (regular/singular) sig-reducible by
a set 𝐺 [Σ] ⊆ 𝐼 [Σ] if there exists 𝑔[𝛽 ] ∈ 𝐺 [Σ] such that 𝑓 [𝛼 ] is (reg-
ular/singular) sig-reducible by 𝑔[𝛽 ] . If the result of a sig-reduction
of 𝑓 [𝛼 ] is 0[𝛾 ] , then we say that 𝑓 [𝛼 ] sig-reduces to 0. We extend

these definitions also to sequences of sig-reductions.

Note that sig-reductions do not increase the signature, that is,

sig(𝛾) ĺ sig(𝛼), with equality for regular sig-reductions and strict

inequality for singular sig-reductions. There are also sig-reductions

which are neither regular nor singular; in this case sig(𝛾) ≃ sig(𝛼).
We extend the definition of (strong) signature Gröbner bases

from the commutative case [12, Def. 2.5] in a straightforward way.

Definition 3.2. A set 𝐺 [Σ] ⊆ 𝐼 [Σ] is a (strong) signature Gröb-
ner basis of 𝐼 [Σ] (up to signature 𝜎 ∈ 𝑇 (Σ)) if all 𝑓 ∈ 𝐼 [Σ] with
𝑓 ≠ 0 (and sig(𝛼) ă 𝜎) are sig-reducible by 𝐺 [Σ] .

By disregarding the module labelling from Definition 3.2, one re-

covers the definition of classical Gröbner bases in 𝐴 [32]. The poly-

nomial parts of a signature Gröbner basis of 𝐼 [Σ] form a Gröbner

basis of 𝐼 = (𝑓1, . . . , 𝑓𝑟 ).
Signature Gröbner bases were introduced with the goal of us-

ing signatures of (known) syzygies to predict reductions to zero,

and thereby, speed up Gröbner basis computations. Later, it was ob-

served that signature-based algorithms also allow to compute, as a

byproduct, a Gröbner basis of the syzygy module as defined below.

Definition 3.3. An element 𝛼 ∈ Σ is (top) reducible by a set𝐻 ⊆
Σ if there exist 𝛾 ∈ 𝐻 , 𝑡 ∈ 𝑇 (𝐴), 𝑏 ∈ ⟨𝑌 ⟩ such that sig(𝛼) = sig(𝑡𝛾𝑏).

A set of syzygies 𝐻 ⊆ Syz(𝐼 [Σ] ) is a syzygy basis of 𝐼 [Σ] (up to

signature 𝜎 ∈ 𝑇 (Σ)) if every nonzero syzygy 𝛼 ∈ Syz(𝐼 [Σ] ) (with
sig(𝛼) ă 𝜎) is reducible by 𝐻 .

4 AMBIGUITIES
In order to define S- (and G-)polynomials in our setting, we first

adapt the notion of ambiguities from [1] to our setting. Ambigui-

ties characterise situations where one term can be reduced in two

different ways, and the aim of a (signature) Gröbner basis computa-

tion is to resolve ambiguities by forming S- (and G-)polynomials.

We first recall the definition of ambiguities for noncommutative

words, and then subsequently extend them to mixed monomials

and to labeled polynomials.

Definition 4.1. Let 𝑝, 𝑞 ∈ ⟨𝑌 ⟩. If there exist 𝑎, 𝑏 ∈ ⟨𝑌 ⟩ \ {1} with
|𝑎 | < |𝑞 | and |𝑏 | < |𝑝 | such that 𝑎𝑝 = 𝑞𝑏, resp. 𝑝𝑎 = 𝑏𝑞, then we
call the tuple (𝑎 ⊗ 1, 1 ⊗ 𝑏, 𝑝, 𝑞), resp. (1 ⊗ 𝑎, 𝑏 ⊗ 1, 𝑝, 𝑞), an overlap

ambiguity of 𝑝 and 𝑞.
If there exist 𝑎, 𝑏 ∈ ⟨𝑌 ⟩ such that 𝑝 = 𝑎𝑞𝑏, resp. 𝑎𝑝𝑏 = 𝑞, then we

call the tuple (1 ⊗ 1, 𝑎 ⊗ 𝑏, 𝑝, 𝑞), resp. (𝑎 ⊗ 𝑏, 1 ⊗ 1, 𝑝, 𝑞), an inclusion

ambiguity of 𝑝 and 𝑞.
Finally, for every𝑚 ∈ ⟨𝑌 ⟩, we call the tuples (1⊗𝑚𝑞, 𝑝𝑚 ⊗ 1, 𝑝, 𝑞)

and (𝑞𝑚 ⊗ 1, 1 ⊗𝑚𝑝, 𝑝, 𝑞) external ambiguities of 𝑝 and 𝑞.

Remark 4.2. Note that two words 𝑝, 𝑞 can only have finitely many
overlap and inclusion ambiguities, but they always have infinitely
many external ambiguities.

Definition 4.3. Let 𝑢𝑝 , 𝑣𝑞 ∈ 𝑀 (𝐴) and (𝑎 ⊗ 𝑏, 𝑐 ⊗ 𝑑, 𝑝, 𝑞) be an
ambiguity of 𝑝 and 𝑞. An ambiguity of 𝑢𝑝 and 𝑣𝑞 is given by (𝑢′𝑎 ⊗
𝑏, 𝑣 ′𝑐 ⊗ 𝑑,𝑢𝑝, 𝑣𝑞), where 𝑢′ = lcm(𝑢, 𝑣)/𝑢 and 𝑣 ′ = lcm(𝑢, 𝑣)/𝑣 .

For 𝑓 , 𝑔 ∈ 𝐴 \ {0}, an ambiguity of 𝑓 and 𝑔 is (𝑎 ⊗ 𝑏, 𝑐 ⊗ 𝑑, 𝑓 , 𝑔)
where (𝑎⊗𝑏, 𝑐⊗𝑑, lm(𝑓 ), lm(𝑔)) is an ambiguity of lm(𝑓 ) and lm(𝑔).
We denote by amb(𝑓 , 𝑔) the set of all ambiguities of 𝑓 and 𝑔. When
clear by the context, we shall simply write (𝑎 ⊗ 𝑏, 𝑐 ⊗ 𝑑) ∈ amb(𝑓 , 𝑔).

We define analogously ambiguities of labeled polynomials by con-
sidering their polynomial parts.

Note that if (𝑚1 ⊗ 𝑛1,𝑚2 ⊗ 𝑛2, 𝑓 , 𝑔) is an ambiguity of 𝑓 and 𝑔,

then lm(𝑚1 𝑓 𝑛1) = lm(𝑚2𝑔𝑛2).
Before defining S- and G-polynomials with module labelling,

we introduce some useful terminology for ambiguities of labeled

polynomials. In the following, for a pair of nonzero 𝑓 , 𝑔 ∈ 𝐴, let
lcmlc(𝑓 , 𝑔) be the least common multiple of lc(𝑓 ) and lc(𝑔).

Definition 4.4. Let 𝑓 [𝛼 ] , 𝑔[𝛽 ] ∈ 𝐼 [Σ] be such that 𝑓 , 𝑔 ≠ 0

and let 𝑎 = (𝑚1 ⊗ 𝑛1,𝑚2 ⊗ 𝑛2, 𝑓 [𝛼 ] , 𝑔[𝛽 ] ) ∈ amb(𝑓 [𝛼 ] , 𝑔[𝛽 ] ). The
leading monomial of 𝑎 is lm(𝑎) B lm(𝑚1 𝑓 𝑛1) = lm(𝑚2𝑔𝑛2) and,
with 𝑐 𝑓 =

lcmlc(𝑓 ,𝑔)
lc(𝑓 ) , 𝑐𝑔 =

lcmlc(𝑓 ,𝑔)
lc(𝑔) , the signature of 𝑎 is

sig(𝑎) B max

(
sig(𝑐 𝑓𝑚1𝛼𝑛1),−sig(𝑐𝑔𝑚2𝛽𝑛2)

)
,

choosing the first in case of tie. The ambiguity 𝑎 is called regu-

lar if sig(𝑚1𝛼𝑛1) ; sig(𝑚2𝛽𝑛2) and singular if sig(𝑐 𝑓𝑚1𝛼𝑛1) =
sig(𝑐𝑔𝑚2𝛽𝑛2).

Remark 4.5. Recall that the ordering on the signatures is only
partial, and thus, it can happen that an ambiguity 𝑎 is neither regular
nor singular.

The following lemma asserts that any situation where multiples

of two labeled polynomials share a common leading monomial

but differ in their signatures, can be characterised by a regular

ambiguity of the two elements.

Lemma 4.6. Let 𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
∈ 𝐼 [Σ] be such that 𝑔1, 𝑔2 ≠ 0 and let

𝑡𝑖 ∈ 𝑇 (𝐴), 𝑏𝑖 ∈ ⟨𝑌 ⟩, 𝑖 = 1, 2, such that

lm(𝑡1𝑔1𝑏1) = lm(𝑡2𝑔2𝑏2) and sig(𝑡1𝛽1𝑏1) ą sig(𝑡2𝛽2𝑏2).

Then there exists a regular ambiguity 𝑎 ∈ amb(𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
), 𝑡3 ∈

𝑇 (𝐴), 𝑏3 ∈ ⟨𝑌 ⟩ such that 𝑡3lm(𝑎)𝑏3 = lm(𝑡𝑖𝑔𝑖𝑏𝑖 ) and 𝑡3sig(𝑎)𝑏3 ≃
sig(𝑡1𝛽1𝑏1), with equality of signatures if lc(𝑡1𝑔1𝑏1) = lc(𝑡2𝑔2𝑏2).

Proof. Write 𝑡𝑖 = 𝑐𝑖𝑢𝑖𝑎𝑖 and lm(𝑔𝑖 ) = 𝑣𝑖𝑤𝑖 with 𝑐𝑖 ∈ 𝑅,𝑢𝑖 , 𝑣𝑖 ∈
[𝑋 ], 𝑎𝑖 ,𝑤𝑖 ∈ ⟨𝑌 ⟩. Then, by assumption 𝑢1𝑣1 = 𝑢2𝑣2 and 𝑎1𝑤1𝑏1 =

𝑎2𝑤2𝑏2 ≕𝑊 . If, in𝑊 , either of𝑤1 and𝑤2 is completely contained

in the other, then there exists an inclusion ambiguity of𝑤1 and𝑤2

characterising this situation, otherwise one of them starts earlier

in𝑊 and the other finishes later, in which case there is an overlap

or external ambiguity of 𝑤1 and 𝑤2 characterising this situation.

Hence, in any case, there exists an ambiguity (𝑝1 ⊗ 𝑞1, 𝑝2 ⊗ 𝑞2) of
𝑤1 and𝑤2 such that 𝑝1𝑤1𝑞1 = 𝑝2𝑤2𝑞2 is a subword of𝑊 , i.e., there

exist 𝑙, 𝑟 ∈ ⟨𝑌 ⟩ such that 𝑙𝑝1𝑤1𝑞1𝑟 = 𝑙𝑝2𝑤2𝑞2𝑟 =𝑊 . By definition

𝑎 = (𝑣 ′
1
𝑝1 ⊗ 𝑞1, 𝑣 ′

2
𝑝2 ⊗ 𝑞2), with 𝑣 ′𝑖 = lcm(𝑣1, 𝑣2)/𝑣𝑖 , is an ambigu-

ity in amb(𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
). We claim that 𝑎 satisfies the conditions of

the lemma with 𝑡3 = 𝑚3𝑙 ∈ 𝑇 (𝐴), where𝑚3 = 𝑢1𝑣1/lcm(𝑣1, 𝑣2) =
𝑢2𝑣2/lcm(𝑣1, 𝑣2), and 𝑏3 = 𝑟 . The condition on the leading mono-

mials is clear by construction. For the claim concerning the signa-
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tures, we note that𝑚3𝑣
′
𝑖
= 𝑢𝑖 and by choice of 𝑙, 𝑟 we have 𝑙𝑝𝑖 = 𝑎𝑖

and 𝑞𝑖𝑟 = 𝑏𝑖 . Thus, for 𝑖 = 1, 2,

sig(𝑡3𝑣 ′𝑖𝑝𝑖𝛽𝑖𝑞𝑖𝑏3) = sig(𝑚3𝑣
′
𝑖 𝑙𝑝𝑖𝛽𝑖𝑞𝑖𝑟 )

= sig(𝑢𝑖𝑎𝑖𝛽𝑖𝑏𝑖 ) ≃ sig(𝑡𝑖𝛽𝑖𝑏𝑖 ),
showing that 𝑎 is regular since sig(𝑡1𝛽1𝑏1) ą sig(𝑡2𝛽2𝑏2) and that

𝑡3sig(𝑎)𝑏3 = sig(𝑡3𝑣 ′
1
𝑝1𝛽1𝑞1𝑏3) ≃ sig(𝑡1𝛽1𝑏1).

For the final part, assume that also lc(𝑡1𝑔1𝑏1) = lc(𝑡2𝑔2𝑏2), i.e.,
𝑐1lc(𝑔1) = 𝑐2lc(𝑔2). Then, multiplying 𝑡3 by 𝑐1lc(𝑔1)/lcmlc(𝑔1, 𝑔2)
yields the claimed equality of signatures. □

We extend the definition of S-polynomials to our setting.

Definition 4.7. Let 𝑓 [𝛼 ] , 𝑔[𝛽 ] ∈ 𝐼 [Σ] be such that 𝑓 , 𝑔 ≠ 0 and let
𝑎 = (𝑚1 ⊗𝑛1,𝑚2 ⊗𝑛2) ∈ amb(𝑓 [𝛼 ] , 𝑔[𝛽 ] ). The S-polynomial of 𝑎 is

S-Pol(𝑎) B lcmlc(𝑓 , 𝑔)
lc(𝑓 ) 𝑚1 𝑓

[𝛼 ]𝑛1 −
lcmlc(𝑓 , 𝑔)

lc(𝑔) 𝑚2𝑔
[𝛽 ]𝑛2 .

As usual, S-polynomials are defined so that leading terms cancel,

i.e., if ℎ [𝛾 ] = S-Pol(𝑎), then lm(ℎ) ă lm(𝑎). Furthermore, sig(𝛾) ĺ

sig(𝑎), with equality if and only if the ambiguity is regular and

strict inequality if and only if the ambiguity is singular.

In the setting of coefficient rings, we also need G-polynomials,

which do not aim at canceling leading terms but at obtaining mini-

mal leading coefficients.

Definition 4.8. Let 𝑓 [𝛼 ] , 𝑔[𝛽 ] ∈ 𝐼 [Σ] be such that 𝑓 , 𝑔 ≠ 0 and
let 𝑎 = (𝑚1 ⊗ 𝑛1,𝑚2 ⊗ 𝑛2) ∈ amb(𝑓 [𝛼 ] , 𝑔[𝛽 ] ). Furthermore, let
𝑐, 𝑑 ∈ 𝑅 be Bézout coefficients of lc(𝑓 ) and lc(𝑔), i.e., 𝑐lc(𝑓 )+𝑑lc(𝑔) =
gcd(lc(𝑓 ), lc(𝑔)). The G-polynomial of 𝑎 w.r.t. 𝑐, 𝑑 is

G-Pol𝑐,𝑑 (𝑎) B 𝑐𝑚1 𝑓
[𝛼 ]𝑛1 + 𝑑𝑚2𝑔

[𝛽 ]𝑛2 .

While the coefficients 𝑐, 𝑑 in the definition of G-polynomials

are not unique, the leading term is. More precisely, the leading

monomial of G-Pol𝑐,𝑑 (𝑎) is lm(𝑎) and the leading coefficient is

gcd(lc(𝑓 ), lc(𝑔)). The signature of the G-polynomial, however, de-

pends on the choice of 𝑐, 𝑑 . A crucial observation [12, Prop. 2.14]

is that these coefficients can be chosen so that G-polynomials are

never singular, i.e., so that the signatures of the two summands do

not cancel each other.

Lemma 4.9. Let 𝑓 [𝛼 ] , 𝑔[𝛽 ] ∈ 𝐼 [Σ] and let 𝑎 ∈ amb(𝑓 [𝛼 ] , 𝑔[𝛽 ] ).
There exist 𝑐, 𝑑 ∈ 𝑅 such that sig(G-Pol𝑐,𝑑 (𝑎)) ≃ sig(𝑎).

Proof. The proof of [12, Prop. 2.14] only relies on properties of

the leading coefficients and carries over directly to our setting. □

Weonly consider Bézout coefficients as in Lemma 4.9, and refer to

the corresponding G-polynomial as the G-polynomial of 𝑎, denoted

by G-Pol(𝑎). Note that if ℎ [𝛾 ] = G-Pol(𝑎), then sig(𝛾) ≃ sig(𝑎) and
lm(ℎ) = lm(𝑎).

The following lemma captures the significance of G-polynomials

for our computations. It states that if a leading term can be written

as a sum of two other leading terms, then it is divisible by the

leading term of a G-polynomial.

Lemma 4.10. Let 𝑓 [𝛼 ] , 𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
∈ 𝐼 [Σ] be such that 𝑓 , 𝑔1, 𝑔2 ≠

0 and such that there exist 𝑡𝑖 ∈ 𝑇 (𝐴), 𝑏𝑖 ∈ ⟨𝑌 ⟩, 𝑖 = 1, 2, with

lt(𝑓 ) = lt(𝑡1𝑔1𝑏1) + lt(𝑡2𝑔2𝑏2) and sig(𝑡1𝛽1𝑏1) ą sig(𝑡2𝛽2𝑏2) .

Then there exist𝑔[𝛽3 ]
3

= G-Pol(𝑎) for some𝑎 ∈ amb(𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
) and

𝑡3 ∈ 𝑇 (𝐴), 𝑏3 ∈ ⟨𝑌 ⟩ such that lt(𝑡3𝑔3𝑏3) = lt(𝑓 ) and sig(𝑡3𝛽3𝑏3) ≃
sig(𝑡1𝛽1𝑏1).

Proof. Note that lm(𝑡1𝑔1𝑏1) = lm(𝑡2𝑔2𝑏2). Thus, the result fol-
lows from Lemma 4.6, 4.9, and the properties of G-polynomials. □

Definition 4.11. A set 𝐺 [Σ] ⊆ 𝐼 [Σ] is complete if the G-poly-
nomials of all ambiguities of 𝐺 [Σ] are sig-reducible by 𝐺 [Σ] .

A set can be completed by adding G-polynomials to it. The

following definition extends the idea of G-polynomials to syzygies.

To this end, we define the least common multiple of two module

monomials as follows. Let 𝜎𝑖 = 𝑢𝑖𝑎𝑖𝜀 𝑗𝑏𝑖 ∈ 𝑀 (Σ), 𝑖 = 1, 2. If 𝑎𝑘 ′ is a

suffix of 𝑎𝑘 and 𝑏𝑙 ′ is a prefix of 𝑏𝑙 , where {𝑘, 𝑘′} = {𝑙, 𝑙 ′} = {1, 2},
then lcm(𝜎1, 𝜎2) B lcm(𝑢1, 𝑢2)𝑎𝑘𝜀 𝑗𝑏𝑙 .

Definition 4.12. Let 𝛾1, 𝛾2 ∈ Syz(𝐼 [Σ] ) be such that sig(𝛾𝑖 ) =
𝑐𝑖𝜎𝑖 with 𝑐𝑖 ∈ 𝑅, 𝜎𝑖 ∈ 𝑀 (Σ). Assume that lcm(𝜎1, 𝜎2) is defined and
let𝑚𝑖 ∈ 𝑀 (𝐴), 𝑏𝑖 ∈ ⟨𝑌 ⟩ be such that lcm(𝜎1, 𝜎2) =𝑚𝑖𝜎𝑖𝑏𝑖 . Also, let
𝑐, 𝑑 be Bézout coefficients of gcd(𝑐1, 𝑐2). The sig-Combination of 𝛾1
and 𝛾2 is sig-Comb(𝛾1, 𝛾2) B 𝑐𝑚1𝛾1𝑏1 + 𝑑𝑚2𝛾2𝑏2.

A set 𝐻 ⊆ Syz(𝐼 [Σ] ) is sig-complete if any sig-Combination of
elements in 𝐻 is reducible by 𝐻 .

To end this section, we introduce a concept needed later.

Definition 4.13. Let 𝑓 [𝛼 ] ∈ 𝐼 [Σ] and 𝐺 [Σ] ⊆ 𝐼 [Σ] . We say
that 𝑓 [𝛼 ] is super reducible by 𝐺 [Σ] if there exist 𝑔[𝛽 ] ∈ 𝐺 [Σ] and
𝑡 ∈ 𝑇 (𝐴), 𝑏 ∈ ⟨𝑌 ⟩ such that sig(𝛼) = sig(𝑡𝛽𝑏) and lm(𝑓 ) = lm(𝑡𝑔𝑏).

Note that super reducibility need not imply sig-reducibility as

the former only requires equality of the leading monomials, without

considering the leading coefficients. However, if a set of reducers is

complete, a super reducible element is also sig-reducible. This the

result of Proposition 4.14, which is an adaptation of [12, Prop. 2.19].

Proposition 4.14. Let 𝑓 [𝛼 ] ∈ 𝐼 [Σ] and𝐺 [Σ] ⊆ 𝐼 [Σ] be complete
and a signature Gröbner basis up to signature sig(𝛼). If 𝑓 [𝛼 ] is super
reducible by 𝐺 [Σ] , then it is also sig-reducible by 𝐺 [Σ] .

Proof. We essentially follow the proof of [12, Prop. 2.19]. Super

reducibility implies the existence of 𝑔
[𝛽1 ]
1
∈ 𝐺 [Σ] and 𝑡1 ∈ 𝑇 (𝐴),

𝑏1 ∈ ⟨𝑌 ⟩ such that sig(𝛼) = sig(𝑡1𝛽1𝑏1) and lm(𝑓 ) = lm(𝑡1𝑔1𝑏1).
If, in fact, lt(𝑓 ) = lt(𝑡1𝑔1𝑏1), then 𝑓 [𝛼 ] is sig-reducible by 𝑔

[𝛽1 ]
1

.

Otherwise, with ℎ [𝛾 ] = 𝑓 [𝛼 ] − 𝑡1𝑔[𝛽1 ]
1

𝑏1, we have lm(ℎ) = lm(𝑓 )
and sig(𝛾) ă sig(𝛼). By assumption, ℎ [𝛾 ] is sig-reducible by 𝐺 [Σ] .

Let 𝑔
[𝛽2 ]
2

be such a reducer with 𝑡2 ∈ 𝑇 (𝐴), 𝑏2 ∈ ⟨𝑌 ⟩ such that

sig(𝛾) ľ sig(𝑡2𝛽2𝑏2) and lt(ℎ) = lt(𝑡2𝑔2𝑏2). Consequently, we
have lt(𝑓 ) = lt(𝑡1𝑔1𝑏1) + lt(𝑡2𝑔2𝑏2) and sig(𝛼) ą sig(𝛾) ľ

sig(𝑡2𝛽2𝑏2). By Lemma 4.10 there exists 𝑔
[𝛽3 ]
3

= G-Pol(𝑎) for some

𝑎 ∈ amb(𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
) and 𝑡3 ∈ 𝑇 (𝐴), 𝑏3 ∈ ⟨𝑌 ⟩ such that lt(𝑡3𝑔3𝑏3) =

lt(𝑓 ) and sig(𝑡3𝛽3𝑏3) ≃ sig(𝑡1𝑔1𝑏1) = sig(𝛼). Since 𝐺 [Σ] is com-

plete, 𝑔
[𝛽3 ]
3

is sig-reducible by 𝐺 [Σ] , and any reducer of 𝑔
[𝛽3 ]
3

can

be used to sig-reduce 𝑓 [𝛼 ] . □



Signature Gröbner bases in free algebras over rings ISSAC 2023, July 24–27, 2023, Tromsø, Norway

5 COVER CRITERION
In this section, we adapt the cover criterion [12, 14] to our setting,

yielding an effective characterisation of signature Gröbner bases.

Definition 5.1. Let 𝐺 [Σ] ⊆ 𝐼 [Σ] and 𝐻 ⊆ Syz(𝐼 [Σ] ). Further-
more, let 𝑔[𝛽1 ]

1
, 𝑔
[𝛽2 ]
2
∈ 𝐼 [Σ] . An ambiguity 𝑎 ∈ amb(𝑔[𝛽1 ]

1
, 𝑔
[𝛽2 ]
2
) is

covered by (𝐺 [Σ] , 𝐻 ) if there exist 𝑔[𝛽 ] ∈ 𝐺 [Σ] , 𝛾 ∈ 𝐻 and 𝑡, 𝑡 ′ ∈
𝑇 (𝐴), 𝑏, 𝑏′ ∈ ⟨𝑌 ⟩ such that the following conditions hold:
• sig(𝑎) = sig(𝑡𝛽𝑏) + sig(𝑡 ′𝛾𝑏′);
• lm(𝑡𝑔𝑏) < lm(𝑎);

Remark 5.2. In Definition 5.1, either of 𝑡 and 𝑡 ′ can also be 0. If
𝑡 = 0, then lm(𝑡𝑔𝑏) = 0 and the second condition is trivially fulfilled.

Our version of the cover criterion differs in one main point from

the classical one [14, Thm. 2.4] for (commutative) polynomials over

coefficient fields: We need to consider linear combinations to form

the signature. This requirement comes from the fact that we deal

with coefficient rings and is also necessary in the commutative case,

see [12, Def. 2.20].

We can prove a characterisation of noncommutative signature

Gröbner bases and syzygy bases using the cover criterion. The

following theorem is an adaptation of [12, Thm. 3.1].

Theorem 5.3. Let 𝐺 [Σ] ⊆ 𝐼 [Σ] and 𝐻 ⊆ Syz(𝐼 [Σ] ) be such that
the following conditions hold:

(1) for all 𝑔[𝛽 ] ∈ 𝐺 [Σ] : 𝑔 ≠ 0;
(2) 𝐺 [Σ] is complete and 𝐻 is sig-complete;
(3) all 𝜎 ∈ 𝑇 (𝐴) are reducible by 𝐻 ∪ {𝛽 | 𝑔[𝛽 ] ∈ 𝐺 [Σ] };
(4) all regular ambiguities of 𝐺 [Σ] are covered by (𝐺 [Σ] , 𝐻 );
Then𝐺 [Σ] is a signature Gröbner basis and𝐻 is a syzygy basis of 𝐼 [Σ] .

Proof. The proof is an adaption of that of [14, Thm. 2.4]. As-

sume, for contradiction, that there exists 𝑓 [𝛼 ] ∈ 𝐼 [Σ] such that ei-

ther 𝑓 ≠ 0 and 𝑓 [𝛼 ] is not sig-reducible by 𝐺 [Σ] or 𝑓 = 0 and 𝛼 is

not reducible by 𝐻 . Pick such 𝑓 [𝛼 ] with minimal signature. Note

that this implies that𝐺 [Σ] is, by definition, a signature Gröbner ba-

sis up to signature sig(𝛼).
Let𝑔

[𝛽1 ]
1
∈ 𝐺 [Σ] ,𝛾1 ∈ 𝐻 and 𝑡1, 𝑡

′
1
∈ 𝑇 (𝐴),𝑏1, 𝑏′

1
∈ ⟨𝑌 ⟩ such that

sig(𝛼) = sig(𝑡1𝛽1𝑏1) + sig(𝑡 ′1𝛾1𝑏
′
1
). (1)

By assumption, such a decomposition exists (in fact, with either

𝑡1 = 0 or 𝑡 ′
1
= 0 but we do not require this for (1)). We select these

elements so that lm(𝑡1𝑔1𝑏1) is minimal and claim that 𝑡1𝑔
[𝛽1 ]
1

𝑏1 is

not regular sig-reducible by 𝐺 [Σ] .

To prove this, suppose that 𝑡1𝑔
[𝛽1 ]
1

𝑏1 is regular sig-reducible by

𝑔
[𝛽2 ]
2

, i.e., there exist 𝑡2 ∈ 𝑇 (𝐴), 𝑏2 ∈ ⟨𝑌 ⟩ such that lt(𝑡1𝑔1𝑏1) =
lt(𝑡2𝑔2𝑏2) and sig(𝑡1𝛽1𝑏1) ą sig(𝑡2𝛽2𝑏2). Then Lemma 4.6 implies

the existence of a regular ambiguity 𝑎 ∈ amb(𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
) and

𝑡3 ∈ 𝑇 (𝐴), 𝑏3 ∈ ⟨𝑌 ⟩ such that

𝑡3lm(𝑎)𝑏3 = lm(𝑡𝑖𝑔𝑖𝑏𝑖 ) & 𝑡3sig(𝑎)𝑏3 = sig(𝑡1𝛽1𝑏1) . (2)

By assumption 𝑎 is covered by (𝐺 [Σ] , 𝐻 ), i.e., there exist 𝑔[𝛽 ] ∈
𝐺 [Σ] ,𝛾 ∈ 𝐻 and 𝑡, 𝑡 ′ ∈ 𝑇 (𝐴), 𝑏,𝑏′ ∈ ⟨𝑌 ⟩ such that lm(𝑡𝑔𝑏) < lm(𝑎)
and sig(𝑎) = sig(𝑡𝛽𝑏) + sig(𝑡 ′𝛾𝑏′). With (1) and (2), this yields

sig(𝛼) = sig(𝑡3𝑡𝛽𝑏𝑏3) + sig(𝑡3𝑡 ′𝛾𝑏′𝑏3) + sig(𝑡 ′1𝛾1𝑏
′
1
)

and lm(𝑡3𝑡𝑔𝑏𝑏3) < lm(𝑡1𝑔1𝑏1). Let 𝛿 = sig-Comb(𝛾1, 𝛾) ∈ 𝐻 ,

which is well-defined. Since, by definition, sig(𝛿) divides the sum
sig(𝑡3𝑡 ′𝛾𝑏′𝑏3) + sig(𝑡 ′

1
𝛾1𝑏
′
1
), the pair (𝑔[𝛽 ] , 𝛿) yields a decomposi-

tion of sig(𝛼) with smaller leading monomial than lm(𝑡1𝑔1𝑏1); a
contradiction to the minimality of lm(𝑡1𝑔1𝑏1).

Thus, 𝑡1𝑔
[𝛽1 ]
1

𝑏1 is not regular sig-reducible. Now, we distinguish

between two cases depending on whether 𝑓 = 0 or not.

If 𝑓 ≠ 0, then lm(𝑓 ) ≠ lm(𝑡1𝑔1𝑏1) because otherwise 𝑓 [𝛼 ] −
𝑡 ′
1
0
[𝛾1 ]𝑏′

1
would be super reducible by 𝑔

[𝛽1 ]
1

, and thus, by Proposi-

tion 4.14, sig-reducible by 𝐺 [Σ] . But then also 𝑓 [𝛼 ] would be sig-

reducible – a contradiction.

Let 𝑓
[𝛼1 ]
1

= 𝑓 [𝛼 ] − 𝑡1𝑔[𝛽1 ]
1

𝑏1 − 𝑡 ′
1
0
[𝛾1 ]𝑏′

1
. Then sig(𝛼1) ă sig(𝛼)

and lt(𝑓1) = max(lt(𝑓 ), lt(𝑡1𝑔1𝑏1)) ≠ 0. By minimality of sig(𝛼),
𝑓
[𝛼1 ]
1

is sig-reducible by𝐺 [Σ] . But this implies that 𝑓 [𝛼 ] or 𝑡1𝑔
[𝛽1 ]
1

𝑏1

is regular sig-reducible by 𝐺 [Σ] , which is a contradiction.

If 𝑓 = 0 and 𝑓
[𝛼1 ]
1

is like before, then lt(𝑓1) = lt(𝑡1𝑔1𝑏1). Now,
if 𝑓1 ≠ 0, then 𝑓

[𝛼1 ]
1

being sig-reducible implies that 𝑡1𝑔
[𝛽1 ]
1

𝑏1 is

regular sig-reducible by 𝐺 [Σ] , which is a contradiction. Thus 𝑓1 =

𝑡1𝑔1𝑏1 = 0, and by assumption on 𝐺 [Σ] , we can conclude 𝑡1 = 0,

showing that 𝛼 is reducible by 𝛾1 ∈ 𝐻 . □

6 ALGORITHM
6.1 Description

Algorithm 1: Signature Gröbner basis

Input: (𝑓1, . . . , 𝑓𝑟 ) ∈ 𝐴𝑟 generating a labeled module 𝐼 [Σ]

Output:
• 𝐺 [Σ] ⊆ 𝐼 [Σ] a signature Gröbner basis of 𝐼 [Σ]
• 𝐻 ⊆ Syz(𝐼 [Σ] ) a syzygy basis of 𝐼 [Σ]

1 𝐺 [Σ] ← ∅ ; 𝐻 ← ∅ ; 𝑃 ← {(𝑓 [𝜀1 ]
1

, N), . . . , (𝑓 [𝜀𝑟 ]𝑟 , N)} ;
2 while 𝑃 ≠ ∅ :
3 select and remove (𝑝 [𝜋 ] , type) from 𝑃 ;

4 if type is not S(𝑎) or 𝑎 is not covered by (𝐺 [Σ] , 𝐻 ) :
5 𝑝′[𝜋

′ ] ← result of regular sig-reducing 𝑝 [𝜋 ] by𝐺 [Σ] ;
6 if 𝑝′ = 0 :
7 𝐻 ← 𝐻 ∪ {𝜋 ′}, and make 𝐻 sig-complete ;

8 else:
9 𝐺 [Σ] ← 𝐺 [Σ] ∪ {𝑝′[𝜋 ′ ] };

10 for 𝑔[𝛽 ] ∈ 𝐺 [Σ] and 𝑎 ∈ amb(𝑝′[𝜋 ′ ] , 𝑔[𝛽 ] ) :
11 add (S-Pol(𝑎), S(𝑎)) to 𝑃 if 𝑎 is regular;

12 add (G-Pol(𝑎)),G(𝑎)) to 𝑃 ;
13 end
14 end
15 return 𝐺 [Σ] , 𝐻

Equipped with Theorem 5.3, we can describe an algorithm for

enumerating signature Gröbner bases and syzygy bases in 𝐴. This

algorithm combines key elements of Kandri-Rody and Kapur’s al-

gorithm [24] for Gröbner bases over Z with signatures [12] and the

general algorithm for computing signature Gröbner bases in free al-

gebras over fields [21]. The difference between the free algebra and

the mixed algebra is not apparent in the algorithm, but the compu-

tation of ambiguities, S- and G-polynomials and the reductions are

using the definitions from the mixed algebra.
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The algorithm runs on a loop, processing polynomials from a

queue. At each step, it selects a polynomial, and if not redundant,

reduces it and forms new polynomials from it, adding them to the

queue. The algorithm ensures that, for every ambiguity of𝐺 [Σ] , an
element is eventually added which covers it.

As in the classical case, S- and G-polynomials are added for

different purposes: S-polynomials create new leading monomials,

and G-polynomials create new leading coefficients for existing

leading monomials. The cover criterion concerns the existence

of leading monomials in the basis, and can be used to skip over

S-polynomials which correspond to an ambiguity that is already

covered. The situation is different for G-polynomials: even if the

corresponding ambiguity is covered, it is necessary to process and

add the G-polynomial to complete the set 𝐺 [Σ] .
This requires keeping track of the construction of each labeled

polynomial in the algorithm. For this purpose, the main queue

𝑃 contains pairs (𝑝 [𝜋 ] , type), where type is either the symbol N
indicating that 𝑝 is one of the input polynomials, or the symbol

S(𝑎), resp. G(𝑎), indicating that 𝑝 [𝜋 ] is the S-polynomial, resp. the

G-polynomial, of the ambiguity 𝑎.

As is classically done when presenting signature-based algo-

rithms, the definitions, properties and the algorithm are stated us-

ing labeled polynomials, carrying their entire module representa-

tion. However, all those properties only require considering the

signature of the module representation, and the true strength is

that the algorithms need only maintain pairs (𝑓 , sig(𝛼)) instead of

labeled polynomials 𝑓 [𝛼 ] . In that case, the output only contains

the signatures of the computed polynomials and syzygies, but the

full module representations can be recovered a posteriori. We refer

to [14, 21] for details on that reconstruction step.

6.2 Spooling the list of pairs & Correctness
For brevity, the presentation of the algorithm is simplified concern-

ing the handling of the queue of pairs. Unlike in the commutative

case or the free case over fields, in general the inserting from line 10

to 12 involves infinitely many elements. In order for the algorithm

to correctly enumerate a signature Gröbner basis, it needs to pro-

cess all possible S- and G-polynomials, so it cannot enter an infinite

loop inside of the main loop (necessarily infinite).

Instead, the algorithm should be modified to add a spooling

machinery ensuring that all pairs are processed.We detail a possible

implementation of such a mechanism. The main idea is that the

algorithm must ensure that 𝑃 is finite at all times. The spooling

mechanism ensures that by adding a finite number of pairs to 𝑃 ,

then adding more whenever they have all been processed. The

additional mechanism would then run in parallel for all sources of

pairs, ensuring that the pairs are processed in a fair order.

More precisely, we assume that we know a way to enumerate

ambiguities, that is, we are given two functions:

• firstamb taking as input two labeled polynomials 𝑓 [𝛼 ] and 𝑔[𝛽 ] ,
and returning an ambiguity 𝑎0 of them;

• nextamb taking as input an ambiguity 𝑎 of two labeled polynomi-

als 𝑓 [𝛼 ] and 𝑔[𝛽 ] , and returning another ambiguity 𝑛(𝑎) of them;

with the property that {𝑎0, 𝑛(𝑎0), 𝑛(𝑛(𝑎0)), . . . } = amb(𝑓 [𝛼 ] , 𝑔[𝛽 ] ).
The algorithm would maintain an additional variable spool,

which is a finite list of tuples formed of two labeled polynomials and

an ambiguity between them. The lines 10 to 12 would be replaced

by initialization in that list:

Algorithm 1a: Add the ambiguities to the spooling queue

12a for 𝑔[𝛽 ] ∈ 𝐺 [Σ] :
12b 𝑎0 ← firstamb(𝑝′[𝜋 ′ ] , 𝑔[𝛽 ] );
12c add 𝑎0 to spool;

12d end

The construction of the pairs would be done closer to their actual

use, by adding the following lines at the very end of the main loop,

just prior to selection of the next pair:

Algorithm 1b: Process ambiguities in the queue

16a for 𝑖 ∈ {1, . . . , #spool} :
16b 𝑎 ← spool[𝑖];
16c add (S-Pol(𝑎), S(𝑎)) to 𝑃 if 𝑎 is regular;

16d add (G-Pol(𝑎),G(𝑎)) to 𝑃 ;

16e spool[𝑖] ← nextamb(𝑎);
16f end

This has the effect of adding finitely many new elements to 𝑃 ,

namely at most 2 for each element of spool, and updating spool
to generate new elements the next time the code is evaluated.

The main property that the machinery must satisfy is that it

should correctly enumerate all ambiguities of pairs of polynomials.

This property, called a fair selection strategy, was originally intro-

duced for the computation of subalgebra bases [25, 42] and adopted

for noncommutative bases in [38].

Definition 6.1. Algorithm 1 is called fair if, given any ambiguity
of elements in 𝐺 [Σ] , the corresponding S- and G-polynomials are
eventually processed in the main loop or discarded.

Proposition 6.2. With the structure described above, and if inser-
tion and selection in 𝑃 are done first in, first out, the algorithm is fair.

Proof. Let 𝑔
[𝛽𝑖 ]
𝑖

, 𝑔
[𝛽 𝑗 ]
𝑗

∈ 𝐺 [Σ] and let 𝑎 be an ambiguity be-

tween them. Since the function nextamb enumerates all ambiguities

of 𝑔
[𝛽𝑖 ]
𝑖

and 𝑔
[𝛽 𝑗 ]
𝑗

, eventually the insertion mechanism reaches the

ambiguity𝑎, at which point the corresponding S- andG-polynomials

are either inserted into 𝑃 or discarded. If the S-polynomial is dis-

carded, there is nothing to prove. If it is inserted, let 𝑁 be the length

of the list 𝑃 after insertion. Since selection in 𝑃 is done on a first in,

first out basis, after 𝑁 runs through the loop, the S-polynomial will

be processed. The same applies to the G-polynomial. □

Theorem 6.3. If Algorithm 1 is fair, then it correctly enumerates
a signature Gröbner basis and a syzygy basis of 𝐼 [Σ] .

Proof. We prove that the algorithm enforces the requirements

of Theorem 5.3. First, by construction all elements added to 𝐺 [Σ]

have a nonzero polynomial part. The bases𝐺 [Σ] and𝐻 are complete

and sig-complete respectively, because all G-polynomials and all

sig-Combinations are added to them. All signatures 𝜀𝑖 are processed,

and result in either an element in 𝐻 or in 𝐺 [Σ] , depending on

whether 𝑓
[𝜀𝑖 ]
𝑖

regular sig-reduces to 0 or not. Finally, the algorithm

ensures that all ambiguities it considers are covered: either the

ambiguity 𝑎 is already covered, or an element is added to either
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𝐺 [Σ] or 𝐻 with signature sig(𝑎). Either way, this element covers

the ambiguity 𝑎. Finally, since the algorithm is fair, it processes all

ambiguities, covering all of them eventually. □

Remark 6.4. If the used module ordering is fair and the selection
strategy processes elements by increasing signatures, then, whenever
the algorithm considers a labeled polynomial 𝑝 [𝜋 ] , the sets 𝐺 [Σ] and
𝐻 are a signature Gröbner basis and a syzygy basis respectively up to
signature sig(𝜋).

6.3 Elimination criteria
For simplicity, we presented the algorithm stripped to its main loop,

with only the cover criterion necessary for the loop invariant. In

this section, we list a few additional criteria which can be added

to the algorithm to skip redundant ambiguities and polynomials.

They all work similarly to their counterpart in the commutative

case, ensuring that elements are covered (for S-polynomials) or sig-

reducible (for G-polynomials). First, we focus on G-polynomials.

Corollary 6.5. Let𝑔[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
∈ 𝐺 [Σ] and𝑎 ∈ amb(𝑔[𝛽1 ]

1
, 𝑔
[𝛽2 ]
2
).

If G-Pol(𝑎) is sig-reducible by 𝐺 [Σ] , then it can be discarded.

Proof. Follows from Theorem 5.3 and Definition 4.11. □

The criterion allows to avoid all reductions of G-polynomials to

zero, and, in fact, since we only consider top reductions, it avoids

reductions of G-polynomials entirely. As a special case, we see that,

if lc(𝑔1) | lc(𝑔2), then all their G-polynomials can be discarded as

they are all sig-reducible by 𝑔
[𝛽1 ]
1

.

We now move to S-polynomials. Excluding covered ambiguities

encapsulates a number of criteria, including the Syzygy criterion [e.g.
8, Lem. 6.1], stating that any regular ambiguity whose signature is

reducible by the signature of a syzygy in 𝐻 can be discarded, and

the Singular criterion [e.g. 8, Lem. 6.2], which says that for each

signature only one regular ambiguity (the one with minimal leading

monomial) has to be considered. To make the cover criterion even

stronger, we can exploit the fact that signatures of some syzygies, so-

called trivial syzygies, can be predicted in advance without having

to perform any reductions. In particular, for all 𝑔
[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2
∈ 𝐼 [Σ]

and𝑚 ∈ 𝑀 (𝐴), we obtain a trivial syzygy 𝑔2𝑚𝛽1 − 𝛽2𝑚𝑔1. The aim
of the F5 criterion is to detect these trivial syzygies.

Corollary 6.6 (F5 criterion). Let 𝑎 be a regular ambiguity
of elements in 𝐺 [Σ] such that there exist 𝑔[𝛽1 ]

1
, 𝑔
[𝛽2 ]
2

∈ 𝐺 [Σ] and
𝑚 ∈ 𝑀 (𝐴) with
• sig(𝑔2𝑚𝛽1) ; sig(𝛽2𝑚𝑔1), and
• sig(𝑎) is reducible by max(sig(𝑔2𝑚𝛽1),−sig(𝛽2𝑚𝑔1)).
Then 𝑎 is covered by the trivial syzygy 𝑔2𝑚𝛽1 − 𝛽2𝑚𝑔1 and S-Pol(𝑎)
can be discarded after adding this trivial syzygy to the set 𝐻 .

The F5 criterion as phrased above also includes Buchberger’s

coprime criterion for eliminating S-polynomials coming from ele-

ments with coprime leading terms, see [28, Lem. 22] for a noncom-

mutative version without signatures. In particular, if 𝑔
[𝛽1 ]
1

, 𝑔
[𝛽2 ]
2

are such that lc(𝑔1) and lc(𝑔2) as well as the commutative parts of

lm(𝑔1) and lm(𝑔2) are coprime, then, for every regular external am-

biguity of these elements, the S-polynomial can be discarded after

adding a suitable trivial syzygy to 𝐻 .

Unlike in the commutative case, it is not possible to simply add

all trivial syzygies to 𝐻 whenever a new element is added to the

signature Gröbner basis, as there are infinitely many. However, in

order to check the F5 criterion, only finitely many syzygies can ap-

ply, and we can construct them on demand. This renders the com-

plexity of applying Corollary 6.6 essentially quadratic in the size of

𝐺 [Σ] . In Section 7.3, we show that, analogous to the commutative

case, this cost can be reduced to linear for homogeneous polynomi-

als under certain module orderings.

It was observed in [21] that for some labeled modules 𝐼 [Σ] , there
exist a finite set of labeled polynomials 𝐺 [Σ] , and a finite set of

syzygies 𝐻 , such that𝐺 [Σ] is a signature Gröbner basis of 𝐼 [Σ] , and
𝐻 ∪ {trivial syzygies formed with elements of 𝐺 [Σ] } is a syzygy

basis of 𝐼 [Σ] . If that is the case, Algorithm 1 will eventually have

produced 𝐺 [Σ] and 𝐻 , and 𝑃 will only contain an infinite set of

elements with signature all reducible by a trivial signature.

A particular case is that where 𝑅 is a field and there are no com-

mutative variables, that is, when we are using Algorithm 1 in the

free algebra over a field. In that setting, Buchberger’s coprime crite-

rion excludes all external ambiguities, which leads to two elements

only having finitelymany ambiguities, and the algorithmmay termi-

nate. The advantages of Algorithm 1 over that in [21] is the stronger

cover criterion and the ability to use any module order (Section 7.1).

7 APPLICATIONS
7.1 Elimination orders
Write 𝑋 = 𝑋1 ¤∪𝑋2 and 𝑌 = 𝑌1 ¤∪𝑌2. Recall that a monomial ordering

≤ on𝑀 (𝐴) is an elimination ordering for𝑋1∪𝑌1 if lm(𝑓 ) ∈ [𝑋2]⟨𝑌2⟩
implies 𝑓 ∈ 𝑅 [𝑋2]⟨𝑌2⟩ for all 𝑓 ∈ 𝐴. If 𝐺 is a Gröbner basis of 𝐼 for

such an ordering, then 𝐺 ∩ 𝑅 [𝑋2]⟨𝑌2⟩ = {𝑔 ∈ 𝐺 | 𝑔 ∈ 𝑅 [𝑋2]⟨𝑌2⟩}
is a Gröbner basis of 𝐼 ∩ 𝑅 [𝑋2]⟨𝑌2⟩, see [2].

Those orders are thus very useful when simplifying expressions

(or in particular solving systems), and signatures allow to prove that

the simplified expression is correct. Unfortunately, in the case of the

free algebra, any module ordering compatible with an elimination

ordering cannot be fair. As such, even if 𝑋 = ∅ and 𝑅 is a field,

the algorithm from [21] was not applicable. On the other hand,

provided that ambiguities are processed in a fair order, Algorithm 1

correctly enumerates a signature Gröbner basis with respect to any

order, including elimination orders.

7.2 Ideal arithmetic
The next application we mention concerns the use of Gröbner bases

to perform ideal arithmetic operations. We recall [41] that, given

two ideals 𝐼 , 𝐽 ⊆ 𝑅 [𝑋 ]⟨𝑌 ⟩, a Gröbner basis of their intersection is

obtained by eliminating a new commutative indeterminate 𝑡 from

𝑡𝐼 + (1 − 𝑡) 𝐽 ⊆ 𝑅 [𝑋, 𝑡]⟨𝑌 ⟩. Similarly, computing the homogeneous

part of an ideal 𝐼 , that is, computing a Gröbner basis of the subideal

of 𝐼 generated by all homogeneous polynomials in 𝐼 , can be realised

by a computation in 𝑅 [𝑋,𝑇 ,𝑇 −1]⟨𝑌 ⟩, where 𝑇,𝑇 −1 are sets of new
commutative and invertible indeterminates. We refer to [20, Sec. 4]

for further details.

7.3 Homogenization
Recall that given a polynomial 𝑓 =

∑𝑑
𝑖=1 𝑐𝑖𝑤𝑖 ∈ 𝑅 [𝑋 ]⟨𝑌 ⟩, its de-

gree deg(𝑓 ) is the maximum length of the monomials𝑤𝑖 appear-

ing in 𝑓 , i.e., deg(𝑓 ) = max𝑖 |𝑤𝑖 |. It is called homogeneous if all its
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terms have the same length. The homogenized polynomial 𝑓 ℎ ∈
𝑅 [𝑋,ℎ]⟨𝑌 ⟩ is 𝑓 ℎ =

∑𝑑
𝑖=1 𝑐𝑖ℎ

deg(𝑓 )− |𝑤𝑖 |𝑤𝑖 , it is a homogeneous

polynomial, and evaluating it atℎ = 1 yields back 𝑓 . In that construc-

tion, the homogenization variableℎ commutes with all the variables.

If 𝑅 [𝑋,ℎ]⟨𝑌 ⟩ is ordered by a graded ordering and ℎ is treated as

smaller than all other variables, evaluating a (signature) Gröbner

basis of (𝑓 ℎ
1
, . . . , 𝑓 ℎ𝑟 ) at ℎ = 1 yields a Gröbner basis of (𝑓1, . . . , 𝑓𝑟 ).

It is frequently preferrable to work with homogeneous polyno-

mials when computing Gröbner bases, in both the commutative

and noncommutative case. Specifically in the context of signatures,

they open the possibility to use more efficient orderings for the F5

criterion. More precisely, the fact that one does not know in ad-

vance which signature realizes the maximum in the second condi-

tion of Corollary 6.6 makes it expensive to use the criterion.

This can be partially remedied by considering module orders

which make this comparison easy, such as the position-over-term
(PoT) ordering, first comparing the index ind(𝜎) B 𝑖 of a signature

𝜎 = 𝑎𝜀𝑖𝑏 before comparing the terms 𝑎 and 𝑏. However, to fully

utilize the F5 criterion in this case, elements have to be processed

by increasing signatures, which does not constitute a fair selection

strategy in the noncommutative setting if PoT is used. An alter-

native can be to decouple the selection strategy from the module

ordering, but then one cannot expect that all elements necessary to

use the F5 criterion will be present in time for its use.

Another possibility, when dealing with homogeneous polyno-

mials and a graded monomial ordering, is the degree-over-position-
over-term (DoPoT) order. This order defines the degree of a signa-

ture 𝑎𝜀𝑖𝑏 as |𝑎 | + deg(𝑓𝑖 ) + |𝑏 |. In the homogeneous case, given a

labeled polynomial 𝑓 [𝛼 ] , deg(𝑓 ) = deg(sig(𝛼)). In the inhomoge-

neous case, it only holds that deg(𝑓 ) ≤ deg(sig(𝛼)). The DoPoT
ordering first compares the degree of the signatures, then the index

𝑖 , and finally the terms 𝑎 and 𝑏. This ordering is fair, and can thus

be used as a selection strategy in the algorithm, by always picking

the element with smallest signature in the queue 𝑃 in line 3. More-

over, this ordering makes it possible to verify the conditions of the

F5 criterion easily, and the incremental calculation ensures that all

the required signatures are available when applying the criterion.

Corollary 7.1 (F5 criterion optimised). Assume that the gen-
erators 𝑓1, . . . , 𝑓𝑟 of the labeled module 𝐼 [Σ] are homogeneous and
that DoPoT is used as a module ordering with a graded term ordering.

Let 𝑔[𝛽 ] ∈ 𝐺 [Σ] . For all𝑚 ∈ 𝑀 (𝐴) and 𝑗 > ind(𝛽), the module
terms lt(𝑔)𝑚𝜀 𝑗 and 𝜀 𝑗𝑚lt(𝑔) are signatures of trivial syzygies.

If, additionally, elements in Algorithm 1 are processed by increas-
ing signature and all ambiguities with signature divisible by a sig-
nature as above are discarded, then all ambiguities whose signature
is divisible by the signature of a trivial syzygy 𝜎 = 𝑔2𝑚𝛽1 − 𝛽2𝑚𝑔1,
with ind(𝛽1) ≠ ind(𝛽2), are discarded in this way.

Proof. They are the signature of the trivial syzygies𝑔𝑚𝜀 𝑗−𝛽𝑚𝑓𝑗
and 𝜀 𝑗𝑚𝑔 − 𝑓𝑗𝑚𝛽 respectively, observing that both members of a

trivial syzygy must have the same degree.

For the second part, the signature of the trivial syzygy 𝜎 is

sig(𝑔2𝑚𝛽1) if ind(𝛽1) > ind(𝛽2) and −sig(𝛽2𝑚𝑔1) otherwise. Both
cases are handled similarly, so assume that we are in the first one.

Then the signature of 𝜎 is a discarded signature, obtained from

𝑔
[𝛽2 ]
2

. It remains to prove sig(𝛽2) ă sig(𝑎), to ensure that 𝑔
[𝛽2 ]
2

was computed in time for discarding 𝑎. Since sig(𝑎) is divisible by
sig(𝜎) ą sig(𝛽2𝑚𝑔1), we have deg(sig(𝑎)) ≥ deg(sig(𝛽2)). With

ind(sig(𝑎)) = ind(𝛽1) > ind(𝛽2), this yields sig(𝛽2) ă sig(𝑎). □

8 EXPERIMENTAL RESULTS
We have written a prototype implementation

1
of Algorithm 1 in

SageMath for the case when 𝑅 is a field including the criteria for

S-polynomial elimination discussed in Section 6.3 (G-polynomials

are redundant over fields). We use it to compare the mixed algebra

setting to other (more naive) approaches for computing noncom-

mutative (signature) Gröbner bases involving some commutative

variables. More precisely, we compare Algorithm 1 to the follow-

ing two approaches: (1) classical Gröbner basis computations in the

free algebra where commutator relations are added explicitly to the

generators of an ideal; (2) signature Gröbner basis computations in

the free algebra where commutator relations are added explicitly

to the generators of an ideal but are given a trivial signature 0 so

that sig-reductions by these relations are always possible.

For the classical Gröbner basis computations we use Singu-

lar:Letterplace [29] and for the naive signature-based compu-

tations we use our SageMath package SignatureGB1. In Table 1,

we report on the number of polynomials reduced, the number of

zero reductions and the size of the resulting (signature) Gröbner

basis for the following benchmark examples.

• Example ufn1h is from [26] and described there. It concerns a

homogeneous ideal in Q[ℎ]⟨𝑎, 𝑏, 𝑐, 𝑑⟩.
• Iwahori-Hecke algebras [23], from [28, Ex. 31]:

ih = (𝑥2 +ℎ𝑥 −𝑞𝑥 −ℎ𝑞,𝑦2 +ℎ𝑦 −𝑞𝑦 −ℎ𝑞, 𝑧2 +ℎ𝑧 −𝑞𝑧 −ℎ𝑞, 𝑧𝑥 −
𝑥𝑧,𝑦𝑥𝑦 − 𝑥𝑦𝑥, 𝑧𝑦𝑧 − 𝑦𝑧𝑦, ℎ2 − 𝑞𝑞−1) ⊆ Q[𝑞, 𝑞−1, ℎ]⟨𝑥,𝑦, 𝑧⟩.
• Homogenization of the relations of the discrete Heisenberg group

⟨𝑥,𝑦, 𝑧 | 𝑧 = 𝑥𝑦𝑥−1𝑦−1, 𝑥𝑧 = 𝑧𝑥,𝑦𝑧 = 𝑧𝑦⟩:
heis = (ℎ3𝑧 − 𝑥𝑦𝑥−1𝑦−1, ℎ2 − 𝑧𝑧−1, ℎ2 − 𝑥𝑥−1, ℎ2 − 𝑥−1𝑥, ℎ2 −
𝑦𝑦−1, ℎ2 − 𝑦−1𝑦) ⊆ Q[𝑧, 𝑧−1, ℎ]⟨𝑥, 𝑥−1, 𝑦,𝑦−1⟩.
For each of these homogeneous ideals, we compute truncated

(signature) Gröbner bases up to a fixed degree. The used degree

bounds are indicated by the number after the “–” in the names of

the examples in Table 1. For all examples, a degree-lexicographic

monomial ordering is used, in combination with DoPoT for the

signature-based computations.

As Table 1 shows, Algorithm 1 has to perform a lot less reduc-

tions and yields a lot smaller outputs. The main reason for this be-

haviour is that in the classical approaches the commutator relations

become oriented reduction rules, which makes them less flexible.

This causes a lot of computations that are avoided in the mixed al-

gebra. Additionally, the naive signature-based computation suffers

from the fact that the commutator relations are only “visible” on

the polynomial level but not on the signature level. Hence, the elim-

ination criteria cannot be exploited fully because they miss this

crucial information. In contrast to this, in the mixed algebra setting,

the information about the commutative variables is also directly

propagated to the signatures.
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Example

classical Gröbner basis naive signature basis Algorithm 1

reductions red. to 0 size reductions red. to 0 size reductions red. to 0 size

ufn1h-7 877 737 140 1784 401 1343 168 73 95

ufn1h-8 1447 1243 204 4594 922 3556 270 120 150

ih-7 759 658 101 1690 158 1363 31 7 24

ih-8 1059 937 122 3635 289 2857 35 8 27

heis-8 1167 823 344 18 418 755 17 431 22 4 18

heis-9 4002 2947 1055 63 734 2476 60 510 48 14 34

Table 1
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