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This work:

• Effective theory of universal analytic Gröbner bases

• Application to tropical geometry

• Towards effective tropical analytic geom.
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Tropical varieties

𝐾 field with valuation (e.g. ℚ((𝑡)), ℚ𝑝...)
𝐼 ⊆ 𝐾[𝑿] ideal

Definition with initial forms:

System of weights: 𝒘 = (𝑤0, … , 𝑤𝑛) ∈ ℝ𝑛+1

𝒘-valuation: val𝒘(𝑎𝑋
𝛼1
1 ⋯𝑋𝛼𝑛𝑛 ) = 𝑤0val(𝑎) + 𝑤1𝛼1 + ⋯ + 𝑤𝑛𝛼𝑛

init𝒘(𝑓) = sum of terms with minimal 𝒘-valuation
init𝒘(𝐼) = ⟨init𝒘(𝑓) ∶ 𝑓 ∈ 𝐼⟩

trop(𝐼) = {𝒘 such that init𝒘(𝐼) does not contain a monomial}

Definition with valuation:
trop(𝐼) = clo{val(𝒙) ∶ 𝒙 ∈ 𝑉(𝐼)}

Newton-Puiseux, Hensel, etc.
Fund. th. of tropical geometry

𝑓 = 𝑥2 + 𝑡2𝑦2 − 𝑡4 ∈ ℚ((𝑡))[𝑥, 𝑦]
𝐼 = ⟨𝑓⟩

(2, 2)

(1, 1)
(2, 1)

𝑥 = 𝛼𝑡1 + ⋯ , 𝑦 = 𝛽𝑡1 + ⋯
𝑓(𝑥, 𝑦) = 𝛼2𝑡2 + 𝛽2𝑡4 − 𝑡4 + ⋯

= 𝛼2𝑡2 + ⋯ ≠ 0
init(1,1)(𝐼) = ⟨𝑥2⟩

𝑥 = 𝛼𝑡2 + ⋯ , 𝑦 = 𝛽𝑡2 + ⋯
𝑓(𝑥, 𝑦) = 𝛼2𝑡4 + 𝛽2𝑡6 − 𝑡4 + ⋯

= (𝛼2 − 1)𝑡4 + ⋯

= 0 ⟹ 𝛼2 − 1 = 0
init(2,2)(𝐼) = ⟨𝑥2 − 𝑡4⟩
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Connection with the Gröbner fan

Gröbner fan:

• Partition of ℝ𝑛 according to

𝒂 ∼ 𝒃 ⟺ init𝒂(𝐼) = init𝒃(𝐼)

• Finite union of rational cones

• Maximal dim. = term orders

• Lower dim. = boundaries = collisions

• Contains the tropical variety

𝑥2 + 𝑦2 + 1

𝑦2 + 1

𝑥2 + 𝑦2

𝑥2 + 1

1 𝑥2

𝑦2

Tropical variety of 𝐼 (without valuations)

1. Compute a universal GB of 𝐼

2. Compute its Newton polytope

3. Compute the Gröbner fan of 𝐼

4. For each non-maximal cone C, pick a 𝒘 ∈ C
and test if init𝒘(𝐼) contains a monomial

In practice: traverse only the necessary parts of the Gröbner fan
[Bogard Jensen Speyer Sturmfels Thomas 2006] 4



Computing tropical varieties with valuation

Gröbner
fan

Tropical
variety

𝐼 ⊆ ℚ(𝑡)[𝑿]

𝐼 ⊆ ℚ[𝑿]

𝐼 ⊆ ℚ((𝑡))[𝑿] 𝐼 ⊆ ℚ𝑝[𝑿]

Traversal of the Gröbner fan
using Mora reductions

Lift 𝑝 ← 𝑡
Add 𝑝 − 𝑡
Saturate

[Bogard Jensen
Speyer Sturmfels
Thomas 2006]

[Ren 2015]

[Ren 2015]
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[Ren 2015]

[Ren 2015]

All completions
𝐼r = 𝐾{𝑿; 𝒓} 𝐼

Universal analytic GB
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Tate series

Definition: convergent series with coefficients in a valued field or ring (ℚ(𝑡), ℚ((𝑡)), ℚ𝑝 …)

𝐾{𝑿; 𝒓} = { ∑
𝛼∈ℕ𝑛

𝑎𝛼𝑿𝛼 with val(𝑎𝛼) − 𝛼 ⋅ 𝒓
|𝛼|→∞
−−−−−−−−→ ∞}

𝒓 = (𝑟1, … , 𝑟𝑛): convergence radii

• If 𝒓 = (0, … , 0), equivalent: 𝑎𝛼 → 0

• If 𝒓 ∈ ℤ𝑛, equivalent to change of variable 𝐾{𝑿; 𝒓} = 𝐾{(𝑋𝑖/𝑝𝑟𝑖); (0)}

• 𝐾[𝑿] = 𝐾{𝑿;∞} (everywhere convergent)

Term ordering:

𝑎𝑿𝛼 <𝒓 𝑏𝑿𝛽 ⟺ {
val(𝑎) − 𝒓 ⋅ 𝛼 > val(𝑏) − 𝒓 ⋅ 𝛽
or they are equal and 𝑿𝛼 < 𝑿𝛽

• Every Tate series has a leading term

• Every Tate series ideal has a finite Gröbner basis

• Different 𝒓 give different leading terms and Gröbner bases
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Overconvergence

Fact: If 𝒓 ≤ 𝒔, then 𝐾{𝑿; 𝒔} ⊆ 𝐾{𝑿; 𝒓}:

𝐾{𝑿; (4, 3)} ⊆ 𝐾{𝑿; (1, 2)} 𝐾{𝑿; (∞,∞)} = 𝐾[𝑿] ⊆ 𝐾{𝑿; (1, 2)}

Theorem (Caruso, Vaccon, V. 2022)
Let 𝒓 ≥ 𝒔, 𝐼 ⊂ 𝐾{𝑿; 𝒓} and 𝐼𝒔 = 𝐾{𝑿; 𝒔} 𝐼 (completion of the ideal).
Then 𝐼𝒔 admits a Gröbner basis comprised only of elements of 𝐾{𝑿; 𝒓}.
In particular, the completion of a polynomial ideal has a polynomial basis.

Key component: Mora’s reduction algorithm
Input: 𝐺 ⊂ 𝐾{𝑿; 𝒓}, 𝑓 ∈ 𝐾{𝑿; 𝒓}
Output: ℎ, 𝑢 ∈ 𝐾{𝑿; 𝒓}, such that:
• 𝑢𝑓 reduces to ℎ and is then irreducible modulo 𝐺 (in 𝐾{𝑿; 𝒔})
• LT𝒔(𝑢) = 1, or equivalently, 𝑢 is invertible in 𝐾{𝑿; 𝒔}
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Convergence radii and tropical geometry

minimal val(𝑎𝑖) − 𝛼𝑖 ⋅ 𝒓

= init(−1,𝒓)(𝑓)

LT𝒓,≤(𝑓)

𝑓 = 𝑎0𝑿𝛼0 + 𝑎1𝑿𝛼1 + ⋯ + 𝑎𝑘𝑿𝛼𝑘 + 𝑎𝑘+1𝑿𝛼𝑘+1 + ⋯ with val(𝑎𝑖) − 𝛼𝑖 ⋅ 𝒓
|𝛼𝑖|→∞
−−−−−−−−−→ ∞

Theorem (Vaccon, V. 2023)
Let 𝐼 ⊆ 𝐾[𝑿], and 𝒘 ∈ ℚ𝑛+1 a system of weights.
Let 𝒓 = (−𝑤1/𝑤0, … , −𝑤𝑛/𝑤0) and 𝐼𝒓 = 𝐼 𝐾{𝑿; 𝒓} the corresponding completion, then

init𝒘(𝐼) = init𝒘(𝐼𝒓) ∩ 𝐾[𝑿].

This is a local result, which translates globally as:

𝑉trop(𝐼) = ⋃
𝒔∈ℚ𝑛

trop(𝐼𝒔).

Theorem (Vaccon, V. 2023)
Let 𝐺 be a Gröbner basis of 𝐼𝒓, then

init𝒘(𝐼𝒓) = ⟨init𝒘(𝑔) ∶ 𝑔 ∈ 𝐺⟩.
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Universal analytic Gröbner bases

Theorem (Caruso, Vaccon, V. 2022; Vaccon, V. 2023)
Let 𝐼 ⊆ 𝐾[𝑿] be a homogeneous ideal.
There exists a finite subset 𝐺 ⊆ 𝐼 s.t. for all 𝒓 ∈ ℚ𝑛, 𝐺 is a Gröbner basis of 𝐼𝒓 = 𝐼 𝐾{𝑿; 𝒓}.
Furthermore:
• this is independent of the order used for breaking ties

• 𝐺 can be computed

As a consequence, a homogeneous polynomial ideal always has a finite Gröbner fan.

Why homogeneous?

• Key question: how does init𝒂(𝐼) = init𝒃(𝐼) relate to init𝒂(𝐺) = init𝒃(𝐺) ?

• Usually, this is answered by taking reduced Gröbner bases

• We can have reduced GB (with the usual algorithm),
or overconvergent GB (using Mora’s algorithm)... but not both in general

• For homogeneous ideals, reduced overconvergent bases exist
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Computing tropical varieties with Tate completions

Tropical variety with valuation

I. 𝐼 ⊆ 𝐾[𝑋] homogeneous ideal.

O. the tropical variety of 𝐼, given as a union of rational cones

1. compute a universal analytic Gröbner basis 𝐺 of 𝐼

2. get all the maximal dimensional cones in the Gröbner fan

3. compute the rest of the cones

4. for each non-maximal cone C
4.1 pick a 𝒘 = (−1, 𝒓) ∈ 𝐶

4.2 Then init𝒘(𝐺) is a Gröbner basis of init𝒘(𝐼𝒓)

4.3 test if init𝒘(𝐼) contains a monomial

4.4 conclude whether 𝒘 ∈ trop(𝐼) and therefore C ⊆ trop(𝐼).

Mora’s reduction
UAGB algo.

Newton polytope

Discrete geometry

Th. on Tate GB

Saturation

• Proof of concept showing that the main algorithmic ingredients are in place:
universal Gröbner basis, Gröbner fan, connection to the tropical variety

• Next task: transposing the advanced traversal techniques used in the classical setting
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Towards tropical analytic geometry: more general convergence conditions

So far, we have shown that for (poly)disks:

• We can compute overconvergent Gröbner bases

• We can compute a universal analytic Gröbner basis

What about more general convergence conditions?

Questions:

• Local: can we compute overconvergent Gröbner bases?

• Global: Can we compute a universal analytic Gröbner basis?

Thank you for your attention!
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Towards tropical analytic geometry: more general convergence conditions

So far, we have shown that for (poly)disks:

• We can compute overconvergent Gröbner bases

• We can compute a universal analytic Gröbner basis

Example: upper polyhedral domains:

Questions:

• Local: can we compute overconvergent Gröbner bases? Th. (Vaccon V. 2023) YES

• Global: Can we compute a universal analytic Gröbner basis?

Thank you for your attention!
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