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PROVING THEOREMS USING GROBNER BASES

Example:
« Definition: an inner inverse of a matrix A is a matrix B such that ABA = A
« Theorem: if A is invertible with inverse C and if B is an inner inverse of A, then B =C

+ Proof: easy exercise B
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+ Proof: cofactor representation:

c-b=b(ac-1)-c(ac-1) -c(aba-a)c+ (ca-1)bac. |



GROBNER BASES AND SIGNATURE GROBNER BASES

Polynomials
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GROBNER BASES AND SIGNATURE GROBNER BASES

Polynomials
f’] LR fr
[Faugére 2002] [Gao Volny Wang 2010]

F5/Gyyy ) [Eder Faugére 2017] [Lairez 2022]
[Hofstadler V. 2022, 2023]

\

Grobner basis
with signatures

Grébner basis Grobner basis Grobner basis
with coordinates of the syzygy module
Ideal Membership Problem IMP with certificate Module of syzygies
“Does there exist (a;, b)) “Compute (a;, b)) “Find all (a;, b))
such that such that such that

P:a1fi1b1 +“'+al\lfiNbI\l?" p:a1f,-1b1 +m+aNfiNbN" awfi1b1 +"'+aNfiNbN =0”
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Grobner basis element ‘ Cofactors

[1]

ac-1 e
ca-1 e,
aba-a e,



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors

-]

2]
E
=c—ab

[]~]

ac-1 e
ca-1 e,
aba-a e,
-ac+ab e,c-abe,



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors
ac-1 e
. ca-1 e,
. aba-a e,
|4]=[3]c-ab[1]+[1] ab-1 e,c-abe, +e,

[w]~]



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,

-c+b ce,c-e,b-cabe, - ce,



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:

1. ac - 1 with signaturee, — f, -(ac-1)=0



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:
1. ac - 1 with signaturee, — f, -(ac-1)=0

2. ca-1 with signaturee, — f, -(ca-1)=0

3. aba - a with signature e, — f, - (aba-a) =0



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:
1. ac - 1 with signaturee, — f, -(ac-1)=0

2. ca-1 with signaturee, — f, -(ca-1)=0

3. aba - a with signature e, — f, - (aba-a) =0

4

. ab - 1 with signature e,c — f.c -(ab-1)=abac-ac-ab+1 =20



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:

1. ac - 1 with signaturee, — f, -(ac-1)=0

2. ca-1 with signaturee, — f, -(ca-1)=0

3. aba - a with signature e, — f, - (aba-a) =0

4. ab -1 with signature e,c — f,c -(ab-1)=abac-ac-ab+1 =20
f¢ - abf, -(ab-1)=-ac+1 20



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:

1. ac - 1 with signaturee, — f, -(ac-1)=0

2. ca-1 with signaturee, — f, -(ca-1)=0

3. aba - a with signature e, — f, - (aba-a) =0

4. ab -1 with signature e,c — f,c -(ab-1)=abac-ac-ab+1 =20
f¢ - abf, -(ab-1)=-ac+1 20
fyc-abf, +f, -(ab-1)=0



BACK TO THE EXAMPLE

Question: does b - c lie in the ideal (ac - 1,ca - 1,aba - a) in K{a, b, c)?

Grobner basis element ‘ Cofactors (signature)

ac-1 e
ca-1 e,
aba-a e,
ab-1 e,c-abe, +e,
3
-c+b ce.c-e,b-cabe, - ce,

The signature is enough to reconstruct the cofactor representation:
1. ac - 1 with signaturee, — f, -(ac-1)=0

2. ca-1 with signaturee, — f, -(ca-1)=0

3. aba - a with signature e, — f, - (aba-a) =0

4

. ab - 1 with signature e,c — f.c -(ab-1)=abac-ac-ab+1 =20
f¢ - abf, -(ab-1)=-ac+1 20
fyc-abf, +f, -(ab-1)=0

5. -c + b with signature ce,c — c(f,c-abf, +f,) -(-c+b)=cab-b=#0

cfyc-cabf+cf, -f,b -(-c+b)=0



SHORT COFACTOR REPRESENTATIONS

Cofactor representations are not unique!
Example: b-c=c(aba-a)c+ (ca-1)bac+b(ac-1)-c(ac-1)
=c(aba-a)c- (ca-1)b-cab(ac-1) +c(ac-1)
Short proofs are important for proof analysis.
Example: b-c el =(ac-1,ca-1,aba-a,bab-b,ab -ed,ba-de) cK(a,b,c,d,e)
(b : AT (Moore-Penrose inverse), c : A", d : A%, e : (AT)")

b-c=b(ac-1)-c(ac-1) + (ca-1)bac +c(aba-a)c
-be(bab-b) + (bab-b)eb-b(ab-ed)eb+be(ba-de)a

This work
« Algorithm for finding short (and often shortest) representations

+ Also works in the commutative case

+ Reduces to and generalizes a classical linear algebra problem

+ Main tools: signatures and linear optimization




ON THE EDGE OF DECIDABILITY

Fact: the IMP over non-commutative polynomials is not decidable

Theorem (Hofstadler, V. 2023)
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representation of length at most N in the f;,

i.e., whether there exists a,, b, € (X), i, €{1,...,r} such that

f=a,f, b+ +ayf, by

is decidable.

Difficulty: no bound on the degrees of a, and b,,
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For minimal representations, we can say more!

Rewriting
Example: given f=x+Xxy,g=y+z
c f-xg=x - xz is a rewriting of f by g

« f+xg=x+2xy+xzis also a rewriting of f by g

« f+yg=x+xy+y?+yzis not a rewriting

+ Any minimal representation of f by f,,..., f, of length N can be expressed
as N successive rewritings starting with f and ending with 0
+ There is a bound on the degree of terms appearing in a rewriting! °



DECIDABILITY ALGORITHM

Algorithm
Lffpe,f,eKX),NeN
0: a (minimal) cofactor representation of f of length < N if one exists
1. Compute the degree bound D = deg(f) + N max deg(f;)
2. Compute the set L of all polynomials af;b with i € {1,...,n}, a,b € (X), deg(af;b) < D
3.

Look for a K-linear combination of elements of L equal to f with < N nonzero summands

Observations:
+ The bulk of the computation is in the last step
- That step is difficult but decidable (if only by bruteforce)
+ The input for that step is huge but finite

+ The algorithm is not practical for anything but trivial examples

So we need:

+ A better algorithm for solving the last step: linear programming

+ A better bound on the search space: signatures



FINDING SPARSE SOLUTIONS OF LINEAR SYSTEMS

Min-RVLS (Minimum Relevant Variables in Linear Systems):
:AcQ@™be@™NeN

0: y € Q" with Ay = b and at most N nonzero coordinates if one exists

This is a difficult problem: NP-complete, hard to approximate.

Basis pursuit: £, relaxation + Linear Programming [Chen, Donoho, Saunders 2001]
. AcQ™",be Q™,NeN
0. y € @" minimizing 37 |y;| under the constraint Ay = b.



FINDING SMALL REPRESENTATIONS USING LINEAR PROGRAMMING

Algorithm

I f,f ., f, € K(X), 0 a signature
0: a cofactor representation of f with signature < g and minimal 1-norm (if it exists)
1. Compute the set L of all polynomials akf,-kbk with ake‘-hbk <o

. Put them in a matrix A

w N

. Solve the linear problem:
find (51) minimizing ¥, p; + ¥; m; under the constraints (A —A)(f;) =fandp,m=20

4 Return 3, (p,, - mk)akeikbk

Observations:

+ Deciding whether the search space is empty requires finding any solution of the linear system

+ Doing so is essentially equivalent to computing a signature Grobner basis up to signature o
(Matrix-F5 algorithm)



SYMBOLIC PREPROCESSING

Observation: if a and B have disjoint support, then

lla+ Bl = Nl + 1Bl (both for 0-“norm” and 1-norm)

Theorem (Hofstadler, V. 2023)
Let:
+ H be a Grobner basis of the module of syzygies up to some signature o

- a be a cofactor representation of f in terms of f,,..., f, with sig(a) < 0

+ B be a representation of f, shortest or 1-norm minimal among those with sig < o

Then a can be rewritten to B by H, and the signature of every rewriter is < o.




SYMBOLIC PREPROCESSING

Observation: if a and B have disjoint support, then

lla+ Bl = Nl + 1Bl (both for 0-“norm” and 1-norm)

Theorem (Hofstadler, V. 2023)
Let:

+ H be a Grobner basis of the module of syzygies up to some signature o
- a be a cofactor representation of f in terms of f,,..., f, with sig(a) < 0

+ B be a representation of f, shortest or 1-norm minimal among those with sig < o

Then a can be rewritten to B by H, and the signature of every rewriter is < o.

Algorithm: Symbolic preprocessing
I: 0, H, a as above
0: a generating set B of V c Syz(f,, ..., f,) such that for any optimal B, B € a + V.
1. B « @, T0DO « Support of a
2. While TODO is not empty
2.1 Pick a monomial y € TODO

2.2 Take all the multiples ayb of elements in H with signature < o and with p in their support
2.3 Add them to V and their support to ToDO



Algorithm
I: f,fy, -, f, € K{X), 0 asignature, o a representation with signature < o
0: a cofactor representation of f with signature < g and minimal 1-norm (it exists!)
1. Compute a Grobner basis of Syz(f;, ..., f,) up to signature o
. Compute the search space B = {a1e,-wb1 , azeizbz,...} (symbolic preprocessing)
. Prune B using further criteria and heuristics

. Put Band ain a matrix A

v &~ ow N

. Solve the linear problem:
find (r’;) minimizing 3, p; + ¥, m; under the constraints (A —A)(::') =fandp,m=0

6. Return 3, (p,, - mk)akeihbk



ABOUT THE {’1 -RELAXATION

With the 1-norm, xe, + ye, + ze, is smaller than 35ze, - e..

Experimentally, the algorithm can still find shorter proofs than the best computer proofs

In practice, in many examples the coefficients are small, bringing the two sparsity measures
closer together

In particular, a lot of examples are totally unimodular (e.g. pure difference binomials)

Then the coefficients of minimal representations are 0 or 1

In that case the algorithm is guaranteed to return a sparsest solution

In the other direction, the linear programming approach opens the way to thinner metrics

For example, it is possible to weigh the 1-norm with the degree of the terms



EXPERIMENTAL DATA

Example #gens deg | GB SigGB LP |  Mtxsize Pruning ratio
SVD 32 3 51 39 25 118k x 328 k 0.83
ROL 28 5 80 39 30 22kx56k 0.55

ROL-2 28 5 20 21 15 23kx 60k 0.56
ROL-3 28 5 49 44 31 18 k x 46 k 0.53
ROL-4 28 5 59 46 33 64k x 137k 0.58
ROL-5 28 5 28 30 22 31kx80k 0.60
ROL-6 28 5 39 39 30 21k x55k 0.56
ROL-7 40 9 85 23 17 17 k x 46 k 0.54
ROL-8 44 7 241 19 17 249 k x 560 k 0.58
Hartwig-4 23 15 316 54 46 | 349k x 1460k 0.84
Hartwig-5 26 15 99 43 35 | 398kx 1374k 0.84
Hartwig-6 24 15 86 33 29 217 k x 808 k 0.84
Ker 12 3 49 34 23 51kx 129k 0.90
SMw 36 7 63 42 39 44k x 94k 0.83
Sum 20 3 313 178 85 11kx17k 0.93




CONCLUSION

What we presented
+ New approach for computing short proofs of ideal membership
+ Generalization of Min-RVLS to algebraic systems
+ Combination of signature techniques and linear programming
« Flexible for other metrics
+ Also works in the commutative case

Future work
+ Choice of a signature ordering
+ More efficient representations using additional generators (“lemmas”)

More details and references

+ Hofstadler and Verron, Signature Grobner bases, bases of syzygies and cofactor
reconstruction in the free algebra (JSC 2022) ArXiV:2107.14675

+ Hofstadler and Verron, Signature Grébner bases in free algebras over rings (ISSAC 2023)
Arxiv:2302.06483

- Hofstadler and Verron, Short proofs of ideal membership, ArXiv:2302.02832

Thank you for your attention!



