USING SIGNATURE GRÖBNER BASES TO FIND SHORT IDEAL REPRESENTATIONS

Clemens Hofstadler¹, Thibaut Verron²

SIAM Conference on Applied Algebraic Geometry, 14 July 2023 Multivariate Polynomials, Ideals, and Modules: Algorithms and Applications

- 1. Institute of Mathematics, University of Kassel, Kassel, Germany
- 2. Institute for Algebra, Johannes Kepler University, Linz, Austria

PROVING THEOREMS USING GRÖBNER BASES

Example:

- Definition: an inner inverse of a matrix A is a matrix B such that ABA = A
- Theorem: if A is invertible with inverse C and if B is an inner inverse of A, then B = C
- Proof: easy exercise ■

PROVING THEOREMS USING GRÖBNER BASES

Example:

- Definition: an inner inverse of a matrix A is a matrix B such that ABA = A
- Theorem: if A is invertible with inverse C and if B is an inner inverse of A, then B = C
- Proof: easy exercise

How to prove this with Gröbner bases?

- Objects \rightarrow generators of a free algebra: K(a, b, c)
- Axioms \rightarrow ideal: $I = \langle ac 1, ca 1 \rangle + \langle aba a \rangle$
- Theorem \rightarrow Ideal Membership Problem: $b c \in I$?
- New proof: b c reduces to zero modulo a Gröbner basis of I
- Proof: trust me

PROVING THEOREMS USING GRÖBNER BASES

Example:

- Definition: an inner inverse of a matrix A is a matrix B such that ABA = A
- Theorem: if A is invertible with inverse C and if B is an inner inverse of A, then B = C
- Proof: easy exercise

How to prove this with Gröbner bases?

- Objects \rightarrow generators of a free algebra: K(a, b, c)
- Axioms \rightarrow ideal: $I = \langle ac 1, ca 1 \rangle + \langle aba a \rangle$
- Theorem \rightarrow Ideal Membership Problem: $b c \in I$?
- New proof: b c reduces to zero modulo a Gröbner basis of I
- · Proof: cofactor representation:

$$c - b = b(ac - 1) - c(ac - 1) - c(aba - a)c + (ca - 1)bac.$$

GRÖBNER BASES AND SIGNATURE GRÖBNER BASES

GRÖBNER BASES AND SIGNATURE GRÖBNER BASES

Ideal Membership Problem

"Does there exist (a_i, b_j) such that $p = a_1 f_{i_1} b_1 + \dots + a_N f_{i_N} b_N$?" with coordinates

IMP with certificate

"Compute (a_i, b_j) such that $p = a_1 f_{i_1} b_1 + \dots + a_N f_{i_N} b_N$ " Gröbner basis of the syzygy module

Module of syzygies

"Find all (a_i, b_j) such that $a_1 f_{i_1} b_1 + \dots + a_N f_{i_N} b_N = 0$ "

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba - a	e ₃

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba – a	e ₃
4 = 3c - ab 1	-ac + ab	e ₃ c - ab e ₁

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba - a	e ₃
$\boxed{4} = \boxed{3}c - ab\boxed{1} + \boxed{1}$	ab - 1	$\mathbf{e}_3 \mathbf{c} - ab\mathbf{e}_1 + \mathbf{e}_1$

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba - a	e ₃
4 = 3c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
$\boxed{5} = c \boxed{4} - \boxed{2} b$	-c + b	$c\mathbf{e}_3c - \mathbf{e}_2b - cab\mathbf{e}_1 - c\mathbf{e}_1$

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors (signature)
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba - a	e ₃
4 = 3c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
$\boxed{5} = c \boxed{4} - \boxed{2}b$	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors (signature)
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba - a	e ₃
4 = 3c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
$\boxed{5} = \overline{c} \boxed{4} - \boxed{2} \overline{b}$	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

1.
$$ac - 1$$
 with signature $e_1 \longrightarrow f_1 - (ac - 1) = 0$

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

	Gröbner basis element	Cofactors (signature)
1	ac - 1	e ₁
2	ca - 1	e ₂
3	aba - a	e ₃
4 = 3 c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
5 = c 4 - 2 b	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

- 1. ac 1 with signature $e_1 \longrightarrow f_1 (ac 1) = 0$
- 2. ca 1 with signature $e_2 \longrightarrow f_2 (ca 1) = 0$
- 3. aba a with signature $e_3 \longrightarrow f_3$ (aba a) = 0

Question: does b-c lie in the ideal $\langle ac-1, ca-1, aba-a \rangle$ in $K\langle a, b, c \rangle$?

		Gröbner basis element	Cofactors (signature)
1		ac - 1	e ₁
2		ca - 1	e ₂
3		aba - a	e ₃
	= 3 c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
5	= c 4 - 2 b	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

- 1. ac 1 with signature $e_1 \longrightarrow f_1 (ac 1) = 0$
- 2. ca 1 with signature $e_2 \longrightarrow f_2 (ca 1) = 0$
- 3. aba a with signature $e_3 \longrightarrow f_3 (aba a) = 0$
- 4. ab-1 with signature $e_3c \longrightarrow f_3c$ $-(ab-1) = abac ac ab + 1 \neq 0$

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

		Gröbner basis element	Cofactors (signature)
1		ac - 1	e ₁
2		ca - 1	e ₂
3		aba - a	e ₃
	= 3 c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
5	= c 4 - 2 b	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

- 1. ac 1 with signature $e_1 \longrightarrow f_1 (ac 1) = 0$
- 2. ca 1 with signature $e_2 \longrightarrow f_2 (ca 1) = 0$
- 3. aba a with signature $e_3 \longrightarrow f_3 (aba a) = 0$

4.
$$ab-1$$
 with signature $e_3c \longrightarrow f_3c \qquad -(ab-1) = abac - ac - ab + 1 \neq 0$

$$f_3c - abf_1 \qquad -(ab-1) = -ac + 1 \qquad \neq 0$$

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

		Gröbner basis element	Cofactors (signature)
1		ac - 1	e ₁
2		ca - 1	e ₂
3		aba - a	e ₃
	= 3 c - ab 1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
5	= c 4 - 2 b	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

- 1. ac 1 with signature $e_1 \longrightarrow f_1 (ac 1) = 0$
- 2. ca 1 with signature $e_2 \longrightarrow f_2 (ca 1) = 0$
- 3. aba a with signature $e_3 \longrightarrow f_3 (aba a) = 0$

4.
$$ab-1$$
 with signature $e_3c \longrightarrow f_3c \qquad -(ab-1)=abac-ac-ab+1 \neq 0$
$$f_3c-abf_1 \qquad -(ab-1)=-ac+1 \qquad \neq 0$$

$$f_3c-abf_1+f_1-(ab-1)=0$$

Question: does b-c lie in the ideal (ac-1, ca-1, aba-a) in K(a, b, c)?

		Gröbner basis element	Cofactors (signature)
1		ac - 1	e ₁
2		ca - 1	e ₂
3		aba - a	e ₃
4	= 3c - ab1 + 1	ab - 1	e ₃ c - ab e ₁ + e ₁ c e ₃ c - e ₂ b - cab e ₁ - c e ₁
5	$= c \boxed{4} - \boxed{2} b$	-c + b	$ce_3c - e_2b - cabe_1 - ce_1$

The signature is enough to reconstruct the cofactor representation:

- 1. ac 1 with signature $e_1 \longrightarrow f_1 (ac 1) = 0$
- 2. ca 1 with signature $e_2 \longrightarrow f_2 (ca 1) = 0$
- 3. aba a with signature $e_3 \longrightarrow f_3 (aba a) = 0$

4.
$$ab-1$$
 with signature $e_3c \longrightarrow f_3c$ $-(ab-1) = abac - ac - ab + 1 \neq 0$

$$f_3c - abf_1 - (ab-1) = -ac + 1 \neq 0$$

$$f_3c - abf_1 + f_1 - (ab-1) = 0$$

5.
$$-c + b$$
 with signature $c\mathbf{e}_3c \longrightarrow c(f_3c - abf_1 + f_1)$ $-(-c + b) = cab - b \neq 0$
$$cf_3c - cabf_1 + cf_1 - f_2b \qquad -(-c + b) = 0$$

SHORT COFACTOR REPRESENTATIONS

Cofactor representations are not unique!

Example:
$$b - c = c(aba - a)c + (ca - 1)bac + b(ac - 1) - c(ac - 1)$$

= $c(aba - a)c - (ca - 1)b - cab(ac - 1) + c(ac - 1)$

Short proofs are important for proof analysis.

Example:
$$b - c \in I = (ac - 1, ca - 1, aba - a, bab - b, ab - ed, ba - de) \subseteq K(a, b, c, d, e)$$

(b : A^{\dagger} (Moore-Penrose inverse), $c : A^{-1}$, $d : A^{*}$, $e : (A^{\dagger})^{*}$)

$$b - c = b(ac - 1) - c(ac - 1) + (ca - 1)bac + c(aba - a)c$$

$$-be(bab - b) + (bab - b)eb - b(ab - ed)eb + be(ba - de)a$$

This work

- · Algorithm for finding short (and often shortest) representations
- · Also works in the commutative case
- · Reduces to and generalizes a classical linear algebra problem
- · Main tools: signatures and linear optimization

ON THE EDGE OF DECIDABILITY

Fact: the IMP over non-commutative polynomials is not decidable

Theorem (Hofstadler, V. 2023)

The problem of, given $f_1, \dots, f_r, f \in K\langle X \rangle$ and $N \in \mathbb{N}$, deciding whether f has a cofactor representation of length at most N in the f_i ,

i.e., whether there exists $a_k, b_k \in \langle X \rangle$, $i_k \in \{1, ..., r\}$ such that

$$f=a_1f_{i_1}b_1+\cdots+a_Nf_{i_N}b_N,$$

is decidable.

Difficulty: no bound on the degrees of a_k and b_k

ON THE EDGE OF DECIDABILITY

Fact: the IMP over non-commutative polynomials is not decidable

Theorem (Hofstadler, V. 2023)

The problem of, given $f_1, ..., f_r, f \in K\langle X \rangle$ and $N \in \mathbb{N}$, deciding whether f has a cofactor representation of length at most N in the f_i , i.e., whether there exists $a_b, b_b \in \langle X \rangle$, $i_b \in \{1, ..., r\}$ such that

$$f = a_1 f_{i_1} b_1 + \dots + a_N f_{i_N} b_N$$

is decidable.

 $\mbox{\bf Difficulty}: \ \mbox{no bound on the degrees of} \ a_k \ \mbox{and} \ b_k$

For minimal representations, we can say more!

Rewriting

Example: given f = x + xy, q = y + z:

- f xg = x + xy xy xz is a rewriting of f by g
- f + xg = x + 2xy + xz is also a rewriting of f by g
- $f + yg = x + xy + y^2 + yz$ is not a rewriting
- Any minimal representation of f by f₁, ..., f_r of length N can be expressed as N successive rewritings starting with f and ending with 0
- There is a bound on the degree of terms appearing in a rewriting!

DECIDABILITY ALGORITHM

Algorithm

- **I:** $f, f_1, \dots, f_r \in K\langle X \rangle, N \in \mathbb{N}$
- **O:** a (minimal) cofactor representation of f of length $\leq N$ if one exists
- 1. Compute the degree bound $D = \deg(f) + N \max \deg(f_i)$
- 2. Compute the set L of all polynomials af_ib with $i \in \{1, ..., n\}$, $a, b \in \langle X \rangle$, $\deg(af_ib) \leq D$
- 3. Look for a K-linear combination of elements of L equal to f with $\leq N$ nonzero summands

Observations:

- The bulk of the computation is in the last step
- That step is difficult but decidable (if only by bruteforce)
- · The input for that step is huge but finite
- · The algorithm is not practical for anything but trivial examples

So we need:

- A better algorithm for solving the last step: linear programming
- · A better bound on the search space: signatures

FINDING SPARSE SOLUTIONS OF LINEAR SYSTEMS

Min-RVLS (Minimum Relevant Variables in Linear Systems):

- **I:** $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $N \in \mathbb{N}$
- **0:** $y \in \mathbb{Q}^n$ with Ay = b and at most N nonzero coordinates if one exists

This is a difficult problem: NP-complete, hard to approximate.

Basis pursuit: ℓ_1 relaxation + Linear Programming

[Chen, Donoho, Saunders 2001]

- I. $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $N \in \mathbb{N}$
- **0.** $y \in \mathbb{Q}^n$ minimizing $\sum_{i=1}^n |y_i|$ under the constraint Ay = b.

FINDING SMALL REPRESENTATIONS USING LINEAR PROGRAMMING

Algorithm

- **I**: $f, f_1, ..., f_r \in K\langle X \rangle$, σ a signature
- **0**: a cofactor representation of f with signature $\leq \sigma$ and minimal 1-norm (if it exists)
- 1. Compute the set L of all polynomials $a_k f_{i_k} b_k$ with $a_k \boldsymbol{e}_{i_k} b_k \le \sigma$
- 2. Put them in a matrix A
- 3. Solve the linear problem:

find
$$\binom{p}{m}$$
 minimizing $\sum_i p_i + \sum_i m_i$ under the constraints $(A - A)\binom{p}{m} = f$ and $p, m \ge 0$

4. Return $\sum_{k} (p_k - m_k) a_k \mathbf{e}_{i_k} b_k$

Observations:

- Deciding whether the search space is empty requires finding *any* solution of the linear system
- Doing so is essentially equivalent to computing a signature Gröbner basis up to signature σ (Matrix-F5 algorithm)

SYMBOLIC PREPROCESSING

Observation: if α and β have disjoint support, then

$$\|\alpha + \beta\| = \|\alpha\| + \|\beta\|$$
 (both for 0-"norm" and 1-norm)

Theorem (Hofstadler, V. 2023)

Let:

- H be a Gröbner basis of the module of syzygies up to some signature σ
- α be a cofactor representation of f in terms of $f_1, ..., f_r$ with $sig(\alpha) \le \sigma$
- β be a representation of f, shortest or 1-norm minimal among those with sig $\leq \sigma$

Then α can be rewritten to β by H, and the signature of every rewriter is $\leq \sigma$.

SYMBOLIC PREPROCESSING

Observation: if α and β have disjoint support, then

$$\|\alpha + \beta\| = \|\alpha\| + \|\beta\|$$

(both for 0-"norm" and 1-norm)

Theorem (Hofstadler, V. 2023)

Let:

- \cdot H be a Gröbner basis of the module of syzygies up to some signature σ
- α be a cofactor representation of f in terms of $f_1, ..., f_r$ with $sig(\alpha) \le \sigma$
- β be a representation of f, shortest or 1-norm minimal among those with sig $\leq \sigma$

Then α can be rewritten to β by H, and the signature of every rewriter is $\leq \sigma$.

Algorithm: Symbolic preprocessing

- I: σ , H, α as above
- **0**: a generating set B of $V \subset Syz(f_1, ..., f_r)$ such that for any optimal $\beta, \beta \in \alpha + V$.
- 1. $B \leftarrow \emptyset$, TODO \leftarrow Support of α
- 2. While TODO is not empty
 - 2.1 Pick a monomial $\mu \in TODO$
 - 2.2 Take all the multiples $a\gamma b$ of elements in H with signature $\leq \sigma$ and with μ in their support
 - 2.3 Add them to V and their support to TODO

FINAL ALGORITHM

Algorithm

- I: $f, f_1, ..., f_r \in K(X)$, σ a signature, α a representation with signature $\leq \sigma$
- **0**: a cofactor representation of f with signature $\leq \sigma$ and minimal 1-norm (it exists!)
- 1. Compute a Gröbner basis of $Syz(f_1, ..., f_r)$ up to signature σ
- 2. Compute the search space $B = \{a_1 e_{i_1} b_1, a_2 e_{i_2} b_2, ...\}$ (symbolic preprocessing)
- 3. Prune B using further criteria and heuristics
- 4. Put B and α in a matrix A
- 5. Solve the linear problem: find $\binom{p}{m}$ minimizing $\sum_i p_i + \sum_i m_i$ under the constraints $\binom{A}{m} \binom{p}{m} = f$ and $\binom{p}{m} = f$ and $\binom{p}{m} = f$
- 6. Return $\sum_k (p_k m_k) a_k \mathbf{e}_{i_k} b_k$

ABOUT THE ℓ_1 -RELAXATION

- With the 1-norm, $xe_1 + ye_2 + ze_3$ is smaller than $35ze_4 e_5$.
- Experimentally, the algorithm can still find shorter proofs than the best computer proofs
- In practice, in many examples the coefficients are small, bringing the two sparsity measures closer together
- In particular, a lot of examples are totally unimodular (e.g. pure difference binomials)
- Then the coefficients of minimal representations are 0 or ±1
- In that case the algorithm is guaranteed to return a sparsest solution

- In the other direction, the linear programming approach opens the way to thinner metrics
- For example, it is possible to weigh the 1-norm with the degree of the terms

EXPERIMENTAL DATA

Example	#gens	deg	GB	SigGB	LP	Mtx size	Pruning ratio
SVD	32	3	51	39	25	118 k × 328 k	0.83
ROL	28	5	80	39	30	22 k × 56 k	0.55
ROL-2	28	5	20	21	15	23 k × 60 k	0.56
ROL-3	28	5	49	44	31	18 k × 46 k	0.53
ROL-4	28	5	59	46	33	64 k × 137 k	0.58
ROL-5	28	5	28	30	22	31 k × 80 k	0.60
ROL-6	28	5	39	39	30	21 k × 55 k	0.56
ROL-7	40	9	85	23	17	17 k × 46 k	0.54
ROL-8	44	7	241	19	17	249 k × 560 k	0.58
Hartwig-4	23	15	316	54	46	349 k × 1 460 k	0.84
Hartwig-5	26	15	99	43	35	398 k × 1 374 k	0.84
Hartwig-6	24	15	86	33	29	217 k × 808 k	0.84
Ker	12	3	49	34	23	51 k × 129 k	0.90
SMW	36	7	63	42	39	44 k × 94 k	0.83
Sum	20	3	313	178	85	11 k × 17 k	0.93

CONCLUSION

What we presented

- New approach for computing short proofs of ideal membership
- Generalization of Min-RVLS to algebraic systems
- Combination of signature techniques and linear programming
- · Flexible for other metrics
- · Also works in the commutative case

Future work

- Choice of a signature ordering
- More efficient representations using additional generators ("lemmas")

More details and references

- Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra (JSC 2022) ArXiV: 2107.14675
- Hofstadler and Verron, Signature Gröbner bases in free algebras over rings (ISSAC 2023)
 ArXiV: 2302.06483
- Hofstadler and Verron, Short proofs of ideal membership, ArXiv:2302.02832

Thank you for your attention!