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Tropical varieties: an example

Consider the polynomial equation:
𝑥2 + 𝑡 𝑦2 + 𝑡2 = 0

over ℚ(𝑡)[𝑥, 𝑦].

How to find series solution? Newton-Puiseux algorithm:

1. Make an ansatz: 𝑥 = 𝑡𝑎 + ⋯, 𝑦 = 𝑡𝑏 + ⋯

2. Plug in: 𝑡2𝑎 + ⋯ + 𝑡1+2𝑏 + ⋯ + 𝑡2 = 0

3. Force a collision to find 𝑎 and 𝑏:

{
2𝑎 = 1 + 2𝑏 ≤ 2

or 2𝑎 = 2 ≤ 1 + 2𝑏
or 1 + 2𝑏 = 2 ≤ 2𝑎

4. Solve:

5. Plug in and repeat
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Tropical varieties: definitions

𝐾: field with valuation (e.g. ℚ((𝑡)) or ℚ𝑝), 𝐼 ⊂ 𝐾[𝑿]

Definition using the image of the valuation:

𝑉trop(𝐼) = {val(𝒔) ∶ 𝑠 ∈ 𝑉�̄�(𝐼)}

Definition using the tropical semi-ring: for 𝑓 = ∑𝑎𝛼∈𝑆𝑎𝛼 ∏𝑥
𝛼𝑖
𝑖 , define

𝑓trop = min (val(𝑎𝛼)∑
𝛼𝑖

𝑥𝑖 ∶ 𝛼 ∈ 𝑆)

and
𝑉trop(𝑓) = {𝒘 ∈ ℚ𝑛 ∶ 𝑓trop is not differentiable at 𝒘}

Then:
𝑉trop(𝐼) = ⋂

𝑓∈𝐼
𝑉trop(𝑓)

Definition using initial ideals: for 𝒘 ∈ ℚ𝑛 and 𝑤0 ∈ ℚ, define

init(𝑤0,𝒘)(𝑓) = sum of terms of 𝑓 with maximal (𝑤0, 𝒘)-degree

Then:

𝑉trop(𝐼) = {𝒘 ∈ ℚ𝑛 ∶ init(1,𝒘)(𝐼) = ⟨init(1,𝒘)(𝑓) ∶ 𝑓 ∈ 𝐼⟩ does not contain a monomial}

2



Computing tropical varieties (1)

“Easy” case: the coefficients do not have a valuation

Naive algorithm:

1. Compute the Gröbner fan of the ideal

2. For each cone:
2.1 Pick a vector 𝒘 in the cone, define the corresponding monomial order
2.2 Compute init𝒘(𝐼)
2.3 Compute (init𝒘(𝐼) ∶ (𝑥1 ⋯𝑥𝑛)∞)
2.4 If the result is 1, add the cone to the tropical variety

Less naive algorithm: do the same thing, but compute the tropical variety as you go,
without traversing the entire Gröbner fan.
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Computing tropical varieties (2) (Ren, 2017)

Hard case 1: 𝐾 = ℚ((𝑡))
Compute the Gröbner fan using standard bases and Mora’s algorithm

Hard case 2: 𝐾 = ℚ𝑝
Reduce to the previous case by:

1. replacing numbers ∑𝑎𝑖𝑝𝑖 with series ∑𝑎𝑖𝑡𝑖

2. adding the equation 𝑝 − 𝑡 to the ideal

3. saturating by 𝑝

This work: deal with both cases uniformly using Tate series:
instead of working with polynomials over a valued field, we work with convergent series

• Computing the Gröbner fan

• Computing the initial ideal

• Computing the saturation

4



Gröbner cones and Gröbner fan

𝐼 ⊂ ℚ[𝑿] homogeneous ideal (without coefficient valuation)

Gröbner cone
• Equivalence relation on ℚ𝑛: 𝒂 ∼ 𝒃 ⟺ init𝒂(𝐼) = init𝒃(𝐼)
• Equivalence classes are (open) rational polyhedral cones
• Cones with maximal dimension correspond to term orders
• There are only finitely many cones

Gröbner fan:
• Subdivision of ℚ𝑛 as the union of Gröbner cones
• Lower dimensional cones are boundaries (collisions between leading terms)
• The tropical variety is contained in those lower-dimensional cones

Ex: 𝑓 = 𝑥2 + 𝑦2 + 1

𝒘 init𝒘(𝑓)
(1, 0) 𝑥2

(0, 1) 𝑦2

(−1, −1) 1
(1, 1) 𝑥2 + 𝑦2

(0, −1) 𝑥2 + 1
(−1, 0) 𝑦2 + 1
(0, 0) 𝑥2 + 𝑦2 + 1
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Term orders and universal Gröbner bases

Why are there finitely many equivalence classes of term orders?

Fact 1: given a finite set of polynomials, there are finitely many possible leading terms.

Fact 2: a homogeneous polynomial ideal admits a finite Gröbner basis working for all orders
(universal GB)

Both facts are effective for polynomials:

• the possible leading terms are the vertices of the Newton polytope

• the corresponding term orders can be computed

• if there is an order for which the set is not a Gröbner basis, we can compute a Gröbner basis,
take the union and repeat

• the process terminates by a Noetherianity argument

Why homogeneous?
This only works for global orders, but we never need to compare terms with different degrees
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Tate series

Tate series: convergent series with coefficients in a valued field or ring (e.g. ℚ((𝑇)))

∑
𝛼∈ℕ𝑛

𝑎𝛼𝑿𝛼 with val(𝑎𝛼) − 𝛼 ⋅ 𝒓
|𝛼|→∞
−−−−−−−−→ ∞

• 𝒓 = (𝑟1, … , 𝑟𝑛): convergence radius

• Notation: 𝐾{𝑿; 𝒓}

• If 𝒓 = (0, … , 0), equivalent: 𝑎𝛼 → 0

• If 𝒓 ∈ ℤ𝑛, equivalent: 𝑎𝛼
𝑇|𝒓| → 0 (coefficients after evaluating at (𝑋1/𝑇 𝑟1 , … , 𝑋𝑛/𝑇 𝑟𝑛))

• 𝐾[𝑿] ⊆ 𝐾{𝑿; 𝒓} for all 𝒓 (“infinite” convergence radius)

• If 𝒓 ≤ 𝒔, 𝐾{𝑿; 𝒔} ⊆ 𝐾{𝑿; 𝒓}

• The minimal Gauss valuation component of 𝑓 is: init(−1,𝒓)(𝑓)

Term ordering:

𝑎𝑿𝛼 < 𝑏𝑿𝛽 ⟺ {
val(𝑎) − 𝒓 ⋅ 𝛼 > val(𝑏) − 𝒓 ⋅ 𝛽
or they are equal and 𝑿𝛼 < 𝑿𝛽

• Every Tate series has a leading term

• This allows to compute Gröbner bases
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Overconvergence and polynomial ideals

∑
𝛼∈ℕ𝑛

𝑎𝛼𝑿𝛼 with val(𝑎𝛼) − 𝛼 ⋅ 𝒓
|𝛼|→∞
−−−−−−−−→ ∞

• If 𝒓 ≤ 𝒔, then 𝐾{𝑿; 𝒔} ⊆ 𝐾{𝑿; 𝒓} Overconvergence
• 𝐾[𝑿] ⊆ 𝐾{𝑿; 𝒓} for all 𝒓 Infinite convergence radius
• If 𝐼 ⊆ 𝐾{𝑿; 𝒔} or 𝐼 ⊆ 𝐾[𝑿], then 𝐾{𝑿; 𝒓}𝐼 can be bigger than 𝐼 Completion
(Ex: 1 + 𝑇𝑋 ∈ ℚ(𝑇)[𝑋] is invertible in ℚ((𝑇)){𝑋; 0})

Theorem (Caruso, Vaccon, V. 2022)
Let 𝒓 ≤ 𝒔, 𝐼 ⊂ 𝐾{𝑿; 𝒓} and 𝐼𝒔 = 𝐼𝐾{𝑿; 𝒔}.
Then 𝐼𝒔 admits a Gröbner basis comprised only of elements of 𝐾{𝑿; 𝒓}.
In particular, the completion of a polynomial ideal has a polynomial basis.

Key component: Mora’s reduction algorithm
Input: 𝐺 a Gröbner basis (for a local or mixed order) and 𝑓
Output: ℎ and 𝑢 such that
• 𝑢𝑓 reduces to ℎ modulo 𝐺
• LT(𝑢) = 1 (for us: 𝑢 = 1 + part with positive valuation, or equivalently, 𝑢 is invertible)
• 𝑢 and ℎ live in the same ring as 𝑓 and the elements of 𝐺.
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Convergence radii, term orders and tropical varieties

𝑓 ∈ 𝐾{𝑿; 𝒓}
𝑓 = ∑

𝛼∈ℕ𝑛
𝑎𝛼𝑿𝛼 with val(𝑎𝛼) − 𝛼 ⋅ 𝒓

|𝛼|→∞
−−−−−−−−→ ∞

The component of minimal Gauss valuation in 𝑓 is a equal to init(−1,𝒘)(𝑓), and in particular, the
latter is well-defined and a polynomial.

Theorem (Vaccon, V. 2023)
Let 𝐼 ⊆ 𝐾[𝑿], and 𝒘 ∈ ℚ𝑛+1 a system of weights.
Let 𝒓 = (−𝑤1/𝑤0, … , −𝑤𝑛/𝑤0) and 𝐼𝒓 = 𝐼 𝐾{𝑿; 𝒓} the corresponding completion, then

init𝒘(𝐼) = init𝒘(𝐼𝒓) ∩ 𝐾[𝑿].

This is a local result, which translates globally as:

𝑉trop(𝐼) = ⋃
𝒔∈ℚ𝑛

𝑉trop(𝐼𝒔).

Theorem (Vaccon, V. 2023)
Let 𝐺 be a Gröbner basis of 𝐼𝒓, then

init𝒘(𝐼𝒓) = ⟨init𝒘(𝑔) ∶ 𝑔 ∈ 𝐺⟩.
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Universal analytic Gröbner bases

Theorem (Caruso, Vaccon, V. 2022; Vaccon, V. 2023)
Let 𝐼 ⊆ 𝐾[𝑿] be a homogeneous ideal.
There exists a finite subset 𝐺 ⊆ 𝐼 such that
for all 𝒓 ∈ ℚ𝑛 (and for all monomial orders), 𝐺 is a Gröbner basis of 𝐼𝒓 = 𝐼 𝐾{𝑿; 𝒓}.
Furthermore, there exists an algorithm to compute it.

Why homogeneous? Because we need reduced Gröbner bases.

Question:
Let 𝐼 be an ideal, ≤1 and ≤2 two orders such that LT≤1(𝐼) = LT≤2(𝐼), and 𝐺 a Gröbner basis of 𝐼 for ≤1.
Is 𝐺 a Gröbner basis of 𝐼 for ≤2?

In the usual polynomial case (with global orders), it is not a problem:
we can assume that the basis is reduced and then it is easy.

But for local or mixed orders, we cannot reduce Gröbner bases:
• recall that Mora’s algorithm computes 𝑢 and ℎ such that 𝑢 𝑓 = ⋯ + ℎ and LT(ℎ) < LT(𝑓)
• the additional multiple 𝑢 allows us to get a terminating reduction for the leading term
• but that is a one-time trick: there is no way to prevent infinite tail reductions!

Homogeneous ideals have a reduced Gröbner basis.

This restriction (reduced GB or homogeneous ideal) is also present in the classical case.
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Putting everything together

Algorithm:
Input: 𝐼 ⊆ 𝐾[𝑋] homogeneous ideal.
Output: the tropical variety of 𝐼, given as a union of rational cones

1. compute a universal analytic Gröbner basis 𝐺 of 𝐼
(Mora’s reduction algorithm + universal GB algorithmn)

2. get all the term orders up to equivalence for 𝐼 (Newton polytope)

3. get all the maximal dimensional cones in the Gröbner fan (discrete geometry)

4. compute the rest of the cones (discrete geometry)

5. for each non-maximal cone C, pick a 𝒘 = (1, −𝒓) ∈ 𝐶, then init𝒘(𝐺) is a Gröbner basis of init𝒘(𝐼)
(theorem about Tate Gröbner bases in 𝐾{𝑿; 𝒓})

6. compute (init𝒘(𝐼) ∶ (𝑥1 ⋯𝑥𝑛)∞) (polynomial Tate Gröbner bases)

7. conclude whether 𝒘 ∈ 𝑉trop(𝐼) and therefore C ⊆ 𝑉trop(𝐼).
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Going further

What we did:
• Application of Tate series to the computation of tropical varieties
• New point of view on the existing algorithms
• It is likely that the optimized algorithms would translate just as well
• First effective application of tropical analytic geometry
(tropical geometry on convergent sequences)

Going further:
• The full scope of tropical analytic geometry requires much more specialized convergence
condition, e.g. convergence on a polyhedron (for several convergence radii which are not
component-wise ordered) or on a corona (allowing Laurent polynomials)

• This is currently very far from what we can hope to reach with our machinery
• The main questions in each case are:

1. Does there exists a Gröbner basis comprised of elements satisfying the same
constraints? Can we compute it?

2. Is there a minimal set of leading terms? Is there a universal analytic Gröbner basis? Can
we compute it?

• For polyhedra, we have an algorithm for the first question (based on yet another variant of
Mora’s reduction)
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