Computing tropical varieties using Tate series

Tristan Vaccon ${ }^{1} \quad$ Thibaut Verron ${ }^{2}$

Seminar Algebra and Discrete Mathematics, 29 June 2023

1. Université de Limoges, CNRS, XLIM, Limoges, France
2. Johannes Kepler University, Institute for Algebra, Linz, Austria

TROPICAL VARIETIES: AN EXAMPLE

Consider the polynomial equation:

$$
x^{2}+t y^{2}+t^{2}=0
$$

over $\mathbb{Q}(t)[x, y]$.
How to find series solution? Newton-Puiseux algorithm:

1. Make an ansatz: $x=t^{a}+\cdots, y=t^{b}+\cdots$
2. Plug in: $t^{2 a}+\cdots+t^{1+2 b}+\cdots+t^{2}=0$
3. Force a collision to find a and b :

$$
\begin{cases} & 2 a=1+2 b \leq 2 \\ \text { or } & 2 a=2 \leq 1+2 b \\ \text { or } & 1+2 b=2 \leq 2 a\end{cases}
$$

4. Solve:

TROPICAL VARIETIES: DEFINITIONS

K : field with valuation (e.g. $\mathbb{Q}((t))$ or $\left.\mathbb{Q}_{p}\right), I \subset K[\boldsymbol{X}]$
Definition using the image of the valuation:

$$
V_{\text {trop }}(I)=\left\{\operatorname{val}(\mathbf{s}): s \in V_{\bar{k}}(I)\right\}
$$

Definition using the tropical semi-ring: for $f=\sum a_{\alpha \in S} a_{\alpha} \Pi x_{i}^{\alpha_{i}}$, define

$$
f_{\text {trop }}=\min \left(\operatorname{val}\left(a_{\alpha}\right) \sum_{\alpha_{i}} x_{i}: \alpha \in S\right)
$$

and

$$
V_{\text {trop }}(f)=\left\{\boldsymbol{w} \in \mathbb{Q}^{n}: f_{\text {trop }} \text { is not differentiable at } \boldsymbol{w}\right\}
$$

Then:

$$
V_{\text {trop }}(I)=\bigcap_{f \in I} V_{\text {trop }}(f)
$$

Definition using initial ideals: for $\boldsymbol{w} \in \mathbb{Q}^{n}$ and $w_{0} \in \mathbb{Q}$, define

$$
\operatorname{init}_{\left(w_{0}, w\right)}(f)=\text { sum of terms of } f \text { with maximal }\left(w_{0}, \boldsymbol{w}\right) \text {-degree }
$$

Then:

$$
V_{\text {trop }}(I)=\left\{\boldsymbol{w} \in \mathbb{Q}^{n}: \operatorname{init}_{(1, w)}(I)=\left\langle\operatorname{init}_{(1, w)}(f): f \in I\right\rangle \text { does not contain a monomial }\right\}
$$

COMPUTING TROPICAL VARIETIES (1)

"Easy" case: the coefficients do not have a valuation
Naive algorithm:

1. Compute the Gröbner fan of the ideal
2. For each cone:
2.1 Pick a vector \boldsymbol{w} in the cone, define the corresponding monomial order
2.2 Compute init ${ }_{w}(I)$
2.3 Compute (init $\left.{ }_{w}(I):\left(x_{1} \cdots x_{n}\right)^{\infty}\right)$
2.4 If the result is 1 , add the cone to the tropical variety

Less naive algorithm: do the same thing, but compute the tropical variety as you go, without traversing the entire Gröbner fan.

Hard case 1: $K=\mathbb{Q}((t))$
Compute the Gröbner fan using standard bases and Mora's algorithm

Hard case 2: $K=\mathbb{Q}_{p}$
Reduce to the previous case by:

1. replacing numbers $\sum a_{i} p^{i}$ with series $\sum a_{i} t^{i}$
2. adding the equation $p-t$ to the ideal
3. saturating by p

This work: deal with both cases uniformly using Tate series:
instead of working with polynomials over a valued field, we work with convergent series

- Computing the Gröbner fan
- Computing the initial ideal
- Computing the saturation

GRÖBNER CONES AND GRÖBNER FAN

$I \subset \mathbb{Q}[\boldsymbol{X}]$ homogeneous ideal (without coefficient valuation)

Gröbner cone

- Equivalence relation on $\mathbb{Q}^{n}: \boldsymbol{a} \sim \boldsymbol{b} \Longleftrightarrow \operatorname{init}_{\boldsymbol{a}}(I)=\operatorname{init}_{\boldsymbol{b}}(I)$
- Equivalence classes are (open) rational polyhedral cones
- Cones with maximal dimension correspond to term orders
- There are only finitely many cones

Gröbner fan:

- Subdivision of \mathbb{Q}^{n} as the union of Gröbner cones
- Lower dimensional cones are boundaries (collisions between leading terms)
- The tropical variety is contained in those lower-dimensional cones

Ex: $f=x^{2}+y^{2}+1$

\boldsymbol{w}	$\operatorname{init}_{w}(f)$
$(1,0)$	x^{2}
$(0,1)$	y^{2}
$(-1,-1)$	1
$(1,1)$	$x^{2}+y^{2}$
$(0,-1)$	$x^{2}+1$
$(-1,0)$	$y^{2}+1$
$(0,0)$	$x^{2}+y^{2}+1$

TERM ORDERS AND UNIVERSAL GRÖBNER BASES

Why are there finitely many equivalence classes of term orders?
Fact 1: given a finite set of polynomials, there are finitely many possible leading terms.
Fact 2: a homogeneous polynomial ideal admits a finite Gröbner basis working for all orders (universal GB)

Both facts are effective for polynomials:

- the possible leading terms are the vertices of the Newton polytope
- the corresponding term orders can be computed
- if there is an order for which the set is not a Gröbner basis, we can compute a Gröbner basis, take the union and repeat
- the process terminates by a Noetherianity argument

Why homogeneous?
This only works for global orders, but we never need to compare terms with different degrees

TATE SERIES

Tate series: convergent series with coefficients in a valued field or ring (e.g. $\mathbb{Q}((T)))$

$$
\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \boldsymbol{X}^{\alpha} \text { with } \operatorname{val}\left(a_{\alpha}\right)-\alpha \cdot \boldsymbol{r} \xrightarrow{|\alpha| \rightarrow \infty} \infty
$$

- $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$: convergence radius
- Notation: $K\{\mathbf{X} ; \boldsymbol{r}\}$
- If $\boldsymbol{r}=(0, \ldots, 0)$, equivalent: $a_{\alpha} \rightarrow 0$
- If $\boldsymbol{r} \in \mathbb{Z}^{n}$, equivalent: $\frac{a_{a}}{T|r|} \rightarrow 0$ (coefficients after evaluating at $\left(X_{1} / T^{r_{1}}, \ldots, X_{n} / T^{r_{n}}\right)$)
- $K[\boldsymbol{X}] \subseteq K\{\boldsymbol{X} ; \boldsymbol{r}\}$ for all \boldsymbol{r} ("infinite" convergence radius)
- If $\boldsymbol{r} \leq \mathbf{s}, K\{\mathbf{X} ; \boldsymbol{s}\} \subseteq K\{\mathbf{X} ; \boldsymbol{r}\}$
- The minimal Gauss valuation component of f is: $\operatorname{init}_{(-1, r)}(f)$

Term ordering:

$$
a \boldsymbol{X}^{\alpha}<b \boldsymbol{X}^{\beta} \Longleftrightarrow\left\{\begin{array}{l}
\operatorname{val}(a)-\boldsymbol{r} \cdot \alpha>\operatorname{val}(b)-\boldsymbol{r} \cdot \beta \\
\text { or they are equal and } \boldsymbol{X}^{\alpha}<\boldsymbol{X}^{\beta}
\end{array}\right.
$$

- Every Tate series has a leading term
- This allows to compute Gröbner bases

OvERCONVERGENCE AND POLYNOMIAL IDEALS

$$
\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \boldsymbol{X}^{\alpha} \text { with } \operatorname{val}\left(a_{\alpha}\right)-\alpha \cdot \boldsymbol{r} \xrightarrow{|\alpha| \rightarrow \infty} \infty
$$

- If $\boldsymbol{r} \leq \mathbf{s}$, then $K\{\boldsymbol{X} ; \boldsymbol{s}\} \subseteq K\{\boldsymbol{X} ; \boldsymbol{r}\}$

Overconvergence

- $K[\boldsymbol{X}] \subseteq K\{\boldsymbol{X} ; \boldsymbol{r}\}$ for all \boldsymbol{r}

Infinite convergence radius

- If $I \subseteq K\{\boldsymbol{X} ; \boldsymbol{s}\}$ or $I \subseteq K[\boldsymbol{X}]$, then $K\{\boldsymbol{X} ; \boldsymbol{r}\} I$ can be bigger than I Completion (Ex: $1+T X \in \mathbb{Q}(T)[X]$ is invertible in $\mathbb{Q}((T))\{X ; 0\})$

Theorem (Caruso, Vaccon, V. 2022)

Let $\boldsymbol{r} \leq \mathbf{s}, I \subset K\{\mathbf{X} ; \boldsymbol{r}\}$ and $I_{\mathbf{s}}=I K\{\mathbf{X} ; \mathbf{s}\}$.
Then I_{s} admits a Gröbner basis comprised only of elements of $K\{\boldsymbol{X} ; \boldsymbol{r}\}$.
In particular, the completion of a polynomial ideal has a polynomial basis.

Key component: Mora's reduction algorithm

Input: G a Gröbner basis (for a local or mixed order) and f Output: h and u such that

- uf reduces to h modulo G
- $\operatorname{LT}(u)=1$ (for us: $u=1+$ part with positive valuation, or equivalently, u is invertible)
- u and h live in the same ring as f and the elements of G.

CONVERGENCE RADII, TERM ORDERS AND TROPICAL VARIETIES

$f \in K\{\boldsymbol{X} ; \boldsymbol{r}\}$

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \boldsymbol{X}^{\alpha} \text { with } \operatorname{val}\left(a_{\alpha}\right)-\alpha \cdot \boldsymbol{r} \xrightarrow{|\alpha| \rightarrow \infty} \infty
$$

The component of minimal Gauss valuation in f is a equal to init ${ }_{(-1, w)}(f)$, and in particular, the latter is well-defined and a polynomial.

Theorem (Vaccon, V. 2023)
Let $I \subseteq K[\boldsymbol{X}]$, and $\boldsymbol{w} \in \mathbb{Q}^{n+1}$ a system of weights.
Let $\boldsymbol{r}=\left(-w_{1} / w_{0}, \ldots,-w_{n} / w_{0}\right)$ and $I_{\boldsymbol{r}}=I K\{\mathbf{X} ; \boldsymbol{r}\}$ the corresponding completion, then

$$
\operatorname{init}_{w}(I)=\operatorname{init}_{w}\left(I_{r}\right) \cap K[X] .
$$

This is a local result, which translates globally as:

$$
V_{\text {trop }}(I)=\bigcup_{\mathbf{s} \in \mathbb{Q}^{n}} V_{\text {trop }}\left(I_{\mathbf{s}}\right) .
$$

Theorem (Vaccon, V. 2023)

Let G be a Gröbner basis of I_{r}, then

$$
\operatorname{init}_{w}\left(I_{r}\right)=\left\langle\operatorname{init}_{w}(g): g \in G\right\rangle .
$$

Universal analytic Gröbner bases

Theorem (Caruso, Vaccon, V. 2022; Vaccon, V. 2023)
Let $I \subseteq K[\boldsymbol{X}]$ be a homogeneous ideal.
There exists a finite subset $G \subseteq I$ such that
for all $\boldsymbol{r} \in \mathbb{Q}^{n}$ (and for all monomial orders), G is a Gröbner basis of $I_{\boldsymbol{r}}=I K\{\mathbf{X} ; \boldsymbol{r}\}$. Furthermore, there exists an algorithm to compute it.

Universal analytic Gröbner bases

Theorem (Caruso, Vaccon, V. 2022; Vaccon, V. 2023)
Let $I \subseteq K[X]$ be a homogeneous ideal.
There exists a finite subset $G \subseteq I$ such that
for all $\boldsymbol{r} \in \mathbb{Q}^{n}$ (and for all monomial orders), G is a Gröbner basis of $I_{r}=I K\{\mathbf{X} ; \boldsymbol{r}\}$. Furthermore, there exists an algorithm to compute it.

Why homogeneous? Because we need reduced Gröbner bases.

Question:

Let I be an ideal, \leq_{1} and \leq_{2} two orders such that $\mathrm{LT}_{\leq_{1}}(I)=\mathrm{LT}_{\leq_{2}}(I)$, and G a Gröbner basis of I for \leq_{1}. Is G a Gröbner basis of I for \leq_{2} ?

UNIVERSAL ANALYtic GRÖBNER BASES

Theorem (Caruso, Vaccon, V. 2022; Vaccon, V. 2023)
Let $I \subseteq K[\boldsymbol{X}]$ be a homogeneous ideal.
There exists a finite subset $G \subseteq I$ such that
for all $\boldsymbol{r} \in \mathbb{Q}^{n}$ (and for all monomial orders), G is a Gröbner basis of $I_{\boldsymbol{r}}=I K\{\mathbf{X} ; \boldsymbol{r}\}$.
Furthermore, there exists an algorithm to compute it.

Why homogeneous? Because we need reduced Gröbner bases.

Question:

Let I be an ideal, \leq_{1} and \leq_{2} two orders such that $\mathrm{LT}_{\leq_{1}}(I)=\mathrm{LT}_{\leq_{2}}(I)$, and G a Gröbner basis of I for \leq_{1}. Is G a Gröbner basis of I for \leq_{2} ?

In the usual polynomial case (with global orders), it is not a problem:
we can assume that the basis is reduced and then it is easy.
But for local or mixed orders, we cannot reduce Gröbner bases:

- recall that Mora's algorithm computes u and h such that $u f=\cdots+h$ and $\operatorname{LT}(h)<\operatorname{LT}(f)$
- the additional multiple u allows us to get a terminating reduction for the leading term
- but that is a one-time trick: there is no way to prevent infinite tail reductions!

Homogeneous ideals have a reduced Gröbner basis.
This restriction (reduced GB or homogeneous ideal) is also present in the classical case.

PUTting everything together

Algorithm:

Input: $I \subseteq K[X]$ homogeneous ideal.
Output: the tropical variety of I, given as a union of rational cones

1. compute a universal analytic Gröbner basis G of I (Mora's reduction algorithm + universal GB algorithmn)
2. get all the term orders up to equivalence for I (Newton polytope)
3. get all the maximal dimensional cones in the Gröbner fan (discrete geometry)
4. compute the rest of the cones (discrete geometry)
5. for each non-maximal cone \mathcal{C}, pick a $\boldsymbol{w}=(1,-\boldsymbol{r}) \in \mathcal{C}$, then $\operatorname{init}_{w}(G)$ is a Gröbner basis of init ${ }_{w}(I)$ (theorem about Tate Gröbner bases in $K\{\boldsymbol{X} ; \boldsymbol{r}\}$)
6. compute (init $\left._{w}(I):\left(x_{1} \cdots x_{n}\right)^{\infty}\right)$ (polynomial Tate Gröbner bases)
7. conclude whether $\boldsymbol{w} \in V_{\text {trop }}(I)$ and therefore $\mathcal{C} \subseteq V_{\text {trop }}(I)$.

GOING FURTHER

What we did:

- Application of Tate series to the computation of tropical varieties
- New point of view on the existing algorithms
- It is likely that the optimized algorithms would translate just as well
- First effective application of tropical analytic geometry (tropical geometry on convergent sequences)

Going further:

- The full scope of tropical analytic geometry requires much more specialized convergence condition, e.g. convergence on a polyhedron (for several convergence radii which are not component-wise ordered) or on a corona (allowing Laurent polynomials)
- This is currently very far from what we can hope to reach with our machinery
- The main questions in each case are:

1. Does there exists a Gröbner basis comprised of elements satisfying the same constraints? Can we compute it?
2. Is there a minimal set of leading terms? Is there a universal analytic Gröbner basis? Can we compute it?

- For polyhedra, we have an algorithm for the first question (based on yet another variant of Mora's reduction)

