## How to Certify transcendence of D-Finite functions?

Manuel Kauers ${ }^{1}$, Christoph Koutschan ${ }^{2}$, Thibaut Verron ${ }^{1}$
Journées Nationales de Calcul Formel 2023, 8 mars 2023

1. Institute for Algebra, Johannes Kepler University, Linz, Autriche
2. Austrian Academy of Sciences, RICAM, Linz, Autriche

FШF
Der Wissenschaftsfonds.

## ÖAW RICAM

## Algebraic and D-FINITE FUNCTIONS

## What is a function?

- For us here: "something" which can be added, multiplied, differentiated...
- Elements of a differential algebra
- Examples: polynomials, rational functions, power/Laurent/Puiseux series...


## Algebraic function

$$
\begin{gathered}
\exists \alpha_{0}, \ldots, \alpha_{r} \in C(x) \text { with } 0=\alpha_{r} f^{r}+\cdots+\alpha_{1} f+\alpha_{0} \\
\exists P=\alpha_{r}(x) y^{r}+\cdots+\alpha_{1}(x) y+\alpha_{0}(x) \in C(x)[y] \text { with } 0=P(x, f)
\end{gathered}
$$

## D-finite function

$$
\begin{aligned}
& \exists \alpha_{0}, \ldots, \alpha_{r} \in C(x) \text { with } 0=\alpha_{d} f^{(d)}+\cdots+\alpha_{1} f^{\prime}+\alpha_{0} f \\
& \exists L=\alpha_{d} D^{r}+\cdots+\alpha_{1} D+\alpha_{0} \in C(x)[D] \text { with } 0=L(f)
\end{aligned}
$$

## A VERY GENERAL PROBLEM

Question "Given a function, is it algebraic ?"
This question is way too general: how is the function given?

## A VERY GENERAL PROBLEM

Question "Given a D-finite function, is it algebraic ?"
The function is given by the D-finite equation and initial conditions.
Reduces to "Given a D-finite equation, does it have only algebraic solutions?"

## Previous work

- Schwarz, 1873 : classification of algebraic ${ }_{2} F_{1}$ hypergeometric functions
- Singer, 1979 : algorithm finding all algebraic solutions of a D-finite equation
- Kovacic, 1986: same but practical, for equations of order 2
- Beukers, Heckman, 1989 : same, for all hypergeometric equations


## A VERY GENERAL PROBLEM

## Question "Given a D-finite function, is it algebraic ?"

The function is given by the D-finite equation and initial conditions.
Reduces to "Given a D-finite equation, does it have only algebraic solutions?"

## Previous work

- Schwarz, 1873 : classification of algebraic ${ }_{2} F_{1}$ hypergeometric functions
- Singer, 1979 : algorithm finding all algebraic solutions of a D-finite equation
- Kovacic, 1986: same but practical, for equations of order 2
- Beukers, Heckman, 1989 : same, for all hypergeometric equations


## Alternatives: sufficient conditions and verifiable certificates

- For algebraicity: polynomial equation: $\checkmark$
- For transcendence:
- Transcendental singularities: $\checkmark$
- Asymptotics, monodromy: numerics, closely related to transcendental singularities
- p-curvature: Grothendieck's conjecture, "almost all" primes
- Pseudoconstants


## A FEW EXAMPLES

$$
\begin{array}{ll}
L_{1}=\left(x^{2}-x\right) D^{2}+\left(\frac{1}{3} x-\frac{2}{3}\right) D+\frac{1}{12} & L_{2}=\left(x^{2}-x\right) D^{2}+(x-2) D-\frac{1}{9} \\
L_{3}=\left(x^{2}-x\right) D^{2}+\left(\frac{31}{24} x-\frac{5}{6}\right) D+\frac{1}{48} & L_{4}=\left(x^{2}-x\right) D^{2}+\left(-\frac{49}{6} x+2\right) D-12 \\
L_{5}=\left(x^{2}-x\right) D^{2}+\left(\frac{49}{6} x-\frac{7}{3}\right) D+12 & L_{6}=\left(x^{2}-x\right) D^{2}+\left(\frac{164}{15} x-\frac{16}{3}\right) D+\frac{1403}{60}
\end{array}
$$

## How to find algebraic equations?

## Guess! (and prove) (Polya, 1945; Bostan, Kauers, 2009)

1. Pick a power series solution $f$ of the differential equation
2. Compute a large number of coefficients of $f$

Example $L_{1}=\left(x^{2}-x\right) D^{2}+\left(\frac{1}{3} x-\frac{2}{3}\right) D+\frac{1}{12}$

- Solution $f=1-\frac{1}{48}(x+1)-\frac{1}{72}(x+1)^{2}-\frac{5}{512}(x+1)^{3}+\cdots+(\ldots)(x+1)^{500}+O\left((x+1)^{500}\right)$


## How TO FIND ALGEBRAIC EQUATIONS?

Guess! (and prove) (Polya, 1945; Bostan, Kauers, 2009)

1. Pick a power series solution $f$ of the differential equation
2. Compute a large number of coefficients of $f$
3. Form an ansatz $P(x, y)$ : polynomial in $x$ and $y$ with fixed degree and undeterminate coefficients $c_{\alpha}$

Example $L_{1}=\left(x^{2}-x\right) D^{2}+\left(\frac{1}{3} x-\frac{2}{3}\right) D+\frac{1}{12}$

- Solution $f=1-\frac{1}{48}(x+1)-\frac{1}{72}(x+1)^{2}-\frac{5}{512}(x+1)^{3}+\cdots+(\ldots)(x+1)^{500}+O\left((x+1)^{500}\right)$
- Ansatz $P=\sum_{i=0}^{12} \sum_{j=0}^{24} c_{i, j} x^{i} y^{j}$


## How TO FIND ALGEBRAIC EQUATIONS?

Guess! (and prove) (Polya, 1945; Bostan, Kauers, 2009)

1. Pick a power series solution $f$ of the differential equation
2. Compute a large number of coefficients of $f$
3. Form an ansatz $P(x, y)$ : polynomial in $x$ and $y$ with fixed degree and undeterminate coefficients $c_{\alpha}$
4. Solve $P(x, f(x))=0$ for the $c_{\alpha}$ 's
5. If no solution is found: $f$ is not annihilated by any polynomial with the chosen degree bounds
6. If a solution is found, congratulations for the successful guess! (Now prove that this algebraic equation actually annihilates $f$ )

Example $L_{1}=\left(x^{2}-x\right) D^{2}+\left(\frac{1}{3} x-\frac{2}{3}\right) D+\frac{1}{12}$

- Solution $f=1-\frac{1}{48}(x+1)-\frac{1}{72}(x+1)^{2}-\frac{5}{512}(x+1)^{3}+\cdots+(\ldots)(x+1)^{500}+O\left((x+1)^{500}\right)$
- Ansatz $P=\sum_{i=0}^{12} \sum_{j=0}^{24} c_{i, j} x^{i} y^{j}$
- Found! $P=y^{24}-\left(x^{2}+14 x+1\right) y^{20}+\left(-\frac{1}{3} x^{3}+11 x^{2}+11 x-\frac{1}{3}\right) y^{18}+\cdots$
- From there one proves that the solutions of $L_{1}$ are all algebraic.


## How to find transcendental solutions? (1)

Example $L_{2}=\left(x^{2}-x\right) D^{2}+(x-2) D-\frac{1}{9}$

- Basis of solutions of $L_{2}$ at $-1: 1+\frac{1}{36}(x+1)^{2}+\frac{1}{36}(x+1)^{3}+\frac{13}{486}(x+1)^{4}+O\left((x+1)^{5}\right)$

$$
(x+1)+\frac{3}{4}(x+1)^{2}+\frac{73}{108}(x+1)^{3}+\frac{23}{36}(x+1)^{4}+O\left((x+1)^{5}\right)
$$

## Theorem

Let $f \in V(L)$, then for almost all $v \in C \cup\{\infty\}, f$ has a power series expansion at $v$ : $f(x)=\sum_{n=0}^{\infty} a_{n}(x-v)^{n}$.

## How to find transcendental solutions? (1)

Example $L_{2}=\left(x^{2}-x\right) D^{2}+(x-2) D-\frac{1}{9}$

- Singular points of $L_{2}: 0,1, \infty$ (subset of the roots of the leading coefficient and $\infty$ )
- Basis of solutions of $L_{2}$ at $-1: 1+\frac{1}{36}(x+1)^{2}+\frac{1}{36}(x+1)^{3}+\frac{13}{486}(x+1)^{4}+O\left((x+1)^{5}\right)$

$$
(x+1)+\frac{3}{4}(x+1)^{2}+\frac{73}{108}(x+1)^{3}+\frac{23}{36}(x+1)^{4}+O\left((x+1)^{5}\right)
$$

## Theorem

Let $f \in V(L)$, then for all regular point $v$ of $L, f$ has a power series expansion at $v$ : $f(x)=\sum_{n=0}^{\infty} a_{n}(x-v)^{n}$.

## How to find transcendental solutions? (1)

Example $L_{2}=\left(x^{2}-x\right) D^{2}+(x-2) D-\frac{1}{9}$

- Singular points of $L_{2}: 0,1, \infty$ (subset of the roots of the leading coefficient and $\infty$ )
- Basis of solutions of $L_{2}$ at $-1: 1+\frac{1}{36}(x+1)^{2}+\frac{1}{36}(x+1)^{3}+\frac{13}{486}(x+1)^{4}+O\left((x+1)^{5}\right)$

$$
(x+1)+\frac{3}{4}(x+1)^{2}+\frac{73}{108}(x+1)^{3}+\frac{23}{36}(x+1)^{4}+O\left((x+1)^{5}\right)
$$

- Basis of solutions of $L_{2}$ at 0 : $f_{1}=1-\frac{1}{18} x-\frac{2}{243} x^{2}-\frac{35}{13122} x^{3}-\frac{70}{59049} x^{4}+O\left(x^{5}\right)$

$$
f_{2}=\frac{9}{8} x^{-1}-\frac{9}{4}+\frac{5}{24} x+O\left(x^{2}\right)+\log (x)\left(1-\frac{1}{18} x+O\left(x^{2}\right)\right)
$$

## Theorem

Let $f \in V(L)$, then for all regular point $v$ of $L, f$ has a power series expansion at $v$ : $f(x)=\sum_{n=0}^{\infty} a_{n}(x-v)^{n}$.

## How to find transcendental solutions? (1)

Example $L_{2}=\left(x^{2}-x\right) D^{2}+(x-2) D-\frac{1}{9}$

- Singular points of $L_{2}: 0,1, \infty$ (subset of the roots of the leading coefficient and $\infty$ )
- Basis of solutions of $L_{2}$ at $-1: 1+\frac{1}{36}(x+1)^{2}+\frac{1}{36}(x+1)^{3}+\frac{13}{486}(x+1)^{4}+O\left((x+1)^{5}\right)$

$$
(x+1)+\frac{3}{4}(x+1)^{2}+\frac{73}{108}(x+1)^{3}+\frac{23}{36}(x+1)^{4}+O\left((x+1)^{5}\right)
$$

- Basis of solutions of $L_{2}$ at 0 : $f_{1}=1-\frac{1}{18} x-\frac{2}{243} x^{2}-\frac{35}{13122} x^{3}-\frac{70}{59049} x^{4}+O\left(x^{5}\right)$

$$
f_{2}=\frac{9}{8} x^{-1}-\frac{9}{4}+\frac{5}{24} x+O\left(x^{2}\right)+\log (x)\left(1-\frac{1}{18} x+O\left(x^{2}\right)\right)
$$

- So $L_{2}$ has a transcendental solution!


## Theorem

Let $f \in V(L)$, then for all regular point $v$ of $L, f$ has a power series expansion at $v$ : $f(x)=\sum_{n=0}^{\infty} a_{n}(x-v)^{n}$.

## Theorem

An algebraic function has a Puiseux series expansion at all points: $f(x)=\sum_{n=-v}^{\infty} a_{n}(x-v)^{\frac{n}{u}}$.

## How to find transcendental solutions? (2)

Example $L_{3}=\left(x^{2}-x\right) D^{2}+\left(\frac{31}{24} x-\frac{5}{6}\right) D+\frac{1}{48}$

- Singular points: $0,1, \infty$
- Basis of solutions at 0: $x^{\frac{1}{6}} \cdot\left(1+\frac{1}{12} x+\frac{31}{936} x^{2}+O\left(x^{3}\right)\right)$

$$
1+\frac{1}{40} x+\frac{63}{7040} x^{2}+O\left(x^{3}\right)
$$

- Basis of solutions at 1: $(x-1)^{\frac{13}{24}} \cdot\left(1-\frac{34}{111}(x-1)+\frac{3485}{20313}(x-1)^{2}+O\left((x-1)^{3}\right)\right)$

$$
1-\frac{1}{22}(x-1)+\frac{9}{440}(x-1)^{2}+O\left((x-1)^{3}\right)
$$

- Basis of solutions at $\infty:(1 / x)^{\frac{1}{6}} \cdot\left(1+\frac{4}{75}(1 / x)+\frac{32}{1575}(1 / x)^{2}+O\left((1 / x)^{3}\right)\right)$

$$
(1 / x)^{\frac{1}{8}} \cdot\left(1+\frac{7}{184}(1 / x)+\frac{1953}{138368}(1 / x)^{2}+O\left((1 / x)^{3}\right)\right)
$$

All solutions are Puiseux series, but...

## How to find transcendental solutions? (2)

Example $L_{3}=\left(x^{2}-x\right) D^{2}+\left(\frac{31}{24} x-\frac{5}{6}\right) D+\frac{1}{48}$

- Singular points: $0,1, \infty$
- Basis of solutions at 0: $x^{\frac{1}{6}} \cdot\left(1+\frac{1}{12} x+\frac{31}{936} x^{2}+O\left(x^{3}\right)\right)$

$$
1+\frac{1}{40} x+\frac{63}{7040} x^{2}+O\left(x^{3}\right)
$$

- Basis of solutions at 1: $(x-1)^{\frac{13}{24}} \cdot\left(1-\frac{34}{111}(x-1)+\frac{3485}{20313}(x-1)^{2}+O\left((x-1)^{3}\right)\right)$

$$
1-\frac{1}{22}(x-1)+\frac{9}{440}(x-1)^{2}+O\left((x-1)^{3}\right)
$$

- Basis of solutions at $\infty:(1 / x)^{\frac{1}{6}} \cdot\left(1+\frac{4}{75}(1 / x)+\frac{32}{1575}(1 / x)^{2}+O\left((1 / x)^{3}\right)\right)$

$$
(1 / x)^{\frac{1}{8}} \cdot\left(1+\frac{7}{184}(1 / x)+\frac{1953}{138368}(1 / x)^{2}+O\left((1 / x)^{3}\right)\right)
$$

All solutions are Puiseux series, but...

## Theorem

Any non-constant algebraic function must have at least one pole.

So $L_{3}$ has only transcendental solutions.

## GENERALIZATION: PSEUDOCONSTANTS

Closure properties: the sum, product, and differential of algebraic functions is algebraic In particular, if $P \in C(x)[D]$ and $f$ is algebraic, then $P(f)$ is algebraic.

## Theorem

Let $f \in V(L)$ such that there exists $P \in C(x)[D]$ such that:

- at all points of $C \cup\{\infty\}, P(f)$ does not have a pole
- $P(f)$ is not constant

Then $f$ is transcendental.

Finding such a $P$ is hard!

## GENERALIZATION: PSEUDOCONSTANTS

Closure properties: the sum, product, and differential of algebraic functions is algebraic In particular, if $P \in C(x)[D]$ and $f$ is algebraic, then $P(f)$ is algebraic.

## Theorem

Let $f \in V(L)$ such that there exists $P \in C(x)[D]$ such that:

- at all points of $C \cup\{\infty\}, P(f)$ does not have a pole
- $P(f)$ is not constant

Then $f$ is transcendental.

Finding such a $P$ is hard! This is easier:

## Theorem

Assume that there exists $P \in C(x)[D]$ such that:

- at all points of $C \cup\{\infty\}$, and for all $f \in V(L), P(f)$ does not have a pole
- there exists $f \in V(L)$ such that $P(f)$ is not constant ( $\Longleftrightarrow D \cdot P(f) \neq 0)$

Then $L$ admits a transcendental solution.

Definition: $P$ is called a pseudoconstant of $L$.
Example: 1 is a pseudoconstant of $L_{3}$.

## Generalization: PSEUDOCONSTANTS

Closure properties: the sum, product, and differential of algebraic functions is algebraic In particular, if $P \in C(x)[D]$ and $f$ is algebraic, then $P(f)$ is algebraic.

## Theorem

Let $f \in V(L)$ such that there exists $P \in C(x)[D]$ such that:

- at all points of $C \cup\{\infty\}, P(f)$ does not have a pole
- $P(f)$ is not constant

Then $f$ is transcendental.

Finding such a $P$ is hard! This is easier:

## Theorem

Assume that there exists $P \in C(x)[D]$ such that:

- at all singularities of $L$, and for all $f$ in a basis of $V(L), P(f)$ does not have a pole
- $D \cdot P$ is not divisible by $L$

Then $L$ admits a transcendental solution.

Definition: $P$ is called a pseudoconstant of $L$.
Example: 1 is a pseudoconstant of $L_{3}$.

## How TO FIND PSEUDOCONSTANTS? (1)

## Method 1 make an ansatz and solve (requires guessing bounds)

Method 2 use integral bases

## Definition

Let $L \in C(x)[D]$ be an operator with Puiseux series solutions at all places.

- Integral element at $v \in C \cup\{\infty\}: P \in C(x)[D]$ such that for all $f \in V(L), P(f)$ does not have a pole at $v$
- Globally integral element: integral at all $v \in C$
- Completely integral element: integral at all $v \in C \cup\{\infty\}$
- Integral basis (at $v$ or global): basis of $C(x)[D] /\langle L\rangle$ made of integral elements
- Normal integral basis: global integral basis $\left(b_{1}, \ldots, b_{r}\right)$ such that there exists $\tau_{1}, \ldots, \tau_{r} \in \mathbb{N}$ such that $x^{\top_{1}} b_{1}, \ldots, x^{\top} b_{r}$ is an integral basis at $\infty$


## Algorithm

1. Compute a normal integral basis $b_{1}, \ldots, b_{r}$ with the corresponding $\tau_{1}, \ldots, \tau_{r}$
2. Return all $b_{i}$ such that $T_{i}=0$ and $D \cdot b_{i} \neq 0 \bmod L$

Example $L_{4}=\left(x^{2}-x\right) D^{2}+\left(-\frac{49}{6} x+2\right) D-12$

- $L_{4}$ has a basis of Puiseux series solutions at all places
- Finite singularities: 0,1
- Integral basis at 0 and 1 (global): $x(x-1)^{6}$

$$
x^{2}(x-1) D+\frac{143}{30} x^{2}+\frac{2}{5} x
$$

- Normal integral basis: $b_{1}=x^{2}(x-1) D+x\left(\frac{143}{30} x+\frac{2}{5}\right)$

$$
\tau_{1}=0
$$

$$
b_{2}=x^{6}(x-1)(x-10) D+\frac{8}{3} x^{7}+\cdots-\frac{21}{10} x \quad T_{2}=-3
$$

- $D \cdot b_{1}=\left(-\frac{2}{5} x^{2}+\frac{2}{5} x\right) D-\frac{37}{15} x+\frac{2}{5} \bmod L \neq 0 \bmod L$
- So $b_{1}$ is a pseudoconstant and $L$ has a transcendental solution.


## WHAT IF WE CANNOT FIND PSEUDO-CONSTANTS?

Closure properties (again) $f$ is algebraic if and only if $f^{2}$ is algebraic

## Symmetric product

$L_{1} \otimes L_{2}$ is a differential operator such that $V\left(L_{1} \otimes L_{2}\right)$ is spanned by $V\left(L_{1}\right) V\left(L_{2}\right)$ (products)
$L^{\otimes s}=L \otimes \cdots \otimes L$ is such that $V\left(L^{\otimes s}\right)$ is spanned by the products of $s$ solutions of $L$

## Theorem

$L$ has a transcendental solution if and only if $L^{\otimes s}$ has a transcendental solution
Example $L_{5}=\left(x^{2}-x\right) D^{2}+\left(\frac{49}{6} x-\frac{7}{3}\right) D+12$

- $L_{5}$ has a basis of Puiseux series solutions at all places
- $L_{5}$ does not have pseudoconstants
- $L_{5}^{\otimes 2}$ does have a pseudoconstant
- So $L_{5}$ has a transcendental solution


## QUESTION

Remark If $P(x, y)=y^{d}+\alpha_{d-1}(x) y^{d-1}+\cdots+\alpha_{0}(x) \in C(x)[y]$ is a polynomial annihilating $f \in V(L)$, then for all $i, \alpha_{i}$ is a rational solution of $L^{\otimes(d-i)}$.
$\Rightarrow$ possible to guess an algebraic equation without relying on a bound on the degree in $x$
$\Rightarrow$ semi-algorithm for finding algebraic equations

## QUESTION

Remark If $P(x, y)=y^{d}+\alpha_{d-1}(x) y^{d-1}+\cdots+\alpha_{0}(x) \in C(x)[y]$ is a polynomial annihilating $f \in V(L)$, then for all $i, \alpha_{i}$ is a rational solution of $L^{\otimes(d-i)}$.
$\Rightarrow$ possible to guess an algebraic equation without relying on a bound on the degree in $x$
$\Rightarrow$ semi-algorithm for finding algebraic equations
Question: can we also do it for transcendence?
What we have now is a way to search for pseudoconstants in an increasing search space. Does this terminate?
"If $L$ has a transcendental solution, does there exist s such that $L^{\infty s}$ has a pseudoconstant?"
Example $L_{6}=\left(x^{2}-x\right) D^{2}+\left(\frac{164}{15} x-\frac{16}{3}\right) D+\frac{1403}{60}$

- $L_{6}$ has a basis of Puiseux series solutions at all places
- $L_{6}$ does not have a pseudoconstant
- For $s=2, \ldots, 6, L_{6}^{\otimes s}$ does not have a pseudoconstant (using integral bases)
- For $s=7, \ldots, 30, L_{6}^{\otimes s}$ probably does not have a pseudoconstant (using an ansatz)
- Does there exist $s$ such that $L_{6}^{\otimes 5}$ has a pseudoconstant?


## A FEW EXAMPLES WITH CERTIFICATES

$$
\begin{gathered}
L_{1}=\left(x^{2}-x\right) D^{2}+\left(\frac{1}{3} x-\frac{2}{3}\right) D+\frac{1}{12} \\
\quad \checkmark \text { algebraic }
\end{gathered}
$$

$$
L_{3}=\left(x^{2}-x\right) D^{2}+\left(\frac{31}{24} x-\frac{5}{6}\right) D+\frac{1}{48}
$$ $x 1$ is a pseudoconstant

$$
L_{5}=\left(x^{2}-x\right) D^{2}+\left(\frac{49}{6} x-\frac{7}{3}\right) D+12
$$

$$
X L_{5}^{\otimes 2} \text { has a pseudoconstant }
$$

$L_{2}=\left(x^{2}-x\right) D^{2}+(x-2) D-\frac{1}{9}$
$x \log$ singularities
$L_{4}=\left(x^{2}-x\right) D^{2}+\left(-\frac{49}{6} x+2\right) D-12$
$X L_{4}$ has a pseudoconstant
$L_{6}=\left(x^{2}-x\right) D^{2}+\left(\frac{164}{15} x-\frac{16}{3}\right) D+\frac{1403}{60}$
( X Schwarz's list)

## CONCLUSION

## Summary

- Pseudoconstants: new certificate for the transcendence of D-finite functions
- Can be computed in practice using integral bases
- Available in the ore_algebra package for SageMath
- Can be used with an expanding search space


## Open questions and future work

- Are all transcendental solutions certified by a pseudoconstant?
- If not: can we prove that an equation does not have a completely integral element?


## CONCLUSION

## Summary

- Pseudoconstants: new certificate for the transcendence of D-finite functions
- Can be computed in practice using integral bases
- Available in the ore_algebra package for SageMath
- Can be used with an expanding search space


## Open questions and future work

- Are all transcendental solutions certified by a pseudoconstant?
- If not: can we prove that an equation does not have a completely integral element?
- Can we prove that a given function does not have a pole (globally)?


## Conclusion

## Summary

- Pseudoconstants: new certificate for the transcendence of D-finite functions
- Can be computed in practice using integral bases
- Available in the ore_algebra package for SageMath
- Can be used with an expanding search space


## Open questions and future work

- Are all transcendental solutions certified by a pseudoconstant?
- If not: can we prove that an equation does not have a completely integral element?
- Can we prove that a given function does not have a pole (globally)?
- Can we use other closure properties?
- Sum, polynomial, gauge transform: no additional search space
- Multiplication by algebraic function?
- Right-composition with an algebraic function?


## Conclusion

## Summary

- Pseudoconstants: new certificate for the transcendence of D-finite functions
- Can be computed in practice using integral bases
- Available in the ore_algebra package for SageMath
- Can be used with an expanding search space


## Open questions and future work

- Are all transcendental solutions certified by a pseudoconstant?
- If not: can we prove that an equation does not have a completely integral element?
- Can we prove that a given function does not have a pole (globally)?
- Can we use other closure properties?
- Sum, polynomial, gauge transform: no additional search space
- Multiplication by algebraic function?
- Right-composition with an algebraic function?


## Thank you for your attention!

