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RECALL FROM LAST SEMESTER

Complexity of computing Grobner bases:
« In full generality (worst case): doubly exponential (= impossible)

+ Generic: tractable with controlled complexity

Algorithm (Lazard 1983)
In. F={f,,..., f,,} homogeneous polynomials (resp. degree d;) in n variables, D € N
Out. G Grobner basis up to degree D

1. FordfromOto D
11 Form the Macaulay matrix M of degree d of the system
(matrix whose rows are all the mf; with deg(m) + deg(f;) = d)

1.2 Echelon-reduce the matrix M
1.3 Add to G each polynomial corresponding to a reduced row

2. Return G



COMPLEXITY BOUNDS

Complexity of the algorithm = O(DN})

n+Z—1)

- w: exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

* N size of the matrix at degree d, N, = (
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COMPLEXITY BOUNDS

Complexity of the algorithm = O(DN})

- N, size of the matrix at degree d, N, = ("*¢™")

d
- w: exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

What about D?

Theorem (Hilbert): every ideal is finitely generated
Corollary (Buchberger): every ideal has a finite Grobner basis

Corollary: for D large enough, the algorithm outputs a Grobner basis

Degree of regularity of the system: dreg = smallest D such that the output is a Grobner basis
Regular sequence: for all i, qf; € (f,.... fi_;) = qe€({fy,... i)
“All reductions to 0 are predictable”
n
For homogeneous regular sequences with m = n: dreg < Z di-n+1

i1
(generically sharp)



3 HYPOTHESES

The polynomial system must be:
- aregular sequence;
« square (m = n);

- homogeneous.

Can we relax those hypotheses?

Regularity: perhaps, but then there is nothing to keep us away from the worst case.



UNDER-DETERMINED SYSTEMS m < n
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UNDER-DETERMINED SYSTEMS m < n

Let f,,..., f,, be a regular sequence and I = (f,,..., f,).

X

m+11°*21 " n

The ideal I is in Noether position wrt X
.. iff the projection of V(I) onto K" on the last coordinates is a finite map

.. iff the canonical map K[X,,;, ...,
and such that K[X,, ..., X, 1/1 is integral over K[X

X,1 = K[X,,...,X,]/1 is injective
X1

ms11

o AfF foyey Fs X -0 X, 1S @ regular sequence.

m
For homogeneous systems in Noether position: dreg < Z d, - m +1 (generically sharp)
i=1
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WHAT ABOUT AFFINE (NON-HOMOGENEOUS) SYSTEMS? (2)

Size of the matrices: equivalent to adding an extra variable to the ring
Degree of regularity:

- if the highest degree components form a regular sequence,
all degree falls are predictable,
and we get the same bound as in the homogeneous case

+ such a system is called a regular sequence in the affine sense

- if not, we don’t have any bound

Sanity check: assume that n = m, let ff,...,f,f be the respective homogenizations
(with the homogenization variable H):

f1r--, f, is aregular sequence in the affine sense
=
fh, ..., fTis in Noether position wrt H



STRUCTURED SYSTEMS

Problem
+ There are other structures than homogeneity
- Systems with those structures are usually not regular in the affine sense

+ They are also not instances of the worst-case complexity

Example
X3+ 43X2x, + 96)X5X2 + 115X2X3 + 118X, X3 + 915 + 2X3X; + 23X2X, X5 + 60X, X2 X, + 8X3xX, + 182X,

2 2 3 2 2 2 2 _
+ 58X XX, + 125X, X5X,, + 53X5 X, + 11X, X5 + 108X, X5 + 29X, X3 X, + 9X, X5 X, + 68X, X, + 72X,X, =0

5 4 3,2 2,3 4 5 3 2 2 3 3
X7+ 23X Xy + BLXTX5 + 21X7X5 + 22X, X5 + T0X5 + 3X7X5 + 5IXTX, X5 + 17X, X5 X5 + 83X5X5 + T1X7X,,

2 2 3 2 2 2 2 _
+101X7X,X, + 61X, X5X, + 9X5 X, + 119X, X5 + 23X, X5 + 21X XX, + 69X, X5 X, + 76X X, + 62X,X, =0
5 4 3,2 2,3 4 5 3 2 2 3 3
X7+ 21X Xy + 2X7X5 + B1X7X5 + 98X, X5 + 61X5 + T08X7 X5 + 21X X, X5 + 37X, X5 X5 + 32X5X5 + 75X7X,,
2 2 3 2 2 2 2 _
+ 65X XX, + AIX X5X, + 71X X, + 86X, X5 + 111X, x5 + 102X, XX, + 78X, X5 X, + 60X, X, + 33X,X; =0
5 4 342 2,3 4 5 3 2 2 3 3
X7+ 77X Xy + TTTXTX5 + 56X7 X5 + 89X, X5 + 36X + 25X7X5 + 87X7 X, X5 + 90X, X5 X5 + 14X5X; + 81X7X,
2 2 3 2 2 2 2 _
+ STXIX X, + 24X, X5 X, + BAX X, + 12X, X5 + TOX, X5 + AX X3X, + X, X5 X, + 43X X, + 78X,X; =0




DEGREE FALLS IN THE WILD

A

Homogenized (15 — 57 in 37 steps)

With degree falls (15 — 36 in 37 steps)

Degree

Step
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... and after re-reordering the rows



WHAT WAS THE REORDERING?

5 4 3,2 2,3 4 5 3 2 2 3 3
X7+ 43X7X, + 96X7X5 + 115X7 X5 + 118X, X5 + 91X; + 2X7X5 + 23X7 X, X5 + 60X, X5 X5 + X5 X5 + 18X7X,,
2 2 3 2 2 2 2 _
+ 58X X, X, + 125X, X5X, + 53X5X, + 11X, X5 + 108X, X5 + 29X, X3 X, + IX, X5 X, + 68X, X, + 72X,X, =0

(...)

Weighted degree: W = (w,,...,w,) € Z", degW (X?,...,xg”) = W0+ WA,

The system is homogeneous for this weighted degree (weighted-homogeneous)
forw =(1,1,2,2).
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MACAULAY MATRICES FOR THE EXAMPLE
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Affine Macaulay matrix up to deg 11 of the example system
... after reordering the columns by reverse W-degree
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Affine Macaulay matrix up to deg 11 of the example system

... after reordering the columns by reverse W-degree

... after reordering the rows by W-degree of the signatures

... and after re-reordering the rows by W-degree of the polynomials



ARE WE HAPPY?

No!

We have explained the structure of the Macaulay matrices with W-homogeneity,
but that doesn't tell us how to compute a Grobner basis or estimate the complexity.



WEIGHTED-HOMOGENEOUS SYSTEMS, STRATEGY 1

Firstidea: build the matrices weighted degree by weighted degree
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Affine Macaulay matrix up to W-deg 11 of the example system
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WEIGHTED-HOMOGENEOUS SYSTEMS, STRATEGY 1

Firstidea: build the matrices weighted degree by weighted degree
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Affine Macaulay matrix up to W-deg 11 of the example system
... after reordering the rows and columns



WEIGHTED-HOMOGENEOUS SYSTEMS, STRATEGY 2

Second idea: change of variable x; - X;
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Affine Macaulay matrix up to deg 11 of the example system with x; ~ x§ and x, = xf



WEIGHTED-HOMOGENEOUS SYSTEMS, STRATEGY 2

Second idea: change of variable x; - X;

2

Affine Macaulay matrix up to deg 11 of the example system with x; ~ x§ and x, = X

... after splitting according to the parity of the degrees in x; and x,

The top-right corner is exactly the same as with the first strategy!
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WEIGHTED-HOMOGENEOUS SYSTEMS, STRATEGY 2

Second idea: change of variable x; - X;

2

Affine Macaulay matrix up to deg 11 of the example system with x; ~ x§ and x, = X

... after splitting according to the parity of the degrees in x; and x,
... and after reordering

The top-right corner is exactly the same as with the first strategy!



DEGREE FALLS IN THE WILD

4 Weighted (16 — 72 in 29 steps (+2 per step))

Homogenized (15 — 57 in 37 steps)

Degree

With degree falls (15 — 36 in 37 steps)

Step



COMPLEXITY MATTERS (FAUGERE, SAFEY, V. 2013, 2016)

Size of the matrices: number of monomials at W-degree d = an(n * Z h 1)
i

Weighted degree of regularity: (n = m)
n
+ for W-homo regular sequences: d,,, < Z(di - w;) + max(w;) (not generically sharp)
i=1

n
+ for W-homo systems in simultaneous Noether position: d ., < Z(di -wp)+w,

i=1
(generically sharp under some hypotheses on the weights)

Key ingredient: Hilbert series



ANOTHER EXAMPLE OF STRUCTURE

[X1Vq +23X,Y, + 18X5Y, + 54X, Y, + 78X, Y, + 71X, Y, + 32X5Y, + 24X, Y, + 64X, Y,
+90X,Y; + 78X3Y5 + 65X, Y5 + 94X, Y, + 72X,Y, + 114X3y, + 30X,y, = 0

X Yq + 62X,y + 88Xy, + 117X, Y, + 68Xy, + 79X, Y, + 125X,y, + 106X, Y, + 47X,
+ 125X, Y5 + 13X3Y5 + 92X, Y5 + 43X, Y, + 119X, Y, + 23X3y, + 39X,y, = 0
X ¥q + 12X,y + 39Xy, + 39X, Y, + 105Xy, + 12X, Y, + 60X;Y, + 61X, Y, + 77X, Y,
+ 40X, Y5 + 28X3Y5 + 120X,Y5 + 24X, Y, + 115X, Y, + 121Xy, + 24X,Y, = 0
XpYq + 5%,y +28X3Y, + 56X, Y, + 41X, + 14X,Y, + 89X;Y, + 96X,Y, + 40X, Y,
+69X,y5 + 114Xy + 31X,y + 117Xy, + 75X, + 41X;y, + 46X,y, =0
XqYq + 13X, + 4xgy, + 117Xy, + 57Xy, + 112X,Y, + bX5y, + 9X,Y, + 90X, y;
+121X,Y5 + 5X3Y5 + 74X,y + 97X, Y, + 67X,Y, + 83X;y, +82X,y, = 0
XpYq + 92X,y + 34Xy, + 24X, Y, + 95X, Y, + 118X,Y, + 76X;Y, + 75X, Y, + 69X,
+34X,Y5 + 51X3Y5 + 4X, Y5+ 2X, Y, + 35Xy, + 121Xy, + 43X,y, = 0
XqYq * 72Xy, + 95Xy, + 117X, Y, + 24X, Y, + 72X, Y, + 39X3Y, + 75X, Y, + 93X, Y5
+57X,Y5 + 583y, + 83X,y; + 41X, Y, + 50x,y, + 90x;y, +20x,y, = 0

X,Yq + 88X,y + 72Xy, + 108X, Y, + 65Xy, + 120X,Y, + 123X;Y, + 15X, Y, + 123X, y;
l + 81X, Y5 + 77X3Y5 + 121X,Y5 + 95X, Y, + 47X, Y, + 28Xy, + 40X, Y,




ANOTHER EXAMPLE OF STRUCTURE

[X1Vq +23X,Y, + 18X5Y, + 54X, Y, + 78X, Y, + 71X, Y, + 32X5Y, + 24X, Y, + 64X, Y,
+90X,Y; + 78X3Y5 + 65X, Y5 + 94X, Y, + 72X,Y, + 114X3y, + 30X,y, = 0

X Yq + 62X,y + 88Xy, + 117X, Y, + 68Xy, + 79X, Y, + 125X,y, + 106X, Y, + 47X,
+ 125X, Y5 + 13X3Y5 + 92X, Y5 + 43X, Y, + 119X, Y, + 23X3y, + 39X,y, = 0
X ¥q + 12X,y + 39Xy, + 39X, Y, + 105Xy, + 12X, Y, + 60X;Y, + 61X, Y, + 77X, Y,
+ 40X, Y5 + 28X3Y5 + 120X,Y5 + 24X, Y, + 115X, Y, + 121Xy, + 24X,Y, = 0
XpYq + 5%,y +28X3Y, + 56X, Y, + 41X, + 14X,Y, + 89X;Y, + 96X,Y, + 40X, Y,
+69X,y5 + 114Xy + 31X,y + 117Xy, + 75X, + 41X;y, + 46X,y, =0
XqYq + 13X, + 4xgy, + 117Xy, + 57Xy, + 112X,Y, + bX5y, + 9X,Y, + 90X, y;
+121X,Y5 + 5X3Y5 + 74X,y + 97X, Y, + 67X,Y, + 83X;y, +82X,y, = 0
XpYq + 92X,y + 34Xy, + 24X, Y, + 95X, Y, + 118X,Y, + 76X;Y, + 75X, Y, + 69X,
+34X,Y5 + 51X3Y5 + 4X, Y5+ 2X, Y, + 35Xy, + 121Xy, + 43X,y, = 0
XqYq * 72Xy, + 95Xy, + 117X, Y, + 24X, Y, + 72X, Y, + 39X3Y, + 75X, Y, + 93X, Y5
+57X,Y5 + 583y, + 83X,y; + 41X, Y, + 50x,y, + 90x;y, +20x,y, = 0
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l + 81X, Y5 + 77X3Y5 + 121X,Y5 + 95X, Y, + 47X, Y, + 28Xy, + 40X, Y,

This system is bilinear (degree 1in (x, X,, X3, x,) and in (v, ¥,, Y3, ¥,))-



MACAULAY MATRICES FOR THE BILINEAR EXAMPLE
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Affine Macaulay matrix at deg 5 of the example system



MACAULAY MATRICES FOR THE BILINEAR EXAMPLE
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Affine Macaulay matrix at deg 5 of the example system
... after reordering the rows and columns



ALGORITHM AND COMPLEXITY

Algorithm: consider the signatures multi-degree by multi-degree

Complexity:
d-1 d-1 .
- Size of the matrices: (n1 +d ) rows, (n2 +d ) columns (with n;,n, € {n,,n })

- Degree of regularity?
» What is regularity???



CHARACTERIZATIONS OF REGULARITY

Homogeneous case: (f;,..., f,) is a regular sequence
< foralli, qf; € (f;,... fi)) = a€{fy,on, fig)

(1-T9) e (1-T%)
(-7
<= V(f,,.., f,) has dimension 0

= V(f},..,f) ={0}

> HS(T) =

Bilinear case: (wrt the variables x,...,x, andy,,...,y, )
x y

V(fy,..., f,) always contains V(x,, ..., x, ) and V(y,, ..., ¥, )
x y

= f,,...,f, cannot be a regular sequence!



BILINEAR REGULARITY (FAUGERE, SAFEY, SPAENLEHAUER 2012)

Bi-regular sequence: f,, ..., f, is a bi-regular sequence iff for all j,

af; €(fys fi) = LM(q) € (Mf—ny(ny))"'(My—nx(nx))"' LM((f3) s i)

where MjJ(d) is the set of monomials of degree d in v,, ..., v,.

21



BILINEAR REGULARITY (FAUGERE, SAFEY, SPAENLEHAUER 2012)

Bi-regular sequence: f,, ..., f, is a bi-regular sequence iff for all j,

af; €{fyyifin) = LM(Q)G(Mf_ny(ny)%(My_nx(nx)MLM((f1,.--,f,»_1))

where MjJ(d) is the set of monomials of degree d in v,, ..., v,.

Theorem 6.22. Let f,. ... f,, € R be a bi-regular bilinear sequence, with m < n, + n,. Then its
Hilbert bi-series is
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{1 _ P‘,l)"’+1(1 _ f‘z)?l”'{—l

mHSy (s, froty) = &

.. -yl.....un_,,lr'!(

m—{ny,+1} ny+1
A _ m—{ny,+1)—£ ryt1 | . ¢ nyti—k [ E4n, —k
Nyt ta) = ;_l (1 —#1ta) Eita(1 —ta2) 1—(1—1t) E_, £ (u_,,+1—k
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BILINEAR REGULARITY (FAUGERE, SAFEY, SPAENLEHAUER 2012)

Bi-regular sequence: f,, ..., f, is a bi-regular sequence iff for all j,

af; €{fyyifin) = LM(Q)G(Mf_ny(ny)%(My_nx(nx)MLM((f1,.--,f,»_1))

where MjJ(d) is the set of monomials of degree d in v,, ..., v,.

Theorem 6.22. Let f,. ... f,, € R be a bi-regular bilinear sequence, with m < n, + n,. Then its
Hilbert bi-series is
1- f'ﬁ?]?n + -"\‘rm(fl-. ?32]' + *'\"m(f2\ fl}

{1 _ P‘,l)"’+1(1 _ fg)?l”'{—l

mHSy (s, froty) = &

.. -yl...--uv._.,lr'f(

m—(n,+1) My +1
AT _ —(ny+1)—¢ e+l | | ¢ nyti—k [ E4n, —k
Nonlty, t2) = ; (1—tyts) tyta(1 —ta) 1—(1—1) g £ (u_,,+1—k

Degree of regularity: For a bi-regular bilinear sequence withm = n, + n, dreg < max(n,, ny) +2
(not generically sharp)

21



BILINEAR REGULARITY (FAUGERE, SAFEY, SPAENLEHAUER 2012)

Bi-regular sequence: f,, ..., f, is a bi-regular sequence iff for all j,

Qf; € (Fryes fiy) = LM(Q) € (M, (n,)) + (M (1) + LM((S, e, £11))

where MjJ(d) is the set of monomials of degree d in v,, ..., v,.

Theorem 6.22. Let fi, ..., f,, € R be a bi-regular bilinear sequence, with m < n, + n,. Then its
Hilbert bi-series is
1- f'ﬁ?]?n + -"\‘rm(fl-. ?32]' + *'\"m(f2\ fl}

{1 _ P‘,l)"’+1(1 _ fg)?l”'{—l

mHSy (s, froty) = &

.. -yl...--uv._.,lr'f(

m—{ny+1} ny+1
R —fay41)— ; ; n —kfl4+n, —k
Ny (b, ta) = L tyta)™ =0 (1 — ™t | 1 — (1 — )" gru ik ¥
(t1.12) ; (1—tat2) it2(1 — ta) ( ng py 1k

Degree of regularity: For a bi-regular bilinear sequence withm = n, + n, dreg < max(n,, ny) +2
(not generically sharp)

With higher-degree (bi-homogeneous) or more groups (multi-homogeneous), nothing is known.

21



UNIFIED ALGORITHM FOR STRUCTURED SYSTEMS

Algorithm

In. F={f;,..., f,} structured polynomials, D € N
Out. G Grobner basis up to “structure degree” D

1. FordfromO0to D

11 Form the Macaulay matrix M of “structure degree” d of the system

(matrix whose rows are all the mf; for a choice of monomials m depending on d)
1.2 Echelon-reduce the matrix M
1.3 Add to G each polynomial corresponding to a reduced row

2. Return G

22
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1.3 Add to G each polynomial corresponding to a reduced row

2. Return G

Examples:
+ Weighted-homogeneous: weighted-degree

+ Multi-homogeneous: multi-degree
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UNIFIED ALGORITHM FOR STRUCTURED SYSTEMS

Algorithm

In. F={f;,..., f,} structured polynomials, D € N
Out. G Grobner basis up to “structure degree” D

1. FordfromO0to D

11 Form the Macaulay matrix M of “structure degree” d of the system

(matrix whose rows are all the mf; for a choice of monomials m depending on d)
1.2 Echelon-reduce the matrix M
1.3 Add to G each polynomial corresponding to a reduced row

2. Return G

Examples:
+ Weighted-homogeneous: weighted-degree
+ Multi-homogeneous: multi-degree
+ Group-invariant systems: G-degree (Faugére, Svartz 2012, 2013)
+ Sparse systems: sparse degree (Faugere, Svartz, Spaenlehauer 2014, Faugére, Bender 2018...)

22



MATRIX-WEIGHTED HOMOGENEOUS SYSTEMS

Definitions:
w
- a matrix of weights is a matrix W = (w; ) = ( : ) € Z®" with rank k
) W,
+ the matrix-weighted degree of a monomial X¢ is
deg, (X%) =W -a= (degW1 (X9, ..., deng(X“))

+ Matrix-weighted homogeneous polynomials and ideals are defined as usual

Examples:
+ weighted homogeneous systems are matrix-weighted homogeneous with k = 1

+ multi-homogeneous systems are matrix-weighted homogeneous with

23



GROBNER BASES FOR MATRIX-WEIGHTED HOMOGENEOUS SYSTEMS (V. 2022)

Algorithm:
« use the previous algorithm following the matrix-weighted degree
Wy, W,i . .
- or use the change of variable X; = Y,-,11’ Y,-,;' to recover a multi-homogeneous ideal,
prune out the unnecessary (repeating) monomials, and use Spaenlehauer’s algorithms

+ the two strategies are equivalent

Complexity:

+ Size of the matrices: number of solutions of linear diophantine equations
(no closed form even in the weighted homogeneous case)

+ Regular sequences, degree of regularity: unknown
(cannot be less complicated than the multi-homogeneous case)

+ It may be impossible to give a satisfying notion of dimension for the solutions
(like the projective dimension for homogeneous systems)
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CONCLUSION

Summary
+ Overview of linear algebra algorithms for computing Grobner bases for structured systems
+ Examples: weighted homogeneous, multi-homogeneous, matrix-weighted homogeneous

+ Complexity

Aspects not discussed
- Effective elimination of reduction to zero (F5 criterion, extensions for the structures)
- Additional optimizations (e.g. parallelism)
+ Number of solutions, FGLM algorithm
+ Genericity of regular sequences or of other critical assumptions
+ Under-determined case, over-determined case
- Sparse Grobner bases
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Thank you for your attention!
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