Computing Gröbner bases for structured systems

Thibaut Verron

Seminar *Algebra and discrete mathematics*, 24 November 2022

Recall from last semester

Complexity of computing Gröbner bases:

- In full generality (worst case): doubly exponential (≃ impossible)
- Generic: tractable with controlled complexity

Algorithm (Lazard 1983)

In. $F = \{f_1, ..., f_m\}$ homogeneous polynomials (resp. degree d_j) in n variables, $D \in \mathbb{N}$

- Out. G Gröbner basis up to degree D
	- 1. For d from 0 to D
		- 1.1 Form the Macaulay matrix M of degree d of the system (matrix whose rows are all the mf_i with $\deg(m)$ + $\deg(f_i)$ = $d)$
		- 1.2 Echelon-reduce the matrix
		- 1.3 Add to G each polynomial corresponding to a reduced row
	- 2. Return

- N_d : size of the matrix at degree d, $N_d = \binom{n+d-1}{d}$
- \cdot ω : exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

What about D?

- N_d : size of the matrix at degree d, $N_d = \binom{n+d-1}{d}$
- \cdot ω : exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

What about D?

Theorem (Hilbert): every ideal is finitely generated

Corollary (Buchberger): every ideal has a finite Gröbner basis

Corollary: for *D* large enough, the algorithm outputs a Gröbner basis

- N_d : size of the matrix at degree d, $N_d = \binom{n+d-1}{d}$
- \cdot ω : exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

What about D?

Theorem (Hilbert): every ideal is finitely generated

Corollary (Buchberger): every ideal has a finite Gröbner basis

Corollary: for *D* large enough, the algorithm outputs a Gröbner basis

Degree of regularity of the system: d_{res} = smallest *D* such that the output is a Gröbner basis **Regular sequence**: for all $i, qf_i \in \langle f_1, \dots, f_{i-1} \rangle \implies q \in \langle f_1, \dots, f_{i-1} \rangle$

"All reductions to 0 are predictable"

- N_d : size of the matrix at degree d, $N_d = \binom{n+d-1}{d}$
- \cdot ω : exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

What about D?

Theorem (Hilbert): every ideal is finitely generated

Corollary (Buchberger): every ideal has a finite Gröbner basis

Corollary: for *D* large enough, the algorithm outputs a Gröbner basis

Degree of regularity of the system: d_{reg} = smallest *D* such that the output is a Gröbner basis **Regular sequence**: for all $i, qf_i \in \langle f_1, \dots, f_{i-1} \rangle \implies q \in \langle f_1, \dots, f_{i-1} \rangle$

"All reductions to 0 are predictable"

For homogeneous regular sequences with m = $n: d_{\text{reg}} \leq \sum^{n}$ ∑ $\sum_{i=1}^{\infty} d_i - n + 1$ (generically sharp)

The polynomial system must be:

- a regular sequence;
- square $(m = n)$;
- homogeneous.

Can we relax those hypotheses?

Regularity: perhaps, but then there is nothing to keep us away from the worst case.

Let $f_1, ..., f_m$ be a regular sequence and $I = \langle f_1, ..., f_m \rangle$.

The ideal *I* is **in Noether position** wrt $X_{m+1}, ..., X_n$

... iff the projection of $V(I)$ onto K^{n-m} on the last coordinates is a finite map

Let $f_1, ..., f_m$ be a regular sequence and $I = \langle f_1, ..., f_m \rangle$.

The ideal *I* is **in Noether position** wrt $X_{m+1}, ..., X_n$

... iff the projection of $V(I)$ onto K^{n-m} on the last coordinates is a finite map

... iff the canonical map $K[X_{m+1}, \ldots, X_n] \rightarrow K[X_1, \ldots, X_n]/I$ is injective and such that $\mathcal{K}[X_1, \dots, X_n]/I$ is integral over $\mathcal{K}[X_{m+1}, \dots, X_n]$

Let $f_1, ..., f_m$ be a regular sequence and $I = \langle f_1, ..., f_m \rangle$.

The ideal *I* is **in Noether position** wrt $X_{m+1}, ..., X_n$

... iff the projection of $V(I)$ onto K^{n-m} on the last coordinates is a finite map

... iff the canonical map $K[X_{m+1}, \ldots, X_n] \rightarrow K[X_1, \ldots, X_n]/I$ is injective and such that $\mathcal{K}[X_1, \dots, X_n]/I$ is integral over $\mathcal{K}[X_{m+1}, \dots, X_n]$

... iff $f_1, ..., f_m, X_{m+1}, ..., X_n$ is a regular sequence.

For homogeneous systems in Noether position: d_{reg} \leq \sum^m ∑ $\sum_{i=1} d_i$ – $m + 1$ (generically sharp)

Macaulay matrix at deg 7 of a generic homogeneous system (5 variables, 5 polys, degree 4)

Adaptation of the algorithm: homogenize the system, or consider the lower degree monomials

Macaulay matrix up to deg 7 of a generic affine system (5 variables, 5 polys, degree 4)

Adaptation of the algorithm: homogenize the system, or consider the lower degree monomials

Macaulay matrix up to deg 7 of a generic affine system (5 variables, 5 polys, degree 4)

Size of the matrices: equivalent to adding an extra variable to the ring

Degree of regularity:

- if the highest degree components form a regular sequence, all degree falls are predictable, and we get the same bound as in the homogeneous case
- such a system is called a **regular sequence in the affine sense**
- if not, we don't have any bound

Sanity check: assume that $n = m$, let $f_1^h, ..., f_n^h$ be the respective homogenizations (with the homogenization variable H):

> $f^{}_1,\ldots,f^{}_n$ is a regular sequence in the affine sense \Longleftrightarrow $f_1^h, ..., f_n^h$ is in Noether position wrt H

Problem

- There are other structures than homogeneity
- Systems with those structures are usually not regular in the affine sense
- They are also not instances of the worst-case complexity

Example

$$
\begin{pmatrix} x_1^5+43 x_1^4 x_2+96 x_1^3 x_2^2+115 x_1^2 x_2^3+118 x_1 x_2^6+91 x_2^5+2 x_1^3 x_3+23 x_1^2 x_2 x_3+60 x_1 x_2^2 x_3+8 x_2^3 x_3+18 x_1^3 x_4\\ +58 x_1^2 x_2 x_4+125 x_1 x_2^2 x_4+53 x_2^3 x_4+11 x_1 x_3^2+108 x_2 x_3^2+29 x_1 x_3 x_4+9 x_2 x_3 x_4+68 x_1 x_4^2+72 x_2 x_4^2=0\\ x_1^5+23 x_1^4 x_2+34 x_1^3 x_2^2+21 x_1^2 x_2^3+22 x_1 x_2^4+70 x_2^5+3 x_1^3 x_3+59 x_1^2 x_2 x_3+17 x_1 x_2^2 x_3+83 x_2^3 x_3+11 x_1^3 x_4\\ +101 x_1^2 x_2 x_4+61 x_1 x_2^2 x_4+9 x_2^3 x_4+119 x_1 x_3^2+23 x_2 x_3^2+21 x_1 x_3 x_4+69 x_2 x_3 x_4+76 x_1 x_4^2+62 x_2 x_4^2=0\\ x_1^5+21 x_1^4 x_2+2 x_1^3 x_2^2+81 x_1^2 x_2^3+98 x_1 x_2^4+61 x_2^5+108 x_1^3 x_3+21 x_1^2 x_2 x_3+37 x_1 x_2^2 x_3+32 x_2^3 x_3+75 x_1^3 x_4\\ +65 x_1^2 x_2 x_4+49 x_1 x_2^2 x_4+71 x_2^3 x_4+86 x_1 x_3^2+111 x_2 x_3^2+102 x_1 x_3 x_4+78 x_2 x_3 x_4+60 x_1 x_4^2+33 x_2 x_4^2=0\\ x_1^5+77 x_1^4 x_2+117 x_1^3 x_2^2+56 x_1^2 x_2^3+89 x_1 x_2
$$

Degree falls in the wild

Macaulay matrices for the example

Affine Macaulay matrix up to deg 11 of the example system

SEE ON ≦≸ 38⊞ **Constitution** Charles College وموس محجب -1.5% 1-1-1 وسيرس ---...... مصحف ---...... l-leir والحوا ---------K SS Fata zar ****** \mathcal{F} ning يم . ٠. $\mathscr{L} \mathscr{L}$ ****** r er بعياس t \mathcal{L} 15 بيسمه tar m وسيرس $\omega^{\mu\nu}$ t et e ω 2500 -1111 \mathcal{E} ,,,,,, مواج م - $\tilde{\omega}$ ÷ - $\overline{\mathbf{u}}$. \overline{z} $\overline{}$ $^{\prime\prime\prime}$ ۰, 211111 t ... $\overline{1}$ ٠ $\overline{}$ ** *** ,,,,,, \mathcal{L}^{\bullet} \ddot{x} ٠ $\overline{}$,,,,,, t Æ, ÷ - 27 -2 ... \overline{u} ٠ $\overline{}$ \overline{z} ,,,,,,

Affine Macaulay matrix up to deg 11 of the example system ... after reordering the columns

Macaulay matrices for the example

- Affine Macaulay matrix up to deg 11 of the example system
- ... after reordering the columns
- ... after reordering the rows

Affine Macaulay matrix up to deg 11 of the example system

- ... after reordering the columns
- ... after reordering the rows
- ... and after re-reordering the rows

$$
\begin{cases} x_1^5+43x_1^4x_2+96x_1^3x_2^2+115x_1^2x_2^3+118x_1x_2^4+91x_2^5+2x_1^3x_3+23x_1^2x_2x_3+60x_1x_2^2x_3+8x_2^3x_3+18x_1^3x_4\\ \quad +58x_1^2x_2x_4+125x_1x_2^2x_4+53x_2^3x_4+11x_1x_3^2+108x_2x_3^2+29x_1x_3x_4+9x_2x_3x_4+68x_1x_4^2+72x_2x_4^2=0\\ \ldots \end{cases}
$$

Weighted degree: $W = (w_1, ..., w_n) \in \mathbb{Z}^n$, $\text{deg}_{W}(\textbf{x}_1^{\alpha_1}, ..., \textbf{x}_n^{\alpha_n}) = w_1 \alpha_1 + ... + w_n \alpha_n$

The system is homogeneous for this weighted degree (**weighted-homogeneous**) for $W = (1, 1, 2, 2)$.

Macaulay matrices for the example

Affine Macaulay matrix up to deg 11 of the example system

SEE ON aa dagaa ---Constitution Charles College وموس محجب ---...... in a w. w ---...... ---...... K SS za 550 ---. . . . É. ****** \mathcal{F} Ŧ Ŀ, \mathcal{L}^{\bullet} ****** ÷ ی. 3 بسميه \cdot أحيام t er e 15 \mathcal{L} \mathcal{L}^{\bullet} -1111 مي -,,,,,, 1f سي $\overline{}$ $\overline{\mathbf{u}}$. -111 $\overline{}$ $^{\prime\prime}$ 211111 Æ. 15 m $\overline{1}$ ٠ ** *** ,,,,,, $\overline{}$ $^{\prime\prime}$,,,,,, t z. $\overline{}$ $\overline{}$ $\overline{}$ $^{\prime\prime}$,,,,,,

Affine Macaulay matrix up to deg 11 of the example system ... after reordering the columns by reverse W-degree

Macaulay matrices for the example

Affine Macaulay matrix up to deg 11 of the example system ... after reordering the columns by reverse W-degree ... after reordering the rows by W-degree of the signatures

Affine Macaulay matrix up to deg 11 of the example system ... after reordering the columns by reverse W-degree ... after reordering the rows by W-degree of the signatures

... and after re-reordering the rows by W-degree of the polynomials

No!

We have explained the structure of the Macaulay matrices with W-homogeneity, but that doesn't tell us how to compute a Gröbner basis or estimate the complexity. **First idea**: build the matrices weighted degree by weighted degree

Affine Macaulay matrix up to W-deg 11 of the example system

First idea: build the matrices weighted degree by weighted degree

Affine Macaulay matrix up to W-deg 11 of the example system ... after reordering the rows and columns

Second idea: change of variable $x_i \mapsto x_i^{w_i}$

Affine Macaulay matrix up to deg 11 of the example system with $x_3 \mapsto x_3^2$ and $x_4 \mapsto x_4^2$

Second idea: change of variable $x_i \mapsto x_i^{w_i}$

Affine Macaulay matrix up to deg 11 of the example system with $x_3 \mapsto x_3^2$ and $x_4 \mapsto x_4^2$... after splitting according to the parity of the degrees in $\mathsf{x}_3^{}$ and $\mathsf{x}_4^{}$

The top-right corner is exactly the same as with the first strategy!

Second idea: change of variable $x_i \mapsto x_i^{w_i}$

Affine Macaulay matrix up to deg 11 of the example system with $x_3 \mapsto x_3^2$ and $x_4 \mapsto x_4^2$... after splitting according to the parity of the degrees in $\mathsf{x}_3^{}$ and $\mathsf{x}_4^{}$

The top-right corner is exactly the same as with the first strategy!

Second idea: change of variable $x_i \mapsto x_i^{w_i}$

Affine Macaulay matrix up to deg 11 of the example system with $x_3 \mapsto x_3^2$ and $x_4 \mapsto x_4^2$... after splitting according to the parity of the degrees in $\mathsf{x}_3^{}$ and $\mathsf{x}_4^{}$... and after reordering

The top-right corner is exactly the same as with the first strategy!

Degree falls in the wild

Size of the matrices: number of monomials at W-degree $d \approx \frac{1}{\prod w_i} \binom{n+d-1}{d}$ $\begin{pmatrix} 1 \\ d \end{pmatrix}$

Weighted degree of regularity: $(n = m)$

- for W-homo regular sequences: d_{reg} ≤ \sum^{n} ∑ $\sum_{i=1}^{\infty} (d_i - w_i)$ + max(w_i) (not generically sharp)
- for W-homo systems in simultaneous Noether position: d_{reg} ≤ \sum^{n} ∑ $\sum_{i=1}^{\infty}$ $(d_i - w_i) + w_n$ (generically sharp under some hypotheses on the weights)

Key ingredient: Hilbert series

$$
\begin{pmatrix} x_1y_1 + 23x_2y_1 + 18x_3y_1 + 54x_4y_1 + 78x_1y_2 + 71x_2y_2 + 32x_3y_2 + 24x_4y_2 + 64x_1y_3 \\ \quad + 90x_2y_3 + 78x_3y_3 + 65x_4y_3 + 94x_1y_4 + 72x_2y_4 + 114x_3y_4 + 30x_4y_4 = 0 \\ x_1y_1 + 62x_2y_1 + 88x_3y_1 + 117x_4y_1 + 68x_1y_2 + 79x_2y_2 + 125x_3y_2 + 106x_4y_2 + 47x_1y_3 \\ \quad + 125x_2y_3 + 13x_3y_3 + 92x_4y_3 + 43x_1y_4 + 119x_2y_4 + 23x_3y_4 + 39x_4y_4 = 0 \\ x_1y_1 + 112x_2y_1 + 39x_3y_1 + 39x_4y_1 + 105x_1y_2 + 12x_2y_2 + 60x_3y_2 + 61x_4y_2 + 77x_1y_3 \\ \quad + 40x_2y_3 + 28x_3y_3 + 120x_4y_3 + 24x_1y_4 + 115x_2y_4 + 121x_3y_4 + 24x_4y_4 = 0 \\ x_1y_1 + 5x_2y_1 + 28x_3y_1 + 56x_4y_1 + 41x_1y_2 + 14x_2y_2 + 89x_3y_2 + 96x_4y_2 + 40x_1y_3 \\ \quad + 69x_2y_3 + 114x_3y_3 + 31x_4y_3 + 117x_1y_4 + 75x_2y_4 + 41x_3y_4 + 46x_4y_4 = 0 \\ x_1y_1 + 13x_2y_1 + 4x_3y_1 + 117x_4y_1 + 57x_1y_2 + 112x_2y_2 + 4x_3y_2 + 9x_4y_2 + 90x_1y_3 \\ \quad +
$$

$$
\begin{pmatrix} x_1 y_1 + 23 x_2 y_1 + 18 x_3 y_1 + 54 x_4 y_1 + 78 x_1 y_2 + 71 x_2 y_2 + 32 x_3 y_2 + 24 x_4 y_2 + 64 x_1 y_3 \\ \quad + 90 x_2 y_3 + 78 x_3 y_3 + 65 x_4 y_3 + 94 x_1 y_4 + 72 x_2 y_4 + 114 x_3 y_4 + 30 x_4 y_4 = 0 \\ x_1 y_1 + 62 x_2 y_1 + 88 x_3 y_1 + 117 x_4 y_1 + 68 x_1 y_2 + 79 x_2 y_2 + 125 x_3 y_2 + 106 x_4 y_2 + 47 x_1 y_3 \\ \quad + 125 x_2 y_3 + 13 x_3 y_3 + 92 x_4 y_3 + 43 x_1 y_4 + 119 x_2 y_4 + 23 x_3 y_4 + 39 x_4 y_4 = 0 \\ x_1 y_1 + 112 x_2 y_1 + 39 x_3 y_1 + 39 x_4 y_1 + 105 x_1 y_2 + 12 x_2 y_2 + 60 x_3 y_2 + 61 x_4 y_2 + 77 x_1 y_3 \\ \quad + 40 x_2 y_3 + 28 x_3 y_3 + 120 x_4 y_3 + 24 x_1 y_4 + 115 x_2 y_4 + 121 x_3 y_4 + 24 x_4 y_4 = 0 \\ x_1 y_1 + 5 x_2 y_1 + 28 x_3 y_1 + 56 x_4 y_1 + 41 x_1 y_2 + 14 x_2 y_2 + 89 x_3 y_2 + 96 x_4 y_2 + 40 x_1 y_3 \\ \quad + 69 x_2 y_3 + 114 x_3 y_3 + 31 x_4 y_3 + 117 x_1 y_4 + 75 x_2 y_4 + 41 x_3 y_4 + 46 x_4 y_4 = 0 \\ x_1 y_1 + 13 x_2 y_1 + 4 x_3 y_1 + 117 x_4 y_1 + 57 x_1 y_2 + 112 x_2 y_2 + 4 x_3 y_2 + 9 x_4 y_2 + 90 x_1 y_3 \\ \quad +
$$

This system is <mark>bilinea</mark>r (degree 1 in (x₁, x₂, x₃, x₄) and in (y₁, y₂, y₃, y₄)).

Macaulay matrices for the bilinear example

Affine Macaulay matrix at deg 5 of the example system

Macaulay matrices for the bilinear example

Affine Macaulay matrix at deg 5 of the example system ... after reordering the rows and columns

Algorithm: consider the signatures multi-degree by multi-degree

Complexity:

• Size of the matrices:
$$
\binom{n_1 + d - 1}{d}
$$
 rows, $\binom{n_2 + d - 1}{d}$ columns (with $n_1, n_2 \in \{n_x, n_y\}$)

- Degree of regularity?
- What is regularity???

Homogeneous case: $(f_1, ..., f_n)$ is a regular sequence \iff for all $i, qf_i \in \langle f_1, \dots, f_{i-1} \rangle \implies q \in \langle f_1, \dots, f_{i-1} \rangle$ \iff HS(T) = $\frac{(1 - T^{d_1}) \cdots (1 - T^{d_n})}{(1 - T)^n}$ $\iff V(f_1, ..., f_m)$ has dimension 0 $\iff V(f_1, ..., f_m) = \{0\}$

Bilinear case: (wrt the variables $x_1, ..., x_{n_\chi}$ and $y_1, ..., y_{n_\chi}$) $\mathsf{V}(f_1,...,f_n)$ always contains $\mathsf{V}(x_1,...,x_{n_\chi})$ and $\mathsf{V}(y_1,...,y_{n_\chi})$ $\implies f_1, ..., f_n$ cannot be a regular sequence!

$$
qf_i\in \langle f_1,\ldots,f_{i-1}\rangle\implies \text{LM}(q)\in \langle \mathcal{M}_{i-n_y}^{\textbf{X}}(n_y)\rangle+\langle \mathcal{M}_{i-n_x}^{\textbf{Y}}(n_x)\rangle+\text{LM}(\langle f_1,\ldots,f_{i-1}\rangle)
$$

where $\mathcal{M}^{\textbf{v}}_{k}(\textbf{\textit{d}})$ is the set of monomials of degree $\textbf{\textit{d}}$ in $\textbf{\textit{v}}_{1},...,\textbf{\textit{v}}_{k}.$

$$
qf_i \in \langle f_1,\ldots,f_{i-1}\rangle \implies \textsf{LM}(q) \in \langle \mathcal{M}_{i-n_y}^{\textbf{x}}(n_y)\rangle + \langle \mathcal{M}_{i-n_x}^{\textbf{y}}(n_x)\rangle + \textsf{LM}(\langle f_1,\ldots,f_{i-1}\rangle)
$$

where $\mathcal{M}^{\textbf{v}}_{k}(\textbf{\textit{d}})$ is the set of monomials of degree $\textbf{\textit{d}}$ in $\textbf{\textit{v}}_{1},...,\textbf{\textit{v}}_{k}.$

Theorem 6.22. Let $f_1, \ldots, f_m \in R$ be a bi-regular bilinear sequence, with $m \leq n_x + n_y$. Then its Hilbert bi-series is

$$
\mathsf{mHS}_{\mathbb{K}[x_1,\ldots,x_{n_x},y_1,\ldots,y_{n_y}]/I}(t_1,t_2) = \frac{(1-t_1t_2)^m + N_m(t_1,t_2) + N_m(t_2,t_1)}{(1-t_1)^{n_x+1}(1-t_2)^{n_y+1}},
$$

$$
N_m(t_1, t_2) = \sum_{\ell=1}^{m-(n_y+1)} (1-t_1t_2)^{m-(n_y+1)-\ell} t_1 t_2 (1-t_2)^{n_y+1} \left[1-(1-t_1)^{\ell} \sum_{k=1}^{n_y+1} t_1^{n_y+1-k} \binom{\ell+n_y-k}{n_y+1-k} \right]
$$

$$
qf_i \in \langle f_1,\ldots,f_{i-1}\rangle \implies \textsf{LM}(q) \in \langle \mathcal{M}_{i-n_y}^{\textbf{x}}(n_y)\rangle + \langle \mathcal{M}_{i-n_x}^{\textbf{y}}(n_x)\rangle + \textsf{LM}(\langle f_1,\ldots,f_{i-1}\rangle)
$$

where $\mathcal{M}^{\textbf{v}}_{k}(\textbf{\textit{d}})$ is the set of monomials of degree $\textbf{\textit{d}}$ in $\textbf{\textit{v}}_{1},...,\textbf{\textit{v}}_{k}.$

Theorem 6.22. Let $f_1, \ldots, f_m \in R$ be a bi-regular bilinear sequence, with $m \leq n_x + n_y$. Then its Hilbert bi-series is

$$
\mathsf{mHS}_{\mathbb{K}[x_1,\ldots,x_{n_x},y_1,\ldots,y_{n_y}]/I}(t_1,t_2) = \frac{(1-t_1t_2)^m + N_m(t_1,t_2) + N_m(t_2,t_1)}{(1-t_1)^{n_x+1}(1-t_2)^{n_y+1}},
$$

$$
N_m(t_1,t_2) = \sum_{\ell=1}^{m-(n_y+1)} (1-t_1t_2)^{m-(n_y+1)-\ell}t_1t_2(1-t_2)^{n_y+1} \left[1-(1-t_1)^{\ell} \sum_{k=1}^{n_y+1} t_1^{n_y+1-k} \binom{\ell+n_y-k}{n_y+1-k} \right]
$$

and the same special contract and activities

Degree of regularity: For a bi-regular bilinear sequence with m = $n_{_X}$ + $n_{_Y}$, d_{reg} ≤ max($n_{_X},n_{_Y}$) + 2 $^-$ (not generically sharp)

$$
qf_i\in \langle f_1,\ldots,f_{i-1}\rangle\implies \text{LM}(q)\in \langle \mathcal{M}_{i-n_y}^{\textbf{X}}(n_y)\rangle+\langle \mathcal{M}_{i-n_x}^{\textbf{Y}}(n_x)\rangle+\text{LM}(\langle f_1,\ldots,f_{i-1}\rangle)
$$

where $\mathcal{M}^{\textbf{v}}_{k}(\textbf{\textit{d}})$ is the set of monomials of degree $\textbf{\textit{d}}$ in $\textbf{\textit{v}}_{1},...,\textbf{\textit{v}}_{k}.$

Theorem 6.22. Let $f_1, \ldots, f_m \in R$ be a bi-regular bilinear sequence, with $m \leq n_x + n_y$. Then its Hilbert bi-series is

$$
\mathsf{mHS}_{\mathbb{K}[x_1,\ldots,x_{n_x},y_1,\ldots,y_{n_y}]/I}(t_1,t_2) = \frac{(1-t_1t_2)^m + N_m(t_1,t_2) + N_m(t_2,t_1)}{(1-t_1)^{n_x+1}(1-t_2)^{n_y+1}},
$$

$$
N_m(t_1,t_2) = \sum_{\ell=1}^{m-(n_y+1)} (1-t_1t_2)^{m-(n_y+1)-\ell}t_1t_2(1-t_2)^{n_y+1} \left[1-(1-t_1)^{\ell} \sum_{k=1}^{n_y+1} t_1^{n_y+1-k} \binom{\ell+n_y-k}{n_y+1-k} \right]
$$

and the same special contract and activities

Degree of regularity: For a bi-regular bilinear sequence with m = $n_{_X}$ + $n_{_Y}$, d_{reg} ≤ max($n_{_X},n_{_Y}$) + 2 $^-$ (not generically sharp)

With higher-degree (bi-homogeneous) or more groups (multi-homogeneous), nothing is known.

Algorithm

In. $F = \{f_1, ..., f_m\}$ structured polynomials, $D \in \mathbb{N}$

Out. G Gröbner basis up to "structure degree" D

1. For d from 0 to D

- 1.1 Form the Macaulay matrix M of "structure degree" d of the system (matrix whose rows are all the $m f_{\overline{i}}$ for a choice of monomials m depending on d)
- 1.2 Echelon-reduce the matrix
- 1.3 Add to G each polynomial corresponding to a reduced row
- 2. Return

Algorithm

In. $F = \{f_1, ..., f_m\}$ structured polynomials, $D \in \mathbb{N}$

Out. G Gröbner basis up to "structure degree" D

- 1. For d from 0 to D
	- 1.1 Form the Macaulay matrix M of "structure degree" d of the system (matrix whose rows are all the $m f_{\overline{i}}$ for a choice of monomials m depending on d)
	- 1.2 Echelon-reduce the matrix
	- 1.3 Add to G each polynomial corresponding to a reduced row
- 2. Return

Examples:

- Weighted-homogeneous: weighted-degree
- Multi-homogeneous: multi-degree

Algorithm

In. $F = \{f_1, ..., f_m\}$ structured polynomials, $D \in \mathbb{N}$

Out. G Gröbner basis up to "structure degree" D

- 1. For d from 0 to D
	- 1.1 Form the Macaulay matrix M of "structure degree" d of the system (matrix whose rows are all the $m f_{\overline{i}}$ for a choice of monomials m depending on d)
	- 1.2 Echelon-reduce the matrix
	- 1.3 Add to G each polynomial corresponding to a reduced row
- 2. Return

Examples:

- Weighted-homogeneous: weighted-degree
- Multi-homogeneous: multi-degree
- Group-invariant systems: G-degree (Faugère, Svartz 2012, 2013)
- Sparse systems: sparse degree (Faugère, Svartz, Spaenlehauer 2014, Faugère, Bender 2018...)

Definitions:

- a matrix of weights is a matrix $\boldsymbol{W} = (w_{i,j}) = \begin{pmatrix} W_1 \\ \vdots \\ W_k \end{pmatrix} \in \mathbb{Z}^{k \times n}$ with rank k
- the matrix-weighted degree of a monomial \pmb{X}^{α} is

$$
\mathsf{deg}_{\mathsf{W}}(\mathbf{X}^\alpha) = \mathsf{W} \cdot \alpha = (\mathsf{deg}_{\mathsf{W}_1}(\mathbf{X}^\alpha), \dots, \mathsf{deg}_{\mathsf{W}_k}(\mathbf{X}^\alpha))
$$

• Matrix-weighted homogeneous polynomials and ideals are defined as usual

Examples:

- weighted homogeneous systems are matrix-weighted homogeneous with $k = 1$
- multi-homogeneous systems are matrix-weighted homogeneous with

$$
W_{i} = (\underbrace{0, \dots \dots, 0}_{n_{1} + \dots + n_{i-1}}, \underbrace{1, \dots, 1}_{n_{i}}, \underbrace{0, \dots \dots, 0}_{n_{i+1} + \dots + n_{k}}).
$$

Algorithm:

- use the previous algorithm following the matrix-weighted degree
- or use the change of variable $X_i\mapsto Y_{i,1}^{w_{i,i}}\cdots Y_{i,k}^{w_{k,i}}$ to recover a multi-homogeneous ideal, prune out the unnecessary (repeating) monomials, and use Spaenlehauer's algorithms
- the two strategies are equivalent

Complexity:

- Size of the matrices: number of solutions of linear diophantine equations (no closed form even in the weighted homogeneous case)
- Regular sequences, degree of regularity: unknown (cannot be less complicated than the multi-homogeneous case)
- It may be impossible to give a satisfying notion of dimension for the solutions (like the projective dimension for homogeneous systems)

Conclusion

Summary

- Overview of linear algebra algorithms for computing Gröbner bases for structured systems
- Examples: weighted homogeneous, multi-homogeneous, matrix-weighted homogeneous
- Complexity

Aspects not discussed

- Effective elimination of reduction to zero (F5 criterion, extensions for the structures)
- Additional optimizations (e.g. parallelism)
- Number of solutions, FGLM algorithm
- Genericity of regular sequences or of other critical assumptions
- Under-determined case, over-determined case
- Sparse Gröbner bases

Conclusion

Summary

- Overview of linear algebra algorithms for computing Gröbner bases for structured systems
- Examples: weighted homogeneous, multi-homogeneous, matrix-weighted homogeneous
- Complexity

Aspects not discussed

- Effective elimination of reduction to zero (F5 criterion, extensions for the structures)
- Additional optimizations (e.g. parallelism)
- Number of solutions, FGLM algorithm
- Genericity of regular sequences or of other critical assumptions
- Under-determined case, over-determined case
- Sparse Gröbner bases

Thank you for your attention!