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Recall from last semester

Complexity of computing Gröbner bases:

• In full generality (worst case): doubly exponential (≃ impossible)

• Generic: tractable with controlled complexity

Algorithm (Lazard 1983)

In. 𝐹 = {𝑓1, … , 𝑓𝑚} homogeneous polynomials (resp. degree 𝑑𝑖) in 𝑛 variables, 𝐷 ∈ ℕ

Out. 𝐺 Gröbner basis up to degree 𝐷

1. For 𝑑 from 0 to 𝐷
1.1 Form the Macaulay matrix 𝑀 of degree 𝑑 of the system

(matrix whose rows are all the 𝑚𝑓𝑖 with deg(𝑚) + deg(𝑓𝑖) = 𝑑)
1.2 Echelon-reduce the matrix 𝑀
1.3 Add to 𝐺 each polynomial corresponding to a reduced row

2. Return 𝐺
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Complexity bounds

Complexity of the algorithm = 𝑂(𝐷𝑁𝜔𝐷 )

• 𝑁𝑑: size of the matrix at degree 𝑑, 𝑁𝑑 = (
𝑛+𝑑−1
𝑑 )

• 𝜔: exponent of the cost of reducing the matrices (in practice quite low thanks to sparsity)

What about 𝐷?

Theorem (Hilbert): every ideal is finitely generated

Corollary (Buchberger): every ideal has a finite Gröbner basis

Corollary: for 𝐷 large enough, the algorithm outputs a Gröbner basis

Degree of regularity of the system: 𝑑reg = smallest 𝐷 such that the output is a Gröbner basis

Regular sequence: for all 𝑖, 𝑞𝑓𝑖 ∈ ⟨𝑓1, … , 𝑓𝑖−1⟩ ⟹ 𝑞 ∈ ⟨𝑓1, … , 𝑓𝑖−1⟩

“All reductions to 0 are predictable”

For homogeneous regular sequences with𝑚 = 𝑛: 𝑑reg ≤
𝑛

∑
𝑖=1
𝑑𝑖 − 𝑛 + 1

(generically sharp)
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3 hypotheses

The polynomial system must be:

• a regular sequence;

• square (𝑚 = 𝑛);

• homogeneous.

Can we relax those hypotheses?

Regularity: perhaps, but then there is nothing to keep us away from the worst case.
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Under-determined systems𝑚 < 𝑛

Let 𝑓1, … , 𝑓𝑚 be a regular sequence and 𝐼 = ⟨𝑓1, … , 𝑓𝑚⟩.

The ideal 𝐼 is in Noether position wrt 𝑋𝑚+1, … , 𝑋𝑛
... iff the projection of 𝑉(𝐼) onto 𝐾𝑛−𝑚 on the last coordinates is a finite map

... iff the canonical map 𝐾[𝑋𝑚+1, … , 𝑋𝑛] → 𝐾[𝑋1, … , 𝑋𝑛]/𝐼 is injective
and such that 𝐾[𝑋1, … , 𝑋𝑛]/𝐼 is integral over 𝐾[𝑋𝑚+1, … , 𝑋𝑛]

... iff 𝑓1, … , 𝑓𝑚, 𝑋𝑚+1, … , 𝑋𝑛 is a regular sequence.

For homogeneous systems in Noether position: 𝑑reg ≤
𝑚

∑
𝑖=1
𝑑𝑖 − 𝑚 + 1 (generically sharp)
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What about affine (non-homogeneous) systems? (1)

Macaulay matrix at deg 7 of a generic homogeneous system (5 variables, 5 polys, degree 4)
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What about affine (non-homogeneous) systems? (1)

Adaptation of the algorithm: homogenize the system, or consider the lower degree monomials

Macaulay matrix up to deg 7 of a generic affine system (5 variables, 5 polys, degree 4)
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What about affine (non-homogeneous) systems? (2)

Size of the matrices: equivalent to adding an extra variable to the ring

Degree of regularity:

• if the highest degree components form a regular sequence,
all degree falls are predictable,
and we get the same bound as in the homogeneous case

• such a system is called a regular sequence in the affine sense

• if not, we don’t have any bound

Sanity check: assume that 𝑛 = 𝑚, let 𝑓ℎ1 , … , 𝑓
ℎ
𝑛 be the respective homogenizations

(with the homogenization variable 𝐻):

𝑓1, … , 𝑓𝑛 is a regular sequence in the affine sense
⟺

𝑓ℎ1 , … , 𝑓
ℎ
𝑛 is in Noether position wrt 𝐻
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Structured systems

Problem

• There are other structures than homogeneity

• Systems with those structures are usually not regular in the affine sense

• They are also not instances of the worst-case complexity

Example

⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪
⎩

𝑥51 + 43𝑥
4
1𝑥2 + 96𝑥

3
1𝑥

2
2 + 115𝑥

2
1𝑥

3
2 + 118𝑥1𝑥

4
2 + 91𝑥

5
2 + 2𝑥

3
1𝑥3 + 23𝑥

2
1𝑥2𝑥3 + 60𝑥1𝑥

2
2𝑥3 + 8𝑥

3
2𝑥3 + 18𝑥

3
1𝑥4

+ 58𝑥21𝑥2𝑥4 + 125𝑥1𝑥
2
2𝑥4 + 53𝑥

3
2𝑥4 + 11𝑥1𝑥

2
3 + 108𝑥2𝑥

2
3 + 29𝑥1𝑥3𝑥4 + 9𝑥2𝑥3𝑥4 + 68𝑥1𝑥

2
4 + 72𝑥2𝑥

2
4 = 0

𝑥51 + 23𝑥
4
1𝑥2 + 34𝑥

3
1𝑥

2
2 + 21𝑥

2
1𝑥

3
2 + 22𝑥1𝑥

4
2 + 70𝑥

5
2 + 3𝑥

3
1𝑥3 + 59𝑥

2
1𝑥2𝑥3 + 17𝑥1𝑥

2
2𝑥3 + 83𝑥

3
2𝑥3 + 11𝑥

3
1𝑥4

+ 101𝑥21𝑥2𝑥4 + 61𝑥1𝑥
2
2𝑥4 + 9𝑥

3
2𝑥4 + 119𝑥1𝑥

2
3 + 23𝑥2𝑥

2
3 + 21𝑥1𝑥3𝑥4 + 69𝑥2𝑥3𝑥4 + 76𝑥1𝑥

2
4 + 62𝑥2𝑥

2
4 = 0

𝑥51 + 21𝑥
4
1𝑥2 + 2𝑥

3
1𝑥

2
2 + 81𝑥

2
1𝑥

3
2 + 98𝑥1𝑥

4
2 + 61𝑥

5
2 + 108𝑥

3
1𝑥3 + 21𝑥

2
1𝑥2𝑥3 + 37𝑥1𝑥

2
2𝑥3 + 32𝑥

3
2𝑥3 + 75𝑥

3
1𝑥4

+ 65𝑥21𝑥2𝑥4 + 49𝑥1𝑥
2
2𝑥4 + 71𝑥

3
2𝑥4 + 86𝑥1𝑥

2
3 + 111𝑥2𝑥

2
3 + 102𝑥1𝑥3𝑥4 + 78𝑥2𝑥3𝑥4 + 60𝑥1𝑥

2
4 + 33𝑥2𝑥

2
4 = 0

𝑥51 + 77𝑥
4
1𝑥2 + 117𝑥

3
1𝑥

2
2 + 56𝑥

2
1𝑥

3
2 + 89𝑥1𝑥

4
2 + 36𝑥

5
2 + 25𝑥

3
1𝑥3 + 87𝑥

2
1𝑥2𝑥3 + 90𝑥1𝑥

2
2𝑥3 + 14𝑥

3
2𝑥3 + 81𝑥

3
1𝑥4

+ 51𝑥21𝑥2𝑥4 + 24𝑥1𝑥
2
2𝑥4 + 84𝑥

3
2𝑥4 + 12𝑥1𝑥

2
3 + 70𝑥2𝑥

2
3 + 4𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 + 43𝑥1𝑥

2
4 + 78𝑥2𝑥

2
4 = 0
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Degree falls in the wild

Step

De
gr
ee

With degree falls (15→ 36 in 37 steps)

Homogenized (15→ 51 in 37 steps)
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Macaulay matrices for the example

Affine Macaulay matrix up to deg 11 of the example system

... after reordering the columns by reverse 𝑊-degree

... after reordering the rows by 𝑊-degree of the signatures

... and after re-reordering the rows by 𝑊-degree of the polynomials
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What was the reordering?

{
𝑥51 + 43𝑥

4
1𝑥2 + 96𝑥

3
1𝑥

2
2 + 115𝑥

2
1𝑥

3
2 + 118𝑥1𝑥

4
2 + 91𝑥

5
2 + 2𝑥

3
1𝑥3 + 23𝑥

2
1𝑥2𝑥3 + 60𝑥1𝑥

2
2𝑥3 + 8𝑥

3
2𝑥3 + 18𝑥

3
1𝑥4

+ 58𝑥21𝑥2𝑥4 + 125𝑥1𝑥
2
2𝑥4 + 53𝑥

3
2𝑥4 + 11𝑥1𝑥

2
3 + 108𝑥2𝑥

2
3 + 29𝑥1𝑥3𝑥4 + 9𝑥2𝑥3𝑥4 + 68𝑥1𝑥

2
4 + 72𝑥2𝑥

2
4 = 0

(…)

Weighted degree: 𝑊 = (𝑤1, … , 𝑤𝑛) ∈ ℤ
𝑛, deg𝑊 (𝑥

𝛼1
1 , … , 𝑥

𝛼𝑛
𝑛 ) = 𝑤1𝛼1 + ⋯ + 𝑤𝑛𝛼𝑛

The system is homogeneous for this weighted degree (weighted-homogeneous)
for 𝑊 = (1, 1, 2, 2).
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Are we happy?

No!

We have explained the structure of the Macaulay matrices with 𝑊-homogeneity,
but that doesn’t tell us how to compute a Gröbner basis or estimate the complexity.
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Weighted-homogeneous systems, strategy 1

First idea: build the matrices weighted degree by weighted degree

Affine Macaulay matrix up to 𝑊-deg 11 of the example system

... after reordering the rows and columns

13



Weighted-homogeneous systems, strategy 1

First idea: build the matrices weighted degree by weighted degree

Affine Macaulay matrix up to 𝑊-deg 11 of the example system
... after reordering the rows and columns
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Weighted-homogeneous systems, strategy 2

Second idea: change of variable 𝑥𝑖 ↦ 𝑥
𝑤𝑖
𝑖

Affine Macaulay matrix up to deg 11 of the example system with 𝑥3 ↦ 𝑥23 and 𝑥4 ↦ 𝑥24

... after splitting according to the parity of the degrees in 𝑥3 and 𝑥4

... and after reordering

The top-right corner is exactly the same as with the first strategy!
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Degree falls in the wild

Step

De
gr
ee

With degree falls (15→ 36 in 37 steps)

Homogenized (15→ 51 in 37 steps)

Weighted (16→ 72 in 29 steps (+2 per step))
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Complexity matters (Faugère, Safey, V. 2013, 2016)

Size of the matrices: number of monomials at 𝑊-degree 𝑑 ≃ 1
∏𝑤𝑖

(𝑛 + 𝑑 − 1
𝑑

)

Weighted degree of regularity: (𝑛 = 𝑚)

• for 𝑊-homo regular sequences: 𝑑reg ≤
𝑛

∑
𝑖=1
(𝑑𝑖 − 𝑤𝑖) + max(𝑤𝑖) (not generically sharp)

• for 𝑊-homo systems in simultaneous Noether position: 𝑑reg ≤
𝑛

∑
𝑖=1
(𝑑𝑖 − 𝑤𝑖) + 𝑤𝑛

(generically sharp under some hypotheses on the weights)

Key ingredient: Hilbert series
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Another example of structure

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑥1𝑦1 + 23𝑥2𝑦1 + 18𝑥3𝑦1 + 54𝑥4𝑦1 + 78𝑥1𝑦2 + 71𝑥2𝑦2 + 32𝑥3𝑦2 + 24𝑥4𝑦2 + 64𝑥1𝑦3
+ 90𝑥2𝑦3 + 78𝑥3𝑦3 + 65𝑥4𝑦3 + 94𝑥1𝑦4 + 72𝑥2𝑦4 + 114𝑥3𝑦4 + 30𝑥4𝑦4 = 0

𝑥1𝑦1 + 62𝑥2𝑦1 + 88𝑥3𝑦1 + 117𝑥4𝑦1 + 68𝑥1𝑦2 + 79𝑥2𝑦2 + 125𝑥3𝑦2 + 106𝑥4𝑦2 + 47𝑥1𝑦3
+ 125𝑥2𝑦3 + 13𝑥3𝑦3 + 92𝑥4𝑦3 + 43𝑥1𝑦4 + 119𝑥2𝑦4 + 23𝑥3𝑦4 + 39𝑥4𝑦4 = 0

𝑥1𝑦1 + 112𝑥2𝑦1 + 39𝑥3𝑦1 + 39𝑥4𝑦1 + 105𝑥1𝑦2 + 12𝑥2𝑦2 + 60𝑥3𝑦2 + 61𝑥4𝑦2 + 77𝑥1𝑦3
+ 40𝑥2𝑦3 + 28𝑥3𝑦3 + 120𝑥4𝑦3 + 24𝑥1𝑦4 + 115𝑥2𝑦4 + 121𝑥3𝑦4 + 24𝑥4𝑦4 = 0

𝑥1𝑦1 + 5𝑥2𝑦1 + 28𝑥3𝑦1 + 56𝑥4𝑦1 + 41𝑥1𝑦2 + 14𝑥2𝑦2 + 89𝑥3𝑦2 + 96𝑥4𝑦2 + 40𝑥1𝑦3
+ 69𝑥2𝑦3 + 114𝑥3𝑦3 + 31𝑥4𝑦3 + 117𝑥1𝑦4 + 75𝑥2𝑦4 + 41𝑥3𝑦4 + 46𝑥4𝑦4 = 0
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Another example of structure

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
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Macaulay matrices for the bilinear example

Affine Macaulay matrix at deg 5 of the example system

... after reordering the rows and columns
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Affine Macaulay matrix at deg 5 of the example system
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18



Algorithm and complexity

Algorithm: consider the signatures multi-degree by multi-degree

Complexity:

• Size of the matrices: (
𝑛1 + 𝑑 − 1

𝑑
) rows, (

𝑛2 + 𝑑 − 1
𝑑

) columns (with 𝑛1, 𝑛2 ∈ {𝑛𝑥, 𝑛𝑦})

• Degree of regularity?

• What is regularity???
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Characterizations of regularity

Homogeneous case: (𝑓1, … , 𝑓𝑛) is a regular sequence

⟺ for all 𝑖, 𝑞𝑓𝑖 ∈ ⟨𝑓1, … , 𝑓𝑖−1⟩ ⟹ 𝑞 ∈ ⟨𝑓1, … , 𝑓𝑖−1⟩

⟺ HS(𝑇) =
(1 − 𝑇𝑑1) ⋯ (1 − 𝑇𝑑𝑛)

(1 − 𝑇)𝑛

⟺ 𝑉(𝑓1, … , 𝑓𝑚) has dimension 0

⟺ 𝑉(𝑓1, … , 𝑓𝑚) = {0}

Bilinear case: (wrt the variables 𝑥1, … , 𝑥𝑛𝑥 and 𝑦1, … , 𝑦𝑛𝑦)

𝑉(𝑓1, … , 𝑓𝑛) always contains 𝑉(𝑥1, … , 𝑥𝑛𝑥) and 𝑉(𝑦1, … , 𝑦𝑛𝑦)

⟹ 𝑓1, … , 𝑓𝑛 cannot be a regular sequence!
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Bilinear regularity (Faugère, Safey, Spaenlehauer 2012)

Bi-regular sequence: 𝑓1, … , 𝑓𝑚 is a bi-regular sequence iff for all 𝑖,

𝑞𝑓𝑖 ∈ ⟨𝑓1, … , 𝑓𝑖−1⟩ ⟹ LM(𝑞) ∈ ⟨M𝒙
𝑖−𝑛𝑦(𝑛𝑦)⟩ + ⟨M

𝒚
𝑖−𝑛𝑥(𝑛𝑥)⟩ + LM(⟨𝑓1, … , 𝑓𝑖−1⟩)

whereM𝒗
𝑘(𝑑) is the set of monomials of degree 𝑑 in 𝑣1, … , 𝑣𝑘.

Degree of regularity: For a bi-regular bilinear sequence with 𝑚 = 𝑛𝑥 + 𝑛𝑦, 𝑑reg ≤ max(𝑛𝑥, 𝑛𝑦) + 2
(not generically sharp)

With higher-degree (bi-homogeneous) or more groups (multi-homogeneous), nothing is known.
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Unified algorithm for structured systems

Algorithm

In. 𝐹 = {𝑓1, … , 𝑓𝑚} structured polynomials, 𝐷 ∈ ℕ

Out. 𝐺 Gröbner basis up to “structure degree” 𝐷

1. For 𝑑 from 0 to 𝐷
1.1 Form the Macaulay matrix 𝑀 of “structure degree” 𝑑 of the system

(matrix whose rows are all the 𝑚𝑓𝑖 for a choice of monomials 𝑚 depending on 𝑑)
1.2 Echelon-reduce the matrix 𝑀
1.3 Add to 𝐺 each polynomial corresponding to a reduced row

2. Return 𝐺

Examples:

• Weighted-homogeneous: weighted-degree

• Multi-homogeneous: multi-degree

• Group-invariant systems: 𝐺-degree (Faugère, Svartz 2012, 2013)

• Sparse systems: sparse degree (Faugère, Svartz, Spaenlehauer 2014, Faugère, Bender 2018...)

• ...
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Matrix-weighted homogeneous systems

Definitions:

• a matrix of weights is a matrix 𝑾 = (𝑤𝑖,𝑗) = (
𝑊1

…

𝑊𝑘
) ∈ ℤ𝑘×𝑛 with rank 𝑘

• the matrix-weighted degree of a monomial 𝑿𝛼 is

deg𝑾(𝑿
𝛼) = 𝑾 ⋅ 𝛼 = (deg𝑊1

(𝑿𝛼), … , deg𝑊𝑘
(𝑿𝛼))

• Matrix-weighted homogeneous polynomials and ideals are defined as usual

Examples:

• weighted homogeneous systems are matrix-weighted homogeneous with 𝑘 = 1

• multi-homogeneous systems are matrix-weighted homogeneous with

𝑊𝑖 = (0, …… , 0⏟
𝑛1+⋯+𝑛𝑖−1

, 1, … , 1⏟
𝑛𝑖

, 0, …… , 0⏟
𝑛𝑖+1+⋯+𝑛𝑘

).
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Gröbner bases for matrix-weighted homogeneous systems (V. 2022)

Algorithm:

• use the previous algorithm following the matrix-weighted degree

• or use the change of variable 𝑋𝑖 ↦ 𝑌
𝑤1,𝑖
𝑖,1 ⋯𝑌

𝑤𝑘,𝑖
𝑖,𝑘 to recover a multi-homogeneous ideal,

prune out the unnecessary (repeating) monomials, and use Spaenlehauer’s algorithms

• the two strategies are equivalent

Complexity:

• Size of the matrices: number of solutions of linear diophantine equations
(no closed form even in the weighted homogeneous case)

• Regular sequences, degree of regularity: unknown
(cannot be less complicated than the multi-homogeneous case)

• It may be impossible to give a satisfying notion of dimension for the solutions
(like the projective dimension for homogeneous systems)
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Conclusion

Summary

• Overview of linear algebra algorithms for computing Gröbner bases for structured systems

• Examples: weighted homogeneous, multi-homogeneous, matrix-weighted homogeneous

• Complexity

Aspects not discussed

• Effective elimination of reduction to zero (F5 criterion, extensions for the structures)

• Additional optimizations (e.g. parallelism)

• Number of solutions, FGLM algorithm

• Genericity of regular sequences or of other critical assumptions

• Under-determined case, over-determined case

• Sparse Gröbner bases

Thank you for your attention!
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