SIGNATURE GRÖBNER BASES AND COFACTOR COMPUTATION IN THE FREE ALGEBRA

Clemens Hofstadler^{1, 2}, Thibaut Verron¹ CAS³C³ team seminar, 31 mars 2022

1. Institute for Algebra, Johannes Kepler University, Linz, Autriche 2. Institute of Mathematics, University of Kassel, Kassel, Allemagne

THE IDEAL MEMBERSHIP PROBLEM AND GRÖBNER BASES

Question: Die Entscheidung ob die vorgelegte Grundform eine von 0 verschiedene [Hilbert 1893] Invariante besitzt oder nicht.

David Hilbert

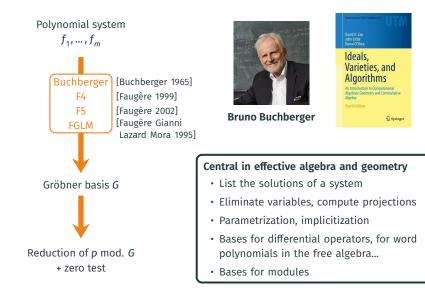
THE IDEAL MEMBERSHIP PROBLEM AND GRÖBNER BASES

Question: Die K Given $f_1, ..., f_m, p \in K[X_1, ..., X_n]$, decide if $p \in \langle f_1, ..., f_m \rangle$. [Hilbert 1893]

David Hilbert

THE IDEAL MEMBERSHIP PROBLEM AND GRÖBNER BASES

Question: Die E Given $f_1, \dots, f_m, p \in K[X_1, \dots, X_n]$, decide if $p \in \langle f_1, \dots, f_m \rangle$. [Hilbert 1893]



Setting:

- R field, $A = R(X_1, ..., X_n)$ free algebra over R
- Monomials are words: $X_{i_1}X_{i_2}\cdots X_{i_d}$
- Monomial ordering and reduction are defined as usual
- Gröbner bases are defined as usual
- Application: proof of formulas "Does a relation follow from a prescribed set of axioms?"

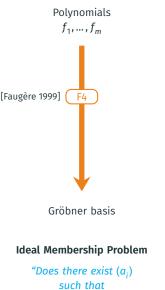
What is not usual:

- The free algebra is not Noetherian
- Most ideals do not admit a finite Gröbner basis
- It is not decidable whether an ideal admits a finite Gröbner basis

Gröbner basis

Ideal Membership Problem

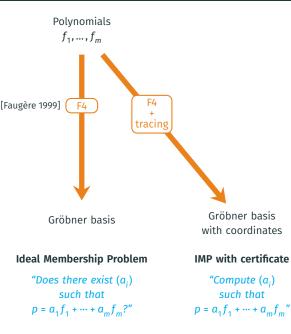
"Does there exist (a_i) such that $p = a_1 f_1 + \dots + a_m f_m$?"

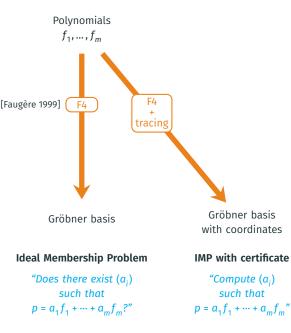


 $p = a_1 f_1 + \dots + a_m f_m ?"$

IMP with certificate

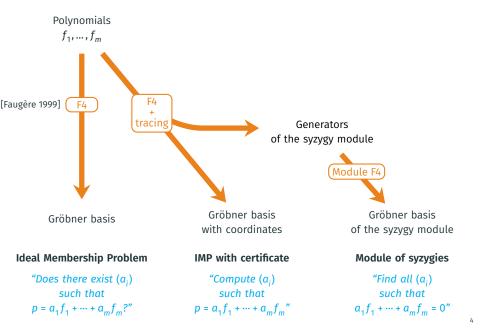
"Compute (a_i) such that $p = a_1f_1 + \dots + a_mf_m$ "

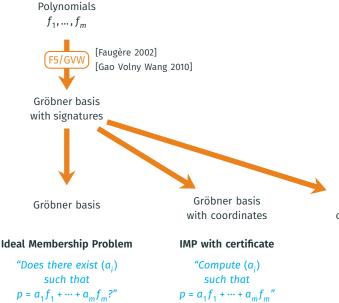




Module of syzygies

"Find all (a_i) such that $a_1f_1 + \dots + a_mf_m = 0$ "



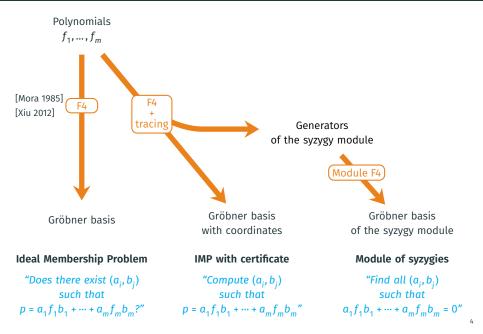


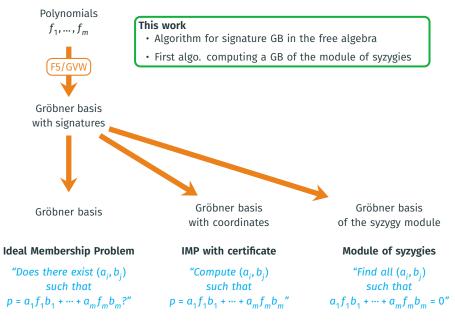
of the syzygy module

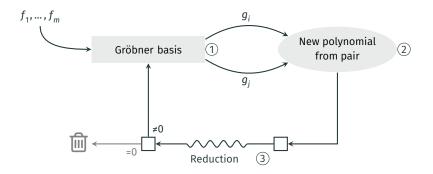
Module of syzygies

Gröbner basis

"Find all (a_i) such that $a_1f_1 + \dots + a_mf_m = 0$ "







- 1. Selection: selection strategy
- 2. Construction: S-polynomials
- 3. Reduction

Problem: useless computations: $\square \longrightarrow \diamondsuit$

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

p - q = 0?

Problem: useless computations: $\widehat{\blacksquare} \longrightarrow \diamondsuit$

• 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m \qquad q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m p = p_1 e_1 + p_2 e_2 + \dots + p_m e_m \qquad q = q_1 e_1 + q_2 e_2 + \dots + q_m e_m$$

$$p - q = 0?$$

$$p - q = (p_1e_1 + \dots + p_me_m) - (q_1e_1 + \dots + q_me_m)$$

Problem: useless computations: $\square \longrightarrow \diamondsuit$

- 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: we do not need the full representation, the largest term is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

$$p = p_1 e_1 + p_2 e_2 + \dots + p_m e_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_m e_m$$

$$= LT(p_k) e_k + \text{smaller terms}$$

$$q = LT(q_l) e_l + \text{smaller terms}$$

$$p - q = 0?$$

$$p - q = (p_1e_1 + \dots + p_me_m) - (q_1e_1 + \dots + q_me_m)$$
$$= LT(p_k)e_k - LT(q_l)e_l + \text{smaller terms}$$

Problem: useless computations: $\square \longrightarrow \diamondsuit$

- 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: we do not need the full representation, the largest term is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

$$p = p_1 e_1 + p_2 e_2 + \dots + p_m e_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_m e_m$$

$$= LT(p_k) e_k + \text{smaller terms}$$

$$q = LT(q_l) e_l + \text{smaller terms}$$

$$p - q = 0?$$

$$p - q = (p_1e_1 + \dots + p_me_m) - (q_1e_1 + \dots + q_me_m)$$

$$= LT(p_k)e_k - LT(q_l)e_l + smaller terms$$

$$= LT(p_k)e_k + smaller terms \quad \text{if } LT(p_k)e_k > LT(q_l)e_k$$

Problem: useless computations: $\square \longrightarrow \diamondsuit$

- 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: we do not need the full representation, the largest term is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$p = p_1 e_1 + p_2 e_2 + \dots + p_m e_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_m e_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_m e_m$$

$$= LT(p_k) e_k + \text{smaller terms}$$

$$sig(p) = \text{ signature of } p$$

$$p - q = 0?$$

$$p - q = (p_1 e_1 + \dots + p_m e_m) - (q_1 e_1 + \dots + q_m e_m)$$

$$= LT(p_k)e_k - LT(q_l)e_l + smaller terms$$

$$= LT(p_k)e_k + smaller terms \quad \text{if } LT(p_k)e_k > LT(q_l)e_l \quad \text{Regular addition}$$

MODULE FRAMEWORK

Setting:

- Input: $f_1, \dots, f_m \in A = R[\mathbf{X}]$ spanning the ideal I
- Module $M = A\boldsymbol{e}_1 \oplus \dots \oplus A\boldsymbol{e}_m \simeq A^m$ with the map $M \to I, \boldsymbol{e}_i \mapsto f_i$
- Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (\mathbf{s}, f) with $f = \sum a_i f_i$ and $\mathbf{s} = LM(\sum a_i e_i)$
- Syzygy in M: $\mathbf{z} = \sum z_i \mathbf{e}_i \in M$ such that $\sum z_i f_i = 0$

MODULE FRAMEWORK

Setting:

- Input: $f_1, \dots, f_m \in A = R[\mathbf{X}]$ spanning the ideal I
- Module $M = A\boldsymbol{e}_1 \oplus \cdots \oplus A\boldsymbol{e}_m \simeq A^m$ with the map $M \to I, \boldsymbol{e}_i \mapsto f_i$
- Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (\mathbf{s}, f) with $f = \sum a_i f_i$ and $\mathbf{s} = LM(\sum a_i e_i)$
- Syzygy in M: $\mathbf{z} = \sum z_i \mathbf{e}_i \in M$ such that $\sum z_i f_i = 0$

Regular operations:

- Multiplying a sig-poly pair by a term in A is easy
- We can only compute the result of regular additions: $(\mathbf{s}, f) + (\mathbf{t}, g) = (\max(\mathbf{s}, \mathbf{t}), f + g)$ if $\mathbf{s} \neq \mathbf{t}$
- We define regular S-polynomials and regular reductions in that way

MODULE FRAMEWORK

Setting:

- Input: $f_1, \dots, f_m \in A = R[X]$ spanning the ideal I
- Module $M = A\boldsymbol{e}_1 \oplus \dots \oplus A\boldsymbol{e}_m \simeq A^m$ with the map $M \to I, \boldsymbol{e}_i \mapsto f_i$
- Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (\mathbf{s}, f) with $f = \sum a_i f_i$ and $\mathbf{s} = LM(\sum a_i e_i)$
- Syzygy in M: $\mathbf{z} = \sum z_i \mathbf{e}_i \in M$ such that $\sum z_i f_i = 0$

Regular operations:

- Multiplying a sig-poly pair by a term in A is easy
- We can only compute the result of regular additions: $(\mathbf{s}, f) + (\mathbf{t}, g) = (\max(\mathbf{s}, \mathbf{t}), f + g)$ if $\mathbf{s} \neq \mathbf{t}$
- We define regular S-polynomials and regular reductions in that way

s-reductions: (sig(f), f) s-reduces to (sig(h), h) modulo (sig(g), g) if:

- tLT(f) = LT(f)
- h = f tg
- $tsig(\boldsymbol{g}) \leq sig(\boldsymbol{f})$

"A s-reduction doesn't increase the signature, a regular reduction doesn't change it."

Signature Gröbner basis:

- set ${\mathcal G}$ of sig-poly pairs such that every sig-poly pair of M is s-reducible modulo ${\mathcal G}$
- Property: the polynomial parts of a S-GB form a Gröbner basis

Signature basis of syzygies:

- + set ${\mathcal Z}$ of signatures such that every syzygy in M is reducible modulo ${\mathcal Z}$
- equivalently, generating set for the leading terms of the syzygies in ${\it M}$

Signature Gröbner basis:

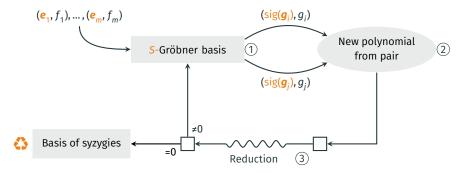
- set ${\mathcal G}$ of sig-poly pairs such that every sig-poly pair of M is s-reducible modulo ${\mathcal G}$
- Property: the polynomial parts of a S-GB form a Gröbner basis

Signature basis of syzygies:

- set ${\mathcal Z}$ of signatures such that every syzygy in M is reducible modulo ${\mathcal Z}$
- equivalently, generating set for the leading terms of the syzygies in ${\it M}$

Buchberger's algorithm, with signatures and restricted to regular operations, computes both of those

BUCHBERGER'S ALGORITHM WITH SIGNATURES



- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomials
- 3. Reduction (regular)

Singular criterion

- if two regular-reduced elements have the same signature, they s-reduce each other
- Consequence: it is enough to add one of them
- · Consequence: we can discard singular reducible elements after reduction

Syzygy criterion

- if (**s**, 0) is a sig-poly pair, any element with signature divisible by **s** regular-reduces to 0
- · Consequence: we can discard such elements before computing the S-pol

F5 criterion

- $sig(f_i \boldsymbol{e}_j f_j \boldsymbol{e}_i) = max(LM(f_i)\boldsymbol{e}_j, LM(f_j)\boldsymbol{e}_i)$ is the signature of a syzygy
- Consequence: we can add them to the basis of syzygies early

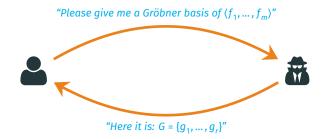
Theorem [Gao, Volny, Wang 2015]

Given $\mathcal G$ a signature Gröbner basis and $\mathcal Z$ a signature basis of syzygies, one can reconstruct:

- a Gröbner basis with coordinates \mathcal{G}_{full} ;
- a Gröbner basis of the module of syzygies \mathcal{Z}_{full} .

- In $\mathcal{G} = \{(\mathbf{s}_i, g_i)\}$ a signature Gröbner basis
 - Z = {(z_i, 0)} a signature basis of syzygies
- Out $\cdot \mathcal{G}_{full}$ a Gröbner basis with coordinates
 - + $\mathcal{Z}_{\text{full}}$ a Gröbner basis of the module of syzygies
 - 1. $\mathcal{G}_{\text{full}} \leftarrow \{(\boldsymbol{e}_i, f_i) : i \in \{1, ..., m\}\}$ (reducing if needed)
 - 2. For $(\mathbf{s}_i, \mathbf{g}_i) \in \mathcal{G}$ in increasing order of signatures, do 2.1 Find $\mathbf{g}_j \in \mathcal{G}_{full}$ s.t. there exists a term t with $tsig(\mathbf{g}_j) = \mathbf{s}_i$ (and $tLM(\mathbf{g}_j)$ minimal)
 - 2.2 Perform regular reductions of tg_i by \mathcal{G}_{full} until not reducible
 - 2.3 Add the result to \mathcal{G}_{full}
 - 3. With $\mathcal{G}_{\rm full}$ known, reconstruct $\mathcal{Z}_{\rm full}$ in the same way

REMARK: CERTIFICATION OF GRÖBNER BASIS COMPUTATIONS



Problem: how to verify that G is a Gröbner basis of $I = \langle f_1, ..., f_m \rangle$?

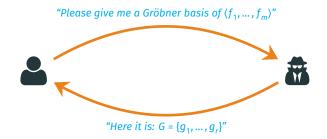
Two conditions:

1. G is a Gröbner basis (of $\langle G \rangle$):

This can be tested by checking that all S-pols of G reduce to 0 (Buchberger's criterion)

 ⟨G⟩ = I, or f₁,..., f_m ∈ G and G ⊂ I: This is as difficult as the ideal membership problem!

REMARK: CERTIFICATION OF GRÖBNER BASIS COMPUTATIONS



Problem: how to verify that G is a Gröbner basis of $I = \langle f_1, ..., f_m \rangle$?

Two conditions:

1. G is a Gröbner basis (of $\langle G \rangle$):

This can be tested by checking that all S-pols of G reduce to 0 (Buchberger's criterion)

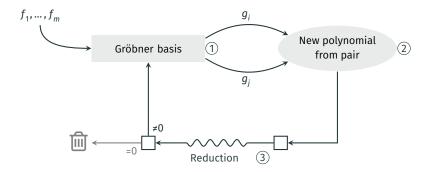
 ⟨G⟩ = I, or f₁,..., f_m ∈ G and G ⊂ I: This is as difficult as the ideal membership problem!

If the server provides a signature Gröbner basis, testing condition 2 becomes easy

Question: can we make a certificate for condition 1 using signatures?

- In $\mathcal{G} = \{(\mathbf{s}_i, g_i)\}$ a signature Gröbner basis
 - $\mathcal{Z} = \{(\mathbf{z}_i, \mathbf{0})\}$ a signature basis of syzygies
- Out $\cdot \mathcal{G}_{full}$ a Gröbner basis with coordinates
 - + $\mathcal{Z}_{\text{full}}$ a Gröbner basis of the module of syzygies
 - 1. $\mathcal{G}_{\text{full}} \leftarrow \{(\boldsymbol{e}_i, f_i) : i \in \{1, \dots, m\}\} \text{ (reducing if needed)}$
 - 2. For $(\mathbf{s}_i, g_i) \in \mathcal{G}$ in increasing order of signatures, do 2.1 Find $\mathbf{g}_j \in \mathcal{G}_{full}$ s.t. there exists a term t with $tsig(\mathbf{g}_j) = \mathbf{s}_i$ (and $tLM(\mathbf{g}_j)$ minimal)
 - 2.2 Perform regular reductions of $t\boldsymbol{g}_i$ by \mathcal{G}_{full} until not reducible
 - 2.3 Check that the result is compatible with g_i
 - 2.4 Add the result to $\mathcal{G}_{\rm full}$
 - 3. With $\mathcal{G}_{\text{full}}$ known, reconstruct $\mathcal{Z}_{\text{full}}$ in the same way

NON-COMMUTATIVE BUCHBERGER'S ALGORITHM



- 1. Selection: fair selection strategy "Every S-polynomial is selected eventually."
- 2. Construction: S-polynomials
- 3. Reduction

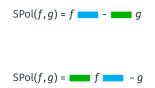
Several ways to make S-polynomials

• Overlap ambiguity

• Inclusion ambiguity

Several ways to make S-polynomials

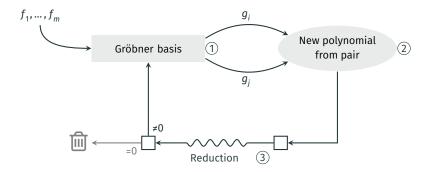
• Overlap ambiguity



• Inclusion ambiguity

- The combination need not be minimal, and S-polynomials are not unique!
- xyxy has an (overlap) ambiguity with itself: xyxy xyxy
 xxyx and xy have two ambiguities: xxyx xyx xyy xy
- Two polynomials can only give rise to finitely many S-polynomials
- It is required that the central part is non-trivial (coprime criterion)

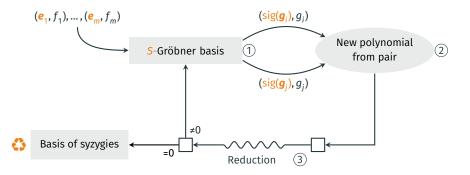
NON-COMMUTATIVE BUCHBERGER'S ALGORITHM



- 1. Selection: fair selection strategy "Every S-polynomial is selected eventually."
- 2. Construction: S-polynomials
- 3. Reduction

Non-commutative setting:

- Bimodule $M = Ae_1A \oplus \dots \oplus Ae_mA$ with the expected morphism $M \to A$ with image I
- Equipped with a module monomial ordering as before
- The ordering must additionally be fair (isomorphic to \mathbb{N})
- Sig-poly pairs (\mathbf{s}, f) with $f = \sum a_i f_i b_i$ and $\mathbf{s} = LM(\sum a_i \mathbf{e}_i b_i)$
- Regular S-polynomials and reductions are defined as before



- 1. Selection: non-decreasing signatures for a fair ordering
- 2. Construction: regular S-polynomials
- 3. Reduction (regular)

Question 1: Does the algorithm always terminate?

Question 1: Does the algorithm always terminate?

• Of course not, because most ideals do not have a finite Gröbner basis.

TERMINATION: TRIVIAL SYZYGIES

Question 1: Does the algorithm always terminate?

• Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

• Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

• Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: Trivial syzygies!

[Hofstadler V. 2021] [Chenavier Léonard Vaccon 2021]

- Syzygies of the form **f** g f g for any monomial
- Signature: $\max(\operatorname{sig}(f) = \operatorname{LM}(g), \operatorname{LM}(f) = \operatorname{sig}(g))$
- Because 📕 is put in the middle, this set is usually not finitely generated

TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

• Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

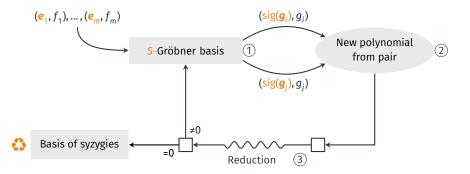
Obstruction: Trivial syzygies!

[Hofstadler V. 2021] [Chenavier Léonard Vaccon 2021]

- Syzygies of the form **f** g f g for any monomial
- Signature: $\max(\operatorname{sig}(f) = \operatorname{LM}(g), \operatorname{LM}(f) = \operatorname{sig}(g))$
- Because 📕 is put in the middle, this set is usually not finitely generated

Solution: Signatures!

- Identifying trivial syzygies is what signatures were made for (F5 criterion)
- Not just an optimization, but necessary for termination for some ideals



- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomials which are not eliminated by the F5 criterion
- 3. Reduction (regular)

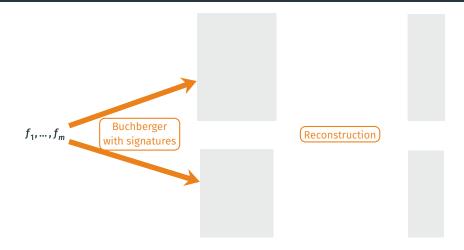
Output of the algorithm: a Gröbner basis with signatures, allowing to recover

- a Gröbner basis ${\mathcal G}$ with the coordinates
- a set \mathcal{H} of syzygies such that $\mathcal{H} \cup \{ trivial syzygies of \mathcal{G} \}$ is a basis of the module of syzygies
- a way to test if any module monomial is the leading term of a syzygy

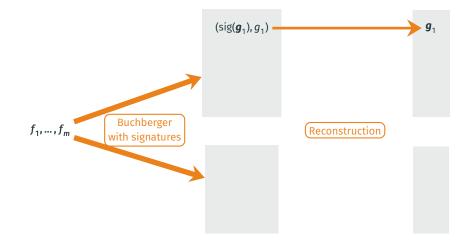
Results:

- The algorithm enumerates a signature Gröbner basis, by increasing order of signatures
- The algorithm terminates iff the ideal admits a finite signature Gröbner basis
- This implies that the ideal admits a finite GB and a finite "basis of non-trivial syzygies" ${\cal H}$
- Conjecture: the converse holds

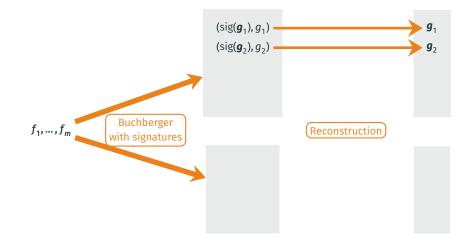
This is the first algorithm producing an effective representation of some modules of syzygies in the free algebra!



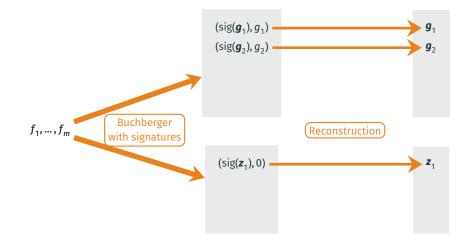
- The reconstruction can work with partial output from Buchberger+signatures
- The reconstruction terminates with finite input



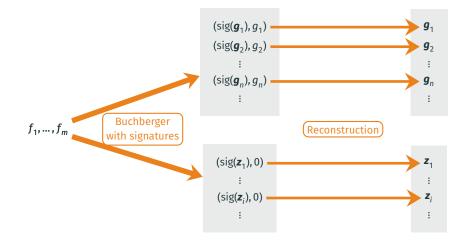
- The reconstruction can work with partial output from Buchberger+signatures
- The reconstruction terminates with finite input



- The reconstruction can work with partial output from Buchberger+signatures
- The reconstruction terminates with finite input



- The reconstruction can work with partial output from Buchberger+signatures
- The reconstruction terminates with finite input



- The reconstruction can work with partial output from Buchberger+signatures
- The reconstruction terminates with finite input

What we have

- Toy implementation in Mathematica
- Part of the package OperatorGB: https://clemenshofstadler.com/software/

Example	Signature			Buchberger			Buchberger + chain		
	S-poly	Red 0	Time	S-poly	Red 0	Time	S-poly	Red 0	Time
lv2-100	201	0	60	9702	4990	43	9702	4990	46
tri1	335	164	62	9435	8897	16	3480	3288	6

Remarks

- The F5 criterion is necessary to maximize the chances of the algorithm terminating
- The PoT ordering is not fair
- The F5 criterion is expensive! (quadratic in the size of $\mathcal{G})$
- Reconstruction of the module representation can be very expensive (no bound on the rank of the tensors)

CONCLUSION

This work

- Signature-based algorithm enumerating signature Gröbner bases in the free algebra
- Terminates whenever a finite signature Gröbner basis exists
- Taking care of trivial syzygies is necessary for termination
- · Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

- · Conjecture on characterization of existence of finite signature Gröbner basis
- Use of signatures for the computation of short representations
- · Computations in quotients of the algebra, elimination...

More details and references

• Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra, ArXiV:2107.14675

CONCLUSION

This work

- Signature-based algorithm enumerating signature Gröbner bases in the free algebra
- Terminates whenever a finite signature Gröbner basis exists
- Taking care of trivial syzygies is necessary for termination
- · Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

- · Conjecture on characterization of existence of finite signature Gröbner basis
- Use of signatures for the computation of short representations
- · Computations in quotients of the algebra, elimination...

More details and references

• Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra, ArXiV:2107.14675

Merci pour votre attention !