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GROBNER BASES

Grobner bases for commutative polynomials:
+ Ideal Membership Problem: decide if a polynomial lies in an ideal
« Leads to solving equations (parametrization, elimination, dimension of the solutions...)

+ Also simplifications, reductions, computations in modules

Grobner bases in the non commutative case:
* Rfield, A = R(X,, ..., X,) free algebra over R
« Monomials are words: Xi1Xi2 --~Xid
+ Monomial ordering and reduction are defined as usual
+ Grobner bases are defined as usual

« Application: proof of formulas
“Does a relation follow from a prescribed set of axioms?”

What is not usual:
+ The free algebra is not Noetherian
+ Most ideals do not admit a finite Grobner basis

« It is not decidable whether an ideal admits a finite Grobner basis



WHY SIGNATURE GROBNER BASES?

Polynomials

firesFm

[Faugére 1999]

Grobner basis

Ideal Membership Problem

“Does there exist (a;)
such that

p=a.fy+=+a,f.?"
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WHY SIGNATURE GROBNER BASES?
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NON-COMMUTATIVE BUCHBERGER'S ALGORITHM
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1. Selection: fair selection strategy
2. Construction: S-polynomials
3. Reduction
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Several ways to make S-polynomials
+ Overlap ambiguity
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Remarks:

+ The combination need not be minimal, and S-polynomials are not unique!

- xyxy has an (overlap) ambiguity with itself: XyXy
Xyxy
+ xxyx and xy have two ambiguities: XXYX XXYX
Xy Xy

+ Two polynomials can only give rise to finitely many S-polynomials

- Itis required that the central part is non-trivial (coprime criterion)



NON-COMMUTATIVE BUCHBERGER'S ALGORITHM

f1 ELE) fm gi
L} .. . /\ New polynomial
Grébner basis (1) @

\/ from pair
9j
20
@[ <L "NNN— ]
Reduction (3)

1. Selection: fair selection strategy “Every S-polynomial is selected eventually.”
2. Construction: S-polynomials
3. Reduction
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Setting:
« Input: f,,..., f,, € A =R[X] spanning the ideal |
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+ Module M = Ae, ® - @ Ae, = A" withthe map M — |, e; = f;
+ Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (s, f) with f = ¥ a;f; and s = LM(3 a;e;)

Regular operations:
+ Multiplying sig-poly pair by a term in A is easy
+ Additions are required to be regular: (s, f) + (t,g) = (max(s,t),f +g) ifs # t

+ We define regular S-polynomials and regular reductions in that way

Criteria:
« Syzygy criterion: if (s, 0) is a sig-poly pair,
any element with signature divisible by s regular-reduces to 0
+ F5 criterion: any element with signature divisible by
LM(fe; - fie;) = max (LM(f,)e;, LM(f))e;) regular-reduces to 0



BUCHBERGER’S ALGORITHM
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=0 .
Reduction (3)

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomials

3. Reduction (regular)



SIGNATURES FOR NON-COMMUTATIVE POLYNOMIALS

Non-commutative setting:
- Bimodule M = Ae,A e -- ® Ae, A with the expected morphism M — A with image |

+ Equipped with a module monomial ordering as before

« The ordering must additionally be fair (isomorphic to N)

+ Sig-poly pairs (s, f) with f = ¥ a;f;b; and s = LM(. a,e;b;)

« Regular S-polynomials and reductions are defined as before



NON-COMMUTATIVE BUCHBERGER'S ALGORITHM

(e fi)i(e, fn) (sig(g:) g;)

T ew polynomial
L> S-Grobner basis (D ew poynomiat -

\/ from pair
(sig(g;) g))
20
Basis of syzygies [ ] \/\/\/\/\,—D
=0 .
Reduction (3)

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials

3. Reduction (regular)
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TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

+ Of course not, because most ideals do not have a finite Grobner basis.

Question 2: Okay, but what if they do?
+ Still not. In most cases, the module of syzygies does not have a finite Grobner basis

+ Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: Trivial syzygies! [Hofstadler V. 2021] [Chenavier Léonard Vaccon 2021]
+ Syzygies of the form flg - fmg for any monomial |
- Signature: max(sig(f) M LM(g), LM(f) W sig(g))
- Because M is put in the middle, this set is usually not finitely generated

Solution: Signatures!
- Identifying trivial syzygies is what signatures were made for (F5 criterion)

+ Not just an optimization, but necessary for termination for some ideals



NON-COMMUTATIVE BUCHBERGER'S ALGORITHM

(e fi)i(e, fn) (sig(g:) g;)

T ew polynomial
L> S-Grobner basis (D ew poynomiat -

\/ from pair
(sig(g;) g))
20
Basis of syzygies [ ] \/\/\/\/\,—D
=0 .
Reduction (3)

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomials which are not eliminated by the F5 criterion

3. Reduction (regular)



WHAT DO WE GET?

Output of the algorithm: a Grobner basis with signatures, allowing to recover
+ a Grobner basis G with the coordinates
- a set H of syzygies such that # u {trivial syzygies of G} is a basis of the module of syzygies

- away to test if any module monomial is the leading term of a syzygy

Results:
+ The algorithm enumerates such a signature Grobner basis
+ The algorithm terminates iff the ideal admits a finite signature Grobner basis
+ This implies that the ideal admits a finite GB and a finite “basis of non-trivial syzygies” H

- Conjecture: the converse holds

This is the first algorithm producing an effective representation
of some modules of syzygies in the free algebra!



IMPLEMENTATION

What we have
+ Toy implementation in Mathematica
Part of the package OperatorGB: https://clemenshofstadler.com/software/

Example ‘ Signature ‘ Buchberger ‘ Buchberger + chain ‘

P | S-poly Red0 Time | S-poly Red0 Time | S-poly Red0 Time |

1v2-100 201 0 60 9702 4990 43 9702 4990 46

tril 335 164 62 9435 8897 16 3480 3288 6
Remarks

+ The F5 criterion is necessary to maximize the chances of the algorithm terminating
+ The PoT ordering is not fair
« The F5 criterion is expensive! (quadratic in the size of G)

+ Reconstruction of the module representation can be very expensive
(no bound on the rank of the tensors)


https://clemenshofstadler.com/software/

CONCLUSION

This work
+ Signature-based algorithm enumerating signature Grobner bases in the free algebra
+ Terminates whenever a finite signature Grobner basis exists
+ Taking care of trivial syzygies is necessary for termination

- Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions
- Conjecture on characterization of existence of finite signature Grobner basis
+ Use of signatures for the computation of short representations

- Computations in quotients of the algebra, elimination...

More details and references

+ Hofstadler and Verron, Signature Grébner bases, bases of syzygies and cofactor
reconstruction in the free algebra, ArXiV:2107.14675
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