Signature Gröbner bases in the free algebra

Clemens Hofstadler ${ }^{1,2}$, Thibaut Verron ${ }^{1}$

Journées Nationales de Calcul Formel 2022, 3 mars 2022

1. Institute for Algebra, Johannes Kepler University, Linz, Autriche
2. Institute of Mathematics, University of Kassel, Kassel, Allemagne

U N I K A S S EL
VERS IT'A'T
Der Wissenschaftsfonds.

GRÖBNER BASES

Gröbner bases for commutative polynomials:

- Ideal Membership Problem: decide if a polynomial lies in an ideal
- Leads to solving equations (parametrization, elimination, dimension of the solutions...)
- Also simplifications, reductions, computations in modules

Gröbner bases in the non commutative case:

- R field, $A=R\left\langle X_{1}, \ldots, X_{n}\right\rangle$ free algebra over R
- Monomials are words: $X_{i_{1}} X_{i_{2}} \cdots X_{i_{d}}$
- Monomial ordering and reduction are defined as usual
- Gröbner bases are defined as usual
- Application: proof of formulas
"Does a relation follow from a prescribed set of axioms?"
What is not usual:
- The free algebra is not Noetherian
- Most ideals do not admit a finite Gröbner basis
- It is not decidable whether an ideal admits a finite Gröbner basis

Why signature Gröbner bases?

Polynomials
f_{1}, \ldots, f_{m}
[Faugère 1999]

Gröbner basis

Ideal Membership Problem

$$
\begin{aligned}
& \text { "Does there exist }\left(a_{i}\right) \\
& \text { such that } \\
& p=a_{1} f_{1}+\cdots+a_{m} f_{m} \text { ?" }
\end{aligned}
$$

Why signature Gröbner bases?

Polynomials
f_{1}, \ldots, f_{m}

Gröbner basis

Ideal Membership Problem

> "Does there exist $\left(a_{i}\right)$ such that
> $p=a_{1} f_{1}+\cdots+a_{m} f_{m}$?"

IMP with certificate

```
    "Compute ( \(a_{i}\) )
        such that
\(p=a_{1} f_{1}+\cdots+a_{m} f_{m}{ }^{\prime \prime}\)
```


Why signature Gröbner bases?

Why signature Gröbner bases?

Ideal Membership Problem

$$
\begin{aligned}
& \text { "Does there exist }\left(a_{i}\right) \\
& \text { such that } \\
& p=a_{1} f_{1}+\cdots+a_{m} f_{m} \text { ?" }
\end{aligned}
$$

IMP with certificate

$$
\begin{gathered}
\text { "Compute }\left(a_{i}\right) \\
\text { such that } \\
p=a_{1} f_{1}+\cdots+a_{m} f_{m} "
\end{gathered}
$$

Module of syzygies
"Find all $\left(a_{i}\right)$ such that
$a_{1} f_{1}+\cdots+a_{m} f_{m}=0^{\prime \prime}$

Why signature Gröbner bases?

Polynomials
f_{1}, \ldots, f_{m}

[Faugère 2002]
[Gao Volny Wang 2010]

Gröbner basis
with signatures

Gröbner basis

Ideal Membership Problem
"Does there exist $\left(a_{i}\right)$ such that
$p=a_{1} f_{1}+\cdots+a_{m} f_{m}$?"

Gröbner basis with coordinates

IMP with certificate

$$
\begin{gathered}
\text { "Compute }\left(a_{i}\right) \\
\text { such that } \\
p=a_{1} f_{1}+\cdots+a_{m} f_{m} \text { " }
\end{gathered}
$$

Gröbner basis of the syzygy module

Module of syzygies
"Find all $\left(a_{i}\right)$ such that
$a_{1} f_{1}+\cdots+a_{m} f_{m}=0^{\prime \prime}$

Why signature Gröbner bases?

Why signature Gröbner bases?

Polynomials f_{1}, \ldots, f_{m}

This work

- Algorithm for signature GB in the free algebra
- First algo. computing a GB of the module of syzygies

Gröbner basis with signatures

Gröbner basis

Ideal Membership Problem
"Does there exist $\left(a_{i}, b_{j}\right)$ such that
$p=a_{1} f_{1} b_{1}+\cdots+a_{m} f_{m} b_{m}$?"

Gröbner basis with coordinates

IMP with certificate
"Compute (a_{i}, b_{j})
such that
$p=a_{1} f_{1} b_{1}+\cdots+a_{m} f_{m} b_{m}{ }^{\prime \prime}$

Gröbner basis of the syzygy module

Module of syzygies
"Find all (a_{i}, b_{j}) such that
$a_{1} f_{1} b_{1}+\cdots+a_{m} f_{m} b_{m}=0 "$

Non-COMMUTATIVE BUCHBERGER'S ALGORITHM

1. Selection: fair selection strategy
2. Construction: S-polynomials
3. Reduction

CONSTRUCTIONS IN THE NON-COMMUTATIVE CASE

Several ways to make S-polynomials

- Overlap ambiguity

$$
\operatorname{SPol}(f, g)=f \square-\square g
$$

- Inclusion ambiguity

$$
\operatorname{SPol}(f, g)=\square f \square-g
$$

CONSTRUCTIONS IN THE NON-COMMUTATIVE CASE

Several ways to make S-polynomials

- Overlap ambiguity

$$
\operatorname{SPol}(f, g)=f \square-\square g
$$

- Inclusion ambiguity

$$
\operatorname{SPol}(f, g)=\square f \square-g
$$

Remarks:

- The combination need not be minimal, and S-polynomials are not unique!
- xyxy has an (overlap) ambiguity with itself:
- xxyx and $x y$ have two ambiguities:

- Two polynomials can only give rise to finitely many S-polynomials
- It is required that the central part is non-trivial (coprime criterion)

Non-COMMUTATIVE BUCHBERGER'S ALGORITHM

1. Selection: fair selection strategy "Every S-polynomial is selected eventually."
2. Construction: S-polynomials
3. Reduction

CONSTRUCTIONS WITH SIGNATURES

Setting:

- Input: $f_{1}, \ldots, f_{m} \in A=R[\boldsymbol{X}]$ spanning the ideal I
- Module $M=A \boldsymbol{e}_{1} \oplus \cdots \oplus A \boldsymbol{e}_{m} \simeq A^{m}$ with the map $M \rightarrow I, \boldsymbol{e}_{i} \mapsto f_{i}$
- Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (\mathbf{s}, f) with $f=\sum a_{i} f_{i}$ and $\boldsymbol{s}=\operatorname{LM}\left(\sum a_{i} \boldsymbol{e}_{i}\right)$

CONSTRUCTIONS WITH SIGNATURES

Setting:

- Input: $f_{1}, \ldots, f_{m} \in A=R[\boldsymbol{X}]$ spanning the ideal /
- Module $M=A \boldsymbol{e}_{1} \oplus \cdots \oplus A \boldsymbol{e}_{m} \simeq A^{m}$ with the map $M \rightarrow I, \boldsymbol{e}_{i} \mapsto f_{i}$
- Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (\mathbf{s}, f) with $f=\Sigma a_{i} f_{i}$ and $\boldsymbol{s}=\operatorname{LM}\left(\sum a_{i} \boldsymbol{e}_{i}\right)$

Regular operations:

- Multiplying sig-poly pair by a term in A is easy
- Additions are required to be regular: $(\mathbf{s}, f)+(\boldsymbol{t}, g)=(\max (\mathbf{s}, \boldsymbol{t}), f+g)$ if $\boldsymbol{s} \neq \boldsymbol{t}$
- We define regular S-polynomials and regular reductions in that way

CONSTRUCTIONS WITH SIGNATURES

Setting:

- Input: $f_{1}, \ldots, f_{m} \in A=R[\boldsymbol{X}]$ spanning the ideal /
- Module $M=A \boldsymbol{e}_{1} \oplus \cdots \oplus A \boldsymbol{e}_{m} \simeq A^{m}$ with the map $M \rightarrow I, \boldsymbol{e}_{i} \mapsto f_{i}$
- Monomials in M are ordered with an ordering compatible with that on A
- Signature-polynomial pair: (\mathbf{s}, f) with $f=\sum a_{i} f_{i}$ and $\boldsymbol{s}=\operatorname{LM}\left(\sum a_{i} \boldsymbol{e}_{i}\right)$

Regular operations:

- Multiplying sig-poly pair by a term in A is easy
- Additions are required to be regular: $(\mathbf{s}, f)+(\mathbf{t}, g)=(\max (\mathbf{s}, \boldsymbol{t}), f+g)$ if $\boldsymbol{s} \neq \boldsymbol{t}$
- We define regular S-polynomials and regular reductions in that way

Criteria:

- Syzygy criterion: if $(\mathbf{s}, 0)$ is a sig-poly pair, any element with signature divisible by \boldsymbol{s} regular-reduces to 0
- F5 criterion: any element with signature divisible by $\operatorname{LM}\left(f_{i} \boldsymbol{e}_{j}-f_{j} \boldsymbol{e}_{i}\right)=\max \left(\operatorname{LM}\left(f_{i}\right) \boldsymbol{e}_{j}, \operatorname{LM}\left(f_{j}\right) \boldsymbol{e}_{i}\right)$ regular-reduces to 0

BUCHBERGER'S ALGORITHM WITH SIGNATURES

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomials
3. Reduction (regular)

SIGNATURES FOR NON-COMMUTATIVE POLYNOMIALS

Non-commutative setting:

- Bimodule $M=A \boldsymbol{e}_{1} A \oplus \cdots \oplus A \boldsymbol{e}_{m} A$ with the expected morphism $M \rightarrow A$ with image I
- Equipped with a module monomial ordering as before
- The ordering must additionally be fair (isomorphic to \mathbb{N})
- Sig-poly pairs (\boldsymbol{s}, f) with $f=\sum a_{i} f_{i} b_{i}$ and $\boldsymbol{s}=\operatorname{LM}\left(\sum a_{i} \boldsymbol{e}_{i} b_{i}\right)$
- Regular S-polynomials and reductions are defined as before

NON-COMMUTATIVE BUCHBERGER'S ALGORITHM WITH SIGNATURES

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials
3. Reduction (regular)

Termination

Question 1: Does the algorithm always terminate?

TERMINATION

Question 1: Does the algorithm always terminate?

- Of course not, because most ideals do not have a finite Gröbner basis.

TERMINATION: TRIVIAL SYZYGIES

Question 1: Does the algorithm always terminate?

- Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

- Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if $n>1$ (non-commutative) and $m>1$ (non-principal)

TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

- Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if $n>1$ (non-commutative) and $m>1$ (non-principal)

Obstruction: Trivial syzygies!
[Hofstadler V. 2021] [Chenavier Léonard Vaccon 2021]

- Syzygies of the form $\boldsymbol{f} \square g-f \square \boldsymbol{g}$ for any monomial
- Signature: $\max (\operatorname{sig}(\boldsymbol{f}) ■ \mathrm{LM}(g), \mathrm{LM}(f) \square \operatorname{sig}(\boldsymbol{g}))$
- Because ■ is put in the middle, this set is usually not finitely generated

TERMINATION: TRIVIAL SYZYGIES AND HOW TO FIND THEM

Question 1: Does the algorithm always terminate?

- Of course not, because most ideals do not have a finite Gröbner basis.

Question 2: Okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if $n>1$ (non-commutative) and $m>1$ (non-principal)

Obstruction: Trivial syzygies!
[Hofstadler V. 2021] [Chenavier Léonard Vaccon 2021]

- Syzygies of the form $\boldsymbol{f} \square g-f \square \boldsymbol{g}$ for any monomial
- Signature: $\max (\operatorname{sig}(\boldsymbol{f}) ■ \mathrm{LM}(g), \mathrm{LM}(f) \square \operatorname{sig}(\boldsymbol{g}))$
- Because ■ is put in the middle, this set is usually not finitely generated

Solution: Signatures!

- Identifying trivial syzygies is what signatures were made for (F5 criterion)
- Not just an optimization, but necessary for termination for some ideals

NON-COMMUTATIVE BUCHBERGER'S ALGORITHM WITH SIGNATURES

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomials which are not eliminated by the F5 criterion
3. Reduction (regular)

WHAT DO WE GET?

Output of the algorithm: a Gröbner basis with signatures, allowing to recover

- a Gröbner basis \mathcal{G} with the coordinates
- a set \mathcal{H} of syzygies such that $\mathcal{H} \cup\{$ trivial syzygies of $\mathcal{G}\}$ is a basis of the module of syzygies
- a way to test if any module monomial is the leading term of a syzygy

Results:

- The algorithm enumerates such a signature Gröbner basis
- The algorithm terminates iff the ideal admits a finite signature Gröbner basis
- This implies that the ideal admits a finite GB and a finite "basis of non-trivial syzygies" \mathcal{H}
- Conjecture: the converse holds

This is the first algorithm producing an effective representation of some modules of syzygies in the free algebra!

IMPLEMENTATION

What we have

- Toy implementation in Mathematica
- Part of the package OperatorGB: https://clemenshofstadler.com/software/

Example	Signature			Buchberger			Buchberger + chain		
	S-poly	Red 0	Time	S-poly	Red 0	Time	S-poly	Red 0	Time
lv2-100	201	0	60	9702	4990	43	9702	4990	46
tri1	335	164	62	9435	8897	16	3480	3288	6

Remarks

- The F5 criterion is necessary to maximize the chances of the algorithm terminating
- The PoT ordering is not fair
- The F5 criterion is expensive! (quadratic in the size of \mathcal{G})
- Reconstruction of the module representation can be very expensive (no bound on the rank of the tensors)

Conclusion

This work

- Signature-based algorithm enumerating signature Gröbner bases in the free algebra
- Terminates whenever a finite signature Gröbner basis exists
- Taking care of trivial syzygies is necessary for termination
- Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

- Conjecture on characterization of existence of finite signature Gröbner basis
- Use of signatures for the computation of short representations
- Computations in quotients of the algebra, elimination...

More details and references

- Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra, ArXiV:2107.14675

Conclusion

This work

- Signature-based algorithm enumerating signature Gröbner bases in the free algebra
- Terminates whenever a finite signature Gröbner basis exists
- Taking care of trivial syzygies is necessary for termination
- Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

- Conjecture on characterization of existence of finite signature Gröbner basis
- Use of signatures for the computation of short representations
- Computations in quotients of the algebra, elimination...

More details and references

- Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra, ArXiV:2107.14675

Merci pour votre attention!

