
On Two Signature Variants Of Buchberger’s Algorithm
Over Principal Ideal Domains

Maria Francis

Indian Institute of Technology Hyderabad

Hyderabad, India

mariaf@iith.ac.in

Thibaut Verron

Institute for Algebra / Johannes Kepler University

Linz, Austria

thibaut.verron@jku.at

ABSTRACT
Signature-based algorithms have brought large improvements in the

performances of Gröbner bases algorithms for polynomial systems

over fields. Furthermore, they yield additional data which can be

used, for example, to compute the module of syzygies of an ideal

or to compute coefficients in terms of the input generators.

In this paper, we examine two variants of Buchberger’s algorithm

to compute Gröbner bases over principal ideal domains, with the

addition of signatures. The first one is adapted from Kandri-Rody

and Kapur’s algorithm [16], whereas the second one uses the ideas

developed in the algorithms by L. Pan [22] and D. Lichtblau [17].

The differences in constructions between the algorithms entail dif-

ferences in the operations which are compatible with the signatures,

and in the criteria which can be used to discard elements.

We prove that both algorithms are correct and discuss their

relative performances in a prototype implementation in Magma.

CCS CONCEPTS
• Computing methodologies → Algebraic algorithms;

KEYWORDS
Algorithms, Gröbner bases, Signature-based algorithms, Polynomi-

als over rings, Principal Ideal Domains

ACM Reference Format:
Maria Francis and Thibaut Verron. 2021. On Two Signature Variants Of

Buchberger’s Algorithm Over Principal Ideal Domains. In . ACM, New York,

NY, USA, 8 pages. https://doi.org/XX.XXX/XXXXXX.XXXXXX

1 INTRODUCTION
Gröbner bases over fields, introduced by Buchberger [4], is a funda-

mental tool in computational ideal theory and algebraic geometry.

Very early on, several approaches were proposed to extend the

algorithmic theory of Gröbner bases to polynomial rings over rings,

a summary of which can be found in [1, 2]. Ideals in polynomial

rings over rings have several applications, for instance in num-

ber theory [18], or in lattice-based cryptography, where certain

T. Verron was supported by the Austrian FWF grant P31571-N32.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Conference’21, July 2021, Washington, DC, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN XXXXXXXXXXXXXXXXXXX. . . $15.00

https://doi.org/XX.XXX/XXXXXX.XXXXXX

residue class polynomial rings over Z called ideal lattices have been
used [11, 19].

There are two ways to define Gröbner bases (GB) over rings,

namely weak and strong Gröbner bases, corresponding to two

notions of reductions. Of the two, strong GB and reductions are

the most similar to fields and the ones we consider in this work.

It allows to efficiently compute the normal form of an element;

over principal ideal domains (PID’s), all ideals admit a strong GB.

Different algorithms have been proposed for computing strong

bases over PID’s [20, 22] and over Euclidean domains [7, 8, 16, 17].

Buchberger’s original algorithm for computing Gröbner bases

over fields proceeds by computing and reducing S-polynomials.

Over rings, the computation of Gröbner bases additionally requires

to compute so-called G-polynomials, namely combinations of poly-

nomials which use Bézout coefficients to make the leading coeffi-

cient as small as possible. Kandri-Rody and Kapur’s algorithm [16]

was designed for Euclidean domains but works without any mod-

ification over PIDs; it proceeds by computing, for each pair of

elements, both their S- and G-polynomials, and adding them to

the queue for later processing. Pan’s algorithm [22] for PIDs, later

refined by Lichtblau [17] for Euclidean domains, observes that for

each pair, only one polynomial, S- or G-, is required.

Over fields, it was rapidly noticed that many of the reductions

in Buchberger’s algorithm are useless, i.e., they eventually reach 0

and are discarded. Optimizations of Buchberger’s algorithm that

started with Buchberger [5] have focused on how to detect these

useless reductions beforehand [21]. A breakthrough came in the

early 2000s with the class of so-called signature-based algorithms

such as F5 [10] and later GVW [14]. A comprehensive survey of

signature-based algorithms can be found in [6]. These algorithms

keep track of, for each computed polynomial, its signature, namely

the leading term of a representation of the polynomial in terms of

the generators of the ideal. This information can be used to detect

reductions to 0, and avoid redundant computations.

Furthermore, the computation of a Gröbner basis with signatures

allows to recover the coefficients of the elements of the basis in

terms of the generators, and to compute the module of syzygies of

those generators, without the extra cost of module computations

or additional variables [14].

The natural next step is to see whether these signature-based

techniques can be generalized to Gröbner basis algorithms over

rings. In this direction, a hybrid algorithm was presented in [7]

that added signatures to a modified version of Kandri-Rody and

Kapur’s algorithm. The authors showed with a counter-example

that implementing totally ordered signatures for rings cannot ensure
that the signatures will never decrease/drop during the course

of computing the strong GB, which is the key invariant of most

https://doi.org/XX.XXX/XXXXXX.XXXXXX
https://doi.org/XX.XXX/XXXXXX.XXXXXX

signature-based algorithms. The signature-based techniques of [7]

could however be used as an efficient preprocessing step to fasten

the computations, falling back to the classical techniques when a

drop in signature is detected.

In [12], the authors described a theoretical algorithm that com-

putes a weak Gröbner basis with signatures, over PID’s, without

any signature drop, by using a partial order on the signatures. In

this work, we use similar constructions to adapt Kandri-Rody and

Kapur’s algorithm and Pan/Lichtblau’s algorithm to the computa-

tion of signature Gröbner bases. For that purpose, we need two

constructions: a restriction on the construction of G-polynomials

ensuring that we can keep track of their signatures without discard-

ing any; and an analogous construction using Bézout coefficients to

obtain elements with small signatures. In the case of Kandri-Rody

and Kapur’s algorithm, we prove that the powerful cover criterion

described in [13] can be applied to eliminate some S-polynomials.

In the case of Pan/Lichtblau’s algorithm, the nature of the pairs

being computed forces us to relax the restrictions on S-polynomials,

and limits the scope of the criteria. In both cases, we prove that the

algorithms are correct and compute both a signature-Gröbner basis

of the ideal, and a basis of the signatures of its syzygies.

We have implemented both algorithms in the computer algebra

system Magma [3], with additional optimizations and criteria, and

observe that the relaxed restrictions in Pan/Lichtblau tend to lead

to the computation of more pairs. We also compare the time taken

for computing the signature Gröbner basis and using it to recover

information on themodule, withMagma implementations of ad-hoc
functions for that purpose, and show that using signatures allows

for a significant speed-up of those operations.

2 NOTATIONS AND PRELIMINARIES
2.1 Conventions and notations
Let N be the set of all non-negative integers. Let 𝑅 be a principal

ideal domain (PID) that has a unit element and is commutative. We

assume that 𝑅 is effective in the sense that one can perform all the

arithmetic operations in 𝑅, obtain the gcd of elements and compute

Bézout coefficients. A typical example of such a ring is the ring

of integers Z, with Euclid’s algorithm and the extended Euclid’s

algorithm.

Let 𝐴 = 𝑅 [𝑥1, . . . , 𝑥𝑛vars
] be the polynomial ring in 𝑛vars indeter-

minates 𝑥1, . . . , 𝑥𝑛vars
over 𝑅. A monomial in 𝐴 is an element of the

form 𝑥
𝑎1
1

. . . 𝑥
𝑎𝑛vars
𝑛vars

where 𝑎 = (𝑎1, . . . , 𝑎𝑛vars
) ∈ N𝑛vars

. A term in 𝐴

is 𝑎𝜇, where 𝑎 ∈ 𝑅 \ {0} and 𝜇 is a monomial. The set of terms (resp.

monomials) of 𝐴 is denoted by Ter(𝐴) (resp. Mon(𝐴)).
A monomial order is an order onMon(𝐴) which is compatible

with multiplication and well-founded. In the rest of the paper, we

assume that 𝐴 is endowed with an implicit monomial order <, and

we define as usual the leading monomial lm, the leading term lt

and the leading coefficient lc of a given polynomial. By convention,

we set lm(0) = lt(0) = lc(0) = 0.

Given a pair of polynomials (𝑓 , 𝑔), we denote lcmlm(𝑓 , 𝑔) (resp.
lcmlt(𝑓 , 𝑔)) the least common multiple of the leading monomials

(resp. leading terms) of 𝑓 and 𝑔.

Given a set of polynomials 𝑓1, . . . , 𝑓𝑛
polys

in 𝐴, we consider the

free module M = 𝐴𝑛
polys

with basis e1, . . . , e𝑛
polys

. For 𝛼 ∈ M with

𝛼 = (𝛼1, . . . , 𝛼𝑛
polys
), we define 𝛼 =

∑
𝛼𝑖 𝑓𝑖 . We define the module

I = {(𝛼, 𝛼) : 𝛼 ∈ M} ⊂ 𝐴𝑛
polys
+1 .

The module I is isomorphic toM, and in particular it is free with

basis (e1, 𝑓1), . . . , (e𝑛
polys

, 𝑓𝑛
polys
). The image of the projection of I

onto the last coordinate is the ideal, ⟨𝑓1, . . . , 𝑓𝑛
polys
⟩.

A syzygy of I is an element z = (𝛼, 𝛼) such that 𝛼 = 0. The set

of all syzygies of I is denoted by Syz(I), it is an 𝐴-module.

Amonomial ofM is an element of the form 𝜇e𝑖 , with 𝜇 ∈ Mon(𝐴)
and 𝑖 ∈ ⟦1, 𝑛

polys
⟧. A term ofM is an element of the form 𝑐mwhere

𝑐 ∈ 𝑅 and m is a monomial ofM. As before, the set of terms (resp.

monomials) ofM is denoted by Ter(M) (resp.Mon(M)).
A monomial ordering onM is an ordering ă on Mon(M) with
(1) if m ă n, then 𝜇m ă 𝜇n;
(2) if 𝜇 < 𝜈 , then 𝜇m ă 𝜈m.

Examples of orderings onM are the position over term (or PoT)

ordering, defined as 𝜇e𝑖 ăPoT 𝜈e𝑗 if 𝑖 < 𝑗 , or 𝑖 = 𝑗 and 𝜇 < 𝜈 , and

the term over position (or ToP) ordering, defined as 𝜇e𝑖 ăToP 𝜈e𝑗 if
𝜇 < 𝜈 , or 𝜇 = 𝜈 and 𝑖 < 𝑗 .

As in the case of polynomials, a monomial ordering onM can be

extended into a partial term ordering. Let s = 𝑎𝜇e𝑖 and t = 𝑏𝜈e𝑗 ∈
Ter(M), we write s ≃ t if s and t are incomparable, that is, if 𝜇 = 𝜈

and 𝑖 = 𝑗 . We write s = t if 𝑎 = 𝑏, 𝜇 = 𝜈 and 𝑖 = 𝑗 .

We say that s ĺ t if s ă t or s ≃ t, and similarly, s ň t implies

that s ; t. It is harmless because ≃ is an equivalence relation and ă

is a total order on the quotient, so, for example, if s ≃ t and s ă u,
then t ă u.

Given an element p = (𝛼, 𝛼) ∈ I, we define the leading term lt,

leading monomial lm and leading coefficient lc of p to be those of

𝛼 . The signature of p is the leading term of the module element 𝛼

for the module monomial ordering ă, i.e., the largest module term

appearing in 𝛼 , and it is denoted as sig(p).

2.2 Signature Gröbner bases
In this section, we introduce generalizations to rings of construc-

tions used in signature Gröbner bases over fields. These construc-

tions extend those introduced in [12].

The key idea, as in the case of fields, is that for each element

f = (𝛼, 𝛼), we need only keep track of sig(f) = lt(𝛼) and 𝛼 , instead
of the full module representation 𝛼 . For that purpose, we restrict to

operations which do not cancel the signatures.

Definition 2.1. Let f, g ∈ I. The sum f + g is called regular if
sig(f) ; sig(g), and singular if sig(f) = −sig(g).

The nature of the operation yields information about the signa-

ture of the result, as follows.

Proposition 2.2. Let f = (𝛼, 𝛼) and g = (𝛽, 𝛽) ∈ I, let h =

(𝛾,𝛾) = f + g. Then,
• f + g is a regular addition iff sig(h) = max(sig(f), sig(g));
• f + g is a non-singular addition iff sig(h) = sig(f) + sig(g) ≃
sig(f) ≃ sig(g);
• f + g is a singular addition iff sig(h) ň sig(f) ≃ sig(g).

The proof of the proposition is straightforward. Note that in a

singular addition, the signature of the result cannot be computed

from the signatures of the summands. This phenomenon is called

a signature drop, and signature-based algorithms must disallow

signature drops, and thus singular operations, in order to keep

track of the signatures.

Signature Gröbner bases, as in the case of fields, are charac-

terized by the fact that all elements of the ideal are s-reducible,

namely, reducible without increasing the signature. In the case of

rings, different notions of reduction exist, namely weak and strong

reductions, as well as modular reductions by the coefficients. In

this paper, we only consider strong reductions, which require that

the leading coefficient of the reducer divides that of the reducee.

Those reductions allow to define strong Gröbner bases. In the rest

of the paper, we shall omit the “strong” qualificative.

Definition 2.3. Let G ⊂ Iand f, h ∈ I.
We say that f (strongly) s-reduces to h modulo G if there exists

g𝑖 ∈ G and 𝑡𝑖 ∈ Ter(𝐴) such that
(1) lt(f) = 𝑡𝑖 lt(g𝑖)
(2) h = f − 𝑡𝑖g𝑖
(3) 𝑡𝑖sig(g𝑖) ĺ sig(f)

If the signature inequality is strict, 𝑡𝑖sig(g𝑖) ň sig(f), it is called a
regular s-reduction, and if 𝑡𝑖sig(g𝑖) = sig(f), it is called a singular
s-reduction.

By abuse of language, we extend these definitions to sequences of
reductions. We say that f s-reduces (resp. regular s-reduces) to zero
if there exists a sequence of s-reductions (resp. regular s-reductions)
whose final result has polynomial part equal to 0.

Remark 2.4. If f s-reduces to h modulo G, then sig(h) ĺ sig(g),
with equality iff the reduction is regular and strict inequality iff the
reduction is singular. Note that an s-reduction might be neither regular
nor singular, in which case sig(h) ≃ sig(f).

We then recall the definition of (strong) signature Gröbner bases.
1

Definition 2.5. Let G ⊂ I and T ∈ Ter(M). G is called a (strong)
signature Gröbner basis (or Sig-GB for short) up to signature T if every
f ∈ I with sig(f) ň T is s-reducible moduloG.G is called a signature
Gröbner basis if it is a signature Gröbner basis up to T for all T.

The original motivation for the use of signatures is to maintain a

list of signatures of known syzygies, and use it to predict reductions

to zero. Additionally, the last coordinates of elements of a Sig-GB

form a GB in the classical sense. The proof of that fact [6, Lem. 4.6]

can be directly extended to rings. So signature-based algorithms

allow to compute classical Gröbner bases in a more efficient way.

This use of syzygies applies to our case as well, and requires to

define reductions by signatures of syzygies.

Definition 2.6. Let G𝑧 ⊂ Syz(I) and let f ∈ I, with sig(f) =
𝑎𝜇e𝑖 , for 𝑎 ∈ 𝑅 and 𝜇 ∈ Mon(𝐴). We say that f is sig-reducible
modulo G𝑧 if there exists z ∈ G𝑧 such that sig(z) divides sig(f).

Let T ∈ Mon(M) , we say that G𝑧 is a Sig-basis of syzygies (resp.
basis up to T) if any syzygy of I (resp. syzygy with signature ň T) is
sig-reducible by G𝑧 .

Proposition 2.7. Let G be a Sig-GB up to signature T, G𝑧 ⊂
Syz(I) and f ∈ I with sig(f) ĺ T. If f is sig-reducible modulo G𝑧 ,
then f regular s-reduces to 0 modulo G.
1
In [14], a signature GB is called a strong GB. We use Sig-GB here to avoid conflict

with the existing notion of strong GB over rings.

Proof. Let z ∈ G𝑧 be such that there exists 𝑡 ∈ Ter(𝐴) with
𝑡sig(z) = sig(f). Let g = f − 𝑡z, it has signature ň T so it s-reduces

to 0, and since its lt is equal to that of f , f regular reduces to 0. □

In the classical case, without signatures, it is sometimes con-

venient to consider expanded sequences of reductions, leading to

the notion of standard representation. With signatures, it turns

out that a natural generalization of that notion encompasses both

s-reductions and sig-reductions.

Definition 2.8. Let G = {g1, . . . , g𝑟 } ⊂ I, G𝑧 = {z1, . . . , z𝑠 } ⊂
Syz(I) and h ∈ I. Let 𝑡 (1)𝑢 ∈ Ter(𝐴), 𝑖𝑢 ∈ ⟦1, 𝑟⟧, where 𝑢 ∈ ⟦1, 𝑘⟧
and 𝑘 ∈ N, 𝑡 (2)𝑣 ∈ Ter(𝐴), 𝑗𝑣 ∈ ⟦1, 𝑠⟧, where 𝑣 ∈ ⟦1, 𝑙⟧ and 𝑙 ∈ N,
be such that the equality

h =
∑𝑘
𝑢=1 𝑡

(1)
𝑢 g𝑖𝑢 +

∑𝑙
𝑣=1 𝑡

(2)
𝑣 z𝑗𝑣 (1)

holds in I, with
(1) lt(𝑡 (1)

1
g𝑖1) > lt(𝑡 (1)

2
g𝑖2) ≥ lt(𝑡 (1)

3
g𝑖3) ≥ · · · ≥ lt(𝑡 (1)

𝑘
g𝑖𝑘);

(2) for all 𝑢 ∈ ⟦1, 𝑘⟧, sig(𝑡 (1)𝑢 g𝑖𝑢) ĺ sig(h);
(3) sig(𝑡 (2)

1
z𝑗1) ŋ sig(𝑡 (2)

2
z𝑗2) ľ sig(𝑡 (2)

3
z𝑗3)ľ . . .ľsig(𝑡 (2)

𝑙
z𝑗𝑙);

(4) for all 𝑣 ∈ ⟦1, 𝑙⟧, sig(𝑡 (2)𝑣 z𝑗𝑣) ĺ sig(h).
If such a decomposition exists, we say that (1) is a standard Sig-

representation of h with respect to (G,G𝑧).

Proposition 2.9. Let G ⊂ I, G𝑧 ⊂ Syz(I) such that every
element of I admits a standard Sig-representation by (G,G𝑧). Then
G is a Sig-GB and G𝑧 is a Sig-basis of syzygies.

Proof. Let h ∈ I. By assumption it admits a standard Sig-

representation as in (1). If h is not a syzygy, then by property 1

on the leading terms, lt(h) = 𝑡
(1)
1

lt(g𝑖1), and by property 2 on the

signatures, this is an s-reduction of h. If h is a syzygy, then again

by the property on the leading terms, 𝑘 = 0, and properties 3 and 4

on the signatures imply that h is sig-reducible by z𝑗1 . □

We recall how S-polynomials are defined with signatures. First,

we give some definitions associated with pairs of module elements.

Definition 2.10. Let f, g ∈ I, 𝑡f =
lcmlt(f,g)

lt(f) , 𝑡g =
lcmlt(f,g)

lt(g) .
The term degree of the pair (f, g) is tdeg(f, g) = lcmlt(f, g) =

𝑡f lt(f) = 𝑡glt(g). The monomial degree mdeg(f, g) of the pair (f, g)
is the monomial part of the term degree.

The pair (f, g) is called regular if 𝑡f sig(f) ; 𝑡gsig(g) and it is
called singular if 𝑡f sig(f) + 𝑡gsig(g) = 0. The signature of the pair
(f, g) is sig(f, g) = max(𝑡f sig(f),−𝑡gsig(g)).

Definition 2.11. Let f and g ∈ I. The S-polynomial of f and g is

S-Pol(f, g) = lcmlt(f, g)
lt(f) f − lcmlt(f, g)

lt(g) g.

Remark 2.12. Let h = S-Pol(f, g). Then sig(h) ĺ sig(f, g), with
equality iff the pair (f, g) is regular, and strict inequality iff it is
singular.

In order to ensure that elements are strongly s-reducible modulo

G, we need to compute G-polynomials
2
. The G-polynomial of 𝑓1

2
Terminology and notations vary: this construction is called T-polynomial in [20], 𝑆𝐿

in [22], CP2 critical pairs in [16], S-polynomial of type 1 in [17], G-polynomial in [2]

and GCD-polynomial in [7, 8].

and 𝑓2 is a polynomial 𝑓 such that any linear combination of 𝑓1 and

𝑓2 not cancelling the leading terms is reducible by 𝑓 . It is defined

by using Bézout relations to make the leading coefficient as small

as possible.

Definition 2.13. Let f and g ∈ I. Let 𝑢, 𝑣 be Bézout coefficients
of lc(f) and lc(g), that is, 𝑢lc(f) + 𝑣 lc(g) = gcd(lc(f), lc(g)). The
G-polynomial of f and g associated to (𝑢, 𝑣) is defined as

G-Pol𝑢,𝑣 (f, g) = 𝑢
lcmlm(f, g)

lm(f) f + 𝑣 lcmlm(f, g)
lm(g) g.

The coefficients 𝑢 and 𝑣 are not uniquely determined, and we

can use this fact to ensure that G-polynomials never represent a
singular operation.

Proposition 2.14. Let f and g ∈ I. Then there exists 𝑢, 𝑣 such
that sig(G-Pol𝑢,𝑣 (f, g)) ≃ sig(f, g).

Proof. If the pair is regular, there is nothing to prove, and any

pair of Bézout coefficients works. Otherwise, let 𝑎 = lc(f), 𝑏 = lc(g),
𝑐 = lc(sig(f)), 𝑑 = lc(sig(g)), and 𝑔 = gcd(𝑎, 𝑏). We want to prove

that there exists 𝑢, 𝑣 such that 𝑎𝑢 + 𝑏𝑣 = 𝑔 and 𝑐𝑢 + 𝑑𝑣 ≠ 0. If

𝑎𝑑 −𝑏𝑐 = 0, 𝑎(𝑐𝑢 +𝑑𝑣) = 𝑐 (𝑎𝑢 +𝑏𝑣) ≠ 0, so again any pair of Bézout

coefficients works. Otherwise, assume that 𝑎𝑢 +𝑏𝑣 = 0, 𝑐𝑢 +𝑑𝑣 = 0,

and consider the pair 𝑢 ′ = 𝑢 + 𝑏, 𝑣 ′ = 𝑣 − 𝑎. Then 𝑎𝑢 ′ + 𝑏𝑣 ′ = 𝑔 and

𝑐𝑢 ′ + 𝑑𝑣 ′ = 𝑏𝑐 − 𝑎𝑑 ≠ 0. □

Remark 2.15. With the notations of the proof, G-Pol𝑢′,𝑣′ (f, g) =
G-Pol𝑢,𝑣 (f, g) − S-Pol(f, g).

In practice, we shall always consider such a pair of Bézout coeffi-

cients, and call the corresponding G-polynomial the G-polynomial

of f and g, denoted by G-Pol(f, g). Note that sig(G-Pol(f, g)) ≃
sig(f, g) and lm(G-Pol(f, g)) = mdeg(f, g).

Definition 2.16. Let G ⊂ I. We say that G is complete if every
G-polynomial of elements of G is s-reducible modulo G.

It is always possible tomakeG complete by addingG-polynomials

to G until the property holds. We use a similar process, but on the

signatures, to create syzygies with small signature coefficients.

Definition 2.17. Let z1, z2 ∈ Syz(I) with respective signatures
𝑎𝑘𝜇𝑘e𝑖 , 𝑘 = 1, 2, sharing the same index 𝑖 . Let 𝑑 = gcd(𝑎1, 𝑎2),
and let 𝑢1, 𝑢2 be Bézout coefficients. Let 𝜇 = lcm(𝜇1, 𝜇2). The sigG-
combination of z1 and z2 is defined as

sigG-Comb(z1, z2) = 𝑢1
𝜇

𝜇1
z1 + 𝑢2

𝜇

𝜇2
z2,

and its signature is𝑑𝜇e𝑖 . Note that contrary to the case of polynomials,
the result does not depend on the choice of 𝑢1 and 𝑢2.

Let G𝑧 ⊂ Syz(I), we say that G𝑧 is sigG-complete if any sigG-
combination z of elements of G𝑧 is sig-reducible by G𝑧 .

We conclude this section with a few definitions which will

give useful criteria to prove the correctness and for detecting use-

less syzygies in Algorithm 1 given below. These constructions are

adapted from the ones defined for the GVW algorithm over fields

[13]. The first definition is that of super reducible elements
3
.

3
In the paper [12], the notion was called 1-singular reducible.

Definition 2.18. Let G ⊂ I, and f ∈ I. f is super reducible by
G if there exists g ∈ G and 𝑡 ∈ Ter(𝐴) such that sig(f) = 𝑡sig(g)
and lm(𝑡g) = lm(f).

Note that unlike in the case of fields, we do not require that a

super reduction is a reduction. However, under some hypotheses,

an element which is super reducible is necessarily s-reducible.

Proposition 2.19. Let G ⊂ I be complete, and let f ∈ I. If f is
super reducible by G, then f is s-reducible by G.

Proof. Assume for a contradiction that f is super reducible by
G, not s-reducible, and has minimal signature for this property. Let

g1 be such that there exists 𝑡1 ∈ Ter(𝐴) with sig(f) = 𝑡1sig(g1) and
lm(𝑡1g1) = lm(f). If lt(𝑡1g1) = lt(f), then g1 is a s-reducer of f .

Otherwise, lm(f − 𝑡1g1) = lm(f). Since sig(f − 𝑡1g) ň sig(f), by
minimality of sig(f), f − 𝑡1g is s-reducible modulo G. Let g2 be such
a reducer, with lt(f − 𝑡1g1) = 𝑡2g2, and so lt(f) = 𝑡1lt(g1) + 𝑡2lt(g2).
The signature satisfies 𝑡2sig(g2) ĺ sig(f − 𝑡1g1) ň sig(𝑡1g1). Let
g3 = G-Pol(g1, g2), by definition of the G-pol there exists 𝑡3 ∈
Ter(𝐴) such that 𝑡3lt(g3) = lt(f), and 𝑡3sig(g3) ≃ 𝑡1sig(g1) ≃
sig(f). By hypothesis g3 is s-reducible by G, and a s-reducer of g3
is a s-reducer of f . □

The last definition is that of the covered property.

Definition 2.20. Let (f1, f2) ∈ I2 be a pair. Let G ⊂ I and
G𝑧 ⊂ Syz(I). The pair (f1, f2) is covered by (G,G𝑧) if there exists
g ∈ G, z ∈ G𝑧 , 𝑡, 𝑡 (𝑧) ∈ Ter(𝐴) such that
• if 𝑡 ≠ 0, sig(f, g) ≃ 𝑡sig(g);
• if 𝑡 (𝑧) ≠ 0, sig(f, g) ≃ 𝑡 (𝑧) sig(z);
• sig(f, g) = 𝑡sig(g) + 𝑡 (𝑧) sig(z);
• lm(𝑡g) < mdeg(f, g).

This cover criterion looksmore complicated to implement than in

the case of fields, due to the need to consider linear combinations.

However, one can use sigG-combinations of elements of G and

elements of G𝑧 to compute elements with signature as small as

possible and same leading monomial, and reduce the cover test to

a single divisibility test.

3 ADDING SIGNATURES TO KANDRI-RODY
AND KAPUR’S ALGORITHM

3.1 Description of the algorithm
The first algorithm which we present in this paper is a signature-

enabled version of Kandry-Rody and Kapur’s algorithm. The algo-

rithm works similarly to Buchberger’s algorithm, but adds both S-

and G-polynomials to the basis. The signature variant follows the

construction of the GVW algorithm [13, 14].

The correctness of the algorithm is stated by the following theo-

rem (proved in Section 3.2), and adapted from [14, Thm. 2.4].

Theorem 3.1. Let G ⊂ I complete , G𝑧 ⊂ Syz(I) sigG-complete,
such that for all signatures T, there exists some g ∈ G ∪ G𝑧 such
that sig(g) divides T. Assume that every regular pair of elements of
G is covered by (G,G𝑧). Then, G is a Sig-Gröbner basis and G𝑧 is a
Sig-basis of syzygies.

The algorithm ensures that all the assumptions of the theorem

hold:

• G is complete andG𝑧 is sigG-complete because G-polynomials

are added to the queue of pairs to be reduced for addition

into G, and sigG-combinations to G𝑧 ;
• there exists, for all T, a gwith sig(g) dividing sig(T), because
we process all elements (e𝑖 , 𝑓𝑖), thus ensuring that there is
an element with signature e𝑖 in either G or G𝑧 for all 𝑖;

• every regular pair is covered by (G,G𝑧) because, for each
regular pair, we compute the corresponding S-polynomial,

reduce it and add the result to the basis, thus creating a

covering element for the pair.

The resulting algorithm is described in Algorithm 1. Note that for

each element f = (𝛼, 𝛼) ∈ I, we only keep track of sig(f) = lt(𝛼)
and 𝛼 . The routines SigReduce and RegularReduce compute the

sig-reduction of a signature by a basis of syzygies (the result being

either 0 or the signature itself), and the regular reduction of an

element of I by a Sig-GB, respectively.

A technical point is that the theorem allows to eliminate S-

polynomials obtained from a pair which is covered, but not nec-

essarily G-polynomials. This requires to keep track of how each

element was computed. In the pseudo-code algorithm, we do it by

keeping for each new element its so-called type, which can take

three values: N, indicating a polynomial from the input; S(𝑖, 𝑗),
indicating the S-polynomial of g𝑖 and g𝑗 ; and G(𝑖, 𝑗), indicating the
G-polynomial of g𝑖 and g𝑗 .

On top of that, we add some tests to eliminate someG-polynomials.

Firstly, if lc(g𝑖) divides lc(g𝑗), then one can choose the Bézout co-

efficients such that G-Pol(g𝑖 , g𝑗) is a multiple of g𝑖 , and thus it is

automatically s-reducible modulo G.
Secondly, thanks to Proposition 2.7, we know that we can imme-

diately disregard any element whose signature is divisible by that

of a syzygy. This partially extends the cover criterion to G-polys.

Thirdly, note that we cannot use Proposition 2.19 to eliminate

G-polynomials which would be super reducible: indeed, that propo-

sition requires that G be complete, and the G-polynomial being pro-

cessed might be necessary for that. Furthermore, the G-polynomial

G-Pol(g𝑖 , g𝑗) is always super reducible by at least one of g𝑖 , g𝑗 .
However, if f ∈ I is both super reducible and s-reducible by

g ∈ G, that is, if there exists 𝑡 ∈ Ter(𝐴) such that 𝑡sig(g) = sig(f)
and 𝑡 lt(g) = lt(f), then the proof of Proposition 2.19 shows that f
is s-reducible by G, without any hypothesis of completeness. Thus

such an element can be immediately discarded.

For some signature orderings, it is also possible to predict in

advance the signature of some syzygies, with the F5 criterion. This

criterion can be implemented in our setting exactly as in the case

of fields, for instance by adding signatures to G𝑧 , and we do not

detail it here.

3.2 Proof
The proof of Theorem 3.1 is adapted from the proof of [14, Thm. 2.4].

Proof of Th. 3.1. We prove the implication by contradiction.

Assume that there exists f ∈ I such that f is not s-reducible modulo

G and f is not sig-reducible modulo G𝑧 , and pick f with minimal

signature T for this property. Let g1 ∈ G, z1 ∈ G𝑧 , 𝑡, 𝑡𝑧1 ∈ Ter(𝐴)
such that T = 𝑡sig(g1) +𝑡𝑧1sig(z1) and such that lm(𝑡g1) is minimal

for that property. By hypothesis, such a decomposition exists (with

either 𝑡1 = 0 or 𝑡𝑧1 = 0).

First, we prove that 𝑡g1 is not regular s-reducible modulo G.
Indeed, if it were, let g2 be a regular reducer of 𝑡g1. Consider the pair
(g1, g2), let 𝜇 = lcmlm(g1, g2) and let 𝜎 = sig(g1, g2). By properties
of the lcm, there exist some terms 𝑡1, 𝑡2 such that 𝜇 = lm(𝑡1g1),
𝜎 = 𝑡1sig(g1), and 𝑡1𝑡2 = 𝑡 . Furthermore, since g2 is a regular

reducer of 𝑡g1, the pair (g1, g2) is regular ([14, Lemma. 2.3]).

By assumption, the pair is covered by (G,G𝑧), so there exists g3 ∈
G, z2 ∈ G𝑧 , 𝑡3, 𝑡𝑧2 ∈ Ter(𝐴), such that𝜎 = 𝑡3sig(g3)+𝑡𝑧2sig(z2), and
lm(𝑡3g3) < 𝜇. So all in all, T = 𝑡2𝑡3sig(g3) + 𝑡𝑧1sig(z1) + 𝑡𝑧2sig(z2).
and lm(𝑡2𝑡3g3) < lm(𝑡1𝑡2g1) = lm(𝑡g1). Let z3 be sigG-Comb(z1, z2),
its signature divides the sum 𝑡𝑧1sig(z1) + 𝑡𝑧2sig(z2), and thus, the

existence of (g3, z3) contradicts the minimality of lm(𝑔1).
So 𝑡g1 is not regular s-reducible modulo G. Now we consider

two distinct cases, depending on whether f is a syzygy or not.

If f is not a syzygy, lm(f) ≠ lm(𝑡g1), because otherwise f
would be super reducible by g1 and thus, since G is complete,

s-reducible by G. Let f1 = f − 𝑡g1 − 𝑡𝑧1z1, so sig(f1) ň T, and
lt(f1) = max(lt(f), 𝑡 lt(g1)). Since sig(f1) ň T, by minimality of f ,
f1 s-reduces to 0 modulo G. But since lt(f1) = max(lt(f), 𝑡 lt(g1)),
any s-reduction of f1 is a regular reduction of either f or 𝑡g1, which
is a contradiction.

If f is a syzygy, we proceed similarly, but now lm(f) = 0. So the

fact that f1 is s-reducible implies that 𝑡g1 must be regular reducible,

which is impossible. So 𝑡g1 = 0 and f is sig-reducible by z1. □

4 ADDING SIGNATURES TO
PAN/LICHTBLAU’S ALGORITHM

4.1 Description of the algorithm
The second algorithm which we present is adapted from that of

Lichtblau [17], which is itself adapted from that of Pan [22]. Sim-

ilar to the previous algorithm, this algorithm also adds S- and G-

polynomials to the basis, but it tries to limit the growth of the length

of the queue by adding at most one new polynomial for each pair,

either an S- or a G-polynomial, by the following construction.

Definition 4.1. Let f, g ∈ I. The SG-polynomial of f and g is
defined as:

SG-Pol(f1, f2) =
{
S-Pol(f, g) if lc(f) | lc(g) or lc(g) | lc(f)
G-Pol(f, g) otherwise.

Note that compared to the previous algorithm, it leads to com-

puting fewer S-polynomials, but not fewer G-polynomials, since

it is always useless to compute a G-polynomial when one of the

leading coefficients divides the other. The correctness of the algo-

rithm is ensured by the following theorem, which will be proved in

Section 4.2.

Theorem 4.2. Let G ⊂ I complete and G𝑧 ⊂ Syz(I) sigG-
complete such that
• ∀ 𝑖 ∈ ⟦1, 𝑛

polys
⟧, (e𝑖 , 𝑓𝑖) has a standard Sig-rep. w.r.t. (G,G𝑧);

• any non-singular SG-polynomial of elements of G has a stan-
dard Sig-representation w.r.t. (G,G𝑧).

Then G is a Sig-Gröbner basis and G𝑧 is a Sig-basis of syzygies.

The reason why this construction is sufficient is that if lc(f)
and lc(g) do not divide each other, then the S-polynomial of f
and g can be expressed in terms of the S-polynomials of f , g and

Algorithm 1: Kandri-Rody - Kapur’s algo., with signatures

Input :𝐹 ⊂ 𝐴

Output :G ⊂ Ter(M) ×𝐴 Sig-GB of I, G𝑧 ⊂ Ter(M) × {0}
Sig-basis of syzygies of I

1 G ← ∅; G𝑧 ← ∅; 𝑟 ← 0;

2 𝑄 ← [(e𝑖 , 𝑓𝑖 ,N) for 𝑖 ∈ {1, . . . ,𝑚}];
3 while 𝑄 is not empty :
4 Take and remove (s, 𝑓 , type) from 𝑄 , with s minimal;

5 if ∃ z ∈ G𝑧 s.t. sig(z) divides s :
6 pass ; /* Prop. 2.7 */

7 elif type is S(𝑖, 𝑗) and (g𝑖 , g𝑗) is covered by (G,G𝑧) :
8 pass ; /* Cover criterion */

9 else:
10 𝑔← RegularReduce((s, 𝑓),G);
11 if 𝑔 = 0 :
12 Add s to G𝑧 , together with sigG-combinations;

13 elif ∃ g𝑖 ∈ G s.t. lt(g𝑖)s = lt(𝑔)sig(g𝑖) :
14 pass ; /* Super and s-reducible */

15 else:
16 g𝑟+1 ← (s, 𝑔), add it to G;
17 for 𝑖 ∈ {1, . . . , 𝑟 } :
18 t← sig(g𝑖 , g𝑟+1);
19 if the pair (g𝑖 , g𝑟+1) is regular :
20 Add (t, S-Pol(g𝑖 , g𝑟+1), S(𝑖, 𝑟+1)) to 𝑄
21 if none of lc(g𝑖), lc(g𝑟+1) divides the other :
22 Add (t,G-Pol(g𝑖 , g𝑟+1),G(𝑖, 𝑟+1)) to 𝑄
23 return G, G𝑧

Algorithm 2: Pan/Lichtblau’s algo., with signatures

Input :𝐹 ⊂ 𝐴

Output :G ⊂ Ter(M) ×𝐴 Sig-GB of I, G𝑧 ⊂ Ter(M) × {0}
Sig-basis of syzygies of I

1 G ← ∅; G𝑧 ← ∅; 𝑟 ← 0;

2 𝑄 ← [(e𝑖 , 𝑓𝑖 ,N) for 𝑖 ∈ {1, . . . ,𝑚}];
3 while 𝑄 is not empty :
4 Take and remove (s, 𝑓 , type) from 𝑄 , with s minimal;

5 if ∃ z ∈ G𝑧 s.t. sig(z) divides s :
6 pass ; /* Prop. 2.7 */

7 else:
8 𝑔← RegularReduce((s, 𝑓),G);
9 if 𝑔 = 0 :
10 Add s to G𝑧 , together with sigG-combinations;

11 elif type is G and ∃ g𝑖 ∈ G s.t. lt(g𝑖)s = lt(𝑔)sig(g𝑖)
12 or type is S and (s, 𝑔) is super reducible by G :
13 pass ; /* Prop. 2.19 */

14 else:
15 g𝑟+1 ← (s, 𝑔), add it to G;
16 for 𝑖 ∈ {1, . . . , 𝑟 } :
17 t← sig(g𝑖 , g𝑟+1);
18 if the pair (g𝑖 , g𝑟+1) is non-singular and

either of lc(g𝑖), lc(g𝑟+1) divides the other :
19 Add (t, S-Pol(g𝑖 , g𝑟+1), S(𝑖, 𝑟+1)) to 𝑄
20 if none of lc(g𝑖), lc(g𝑟+1) divides the other :
21 Add (t,G-Pol(g𝑖 , g𝑟+1),G(𝑖, 𝑟+1)) to 𝑄
22 return G, G𝑧

h = G-Pol(f, g). However, it forces us to also compute non-regular

S-polynomials as long as they are non-singular: indeed, sig(f, g) ≃
sig(h), and sig(h) ≃ sig(f, h) ≃ sig(g, h) because lm(h) is equal
up to coefficient to the term degree of S-Pol(f, g), S-Pol(f, h) and
S-Pol(g, h). So any linear combination of S-Pol(f, h) and S-Pol(g, h),
which is necessary to recover S-Pol(f, g), will necessarily be non-

regular. The theorem implies that even if we accept all non-singular

S-polynomials, the algorithm is correct.

Allowing non-regular S-polynomials also means that we cannot

a priori use the cover criterion in our algorithm: the algorithm

would not ensure that all regular pairs are covered, but rather, only

those for which the SG-polynomial is actually an S-polynomial. We

can however eliminate S-polynomials which are super reducible,

since Proposition 2.19 ensures that they s-reduce to 0.

The rest of the algorithm, including the processing of syzygies,

is done in exactly the same way as in Algorithm 1.

4.2 Proof
The proof of Theorem 4.2 is adapted from that of [22] and [17] with

the addition of signatures. First, we prove a useful technical lemma.

Lemma 4.3. Let G = {g1, . . . , g𝑟 } ⊂ I and T ∈ Ter(M) such that
• for all g ∈ I with sig(g) ň T, g s-reduces to 0 modulo G;
• for all g𝑖 , g𝑗 ∈ G such that SG-Pol(g𝑖 , g𝑗) is non-singular and
sig(g𝑖 , g𝑗) ĺ T, SG-Pol(g𝑖 , g𝑗) s-reduces to 0 modulo G.

Let g𝑖 , g𝑗 ∈ G such that lc(g𝑗) divides lc(g𝑖). Then any (possibly
singular) linear combination of g𝑖 and g𝑗 with signature at most T
s-reduces to 0 modulo G.

Proof. Let m𝑖 = lm(g𝑖), m𝑗 = lm(g𝑗), andm𝑖, 𝑗 = lcmlm(g𝑖 , g𝑗).
Consider a linear combination h = 𝑡𝑖g𝑖 + 𝑡 𝑗g𝑗 . Without loss of

generality, combining the reductions, we may assume that 𝑡𝑖 and

𝑡 𝑗 are terms. If lm(𝑡𝑖g𝑖) ≠ lm(𝑡 𝑗g𝑗), say lm(𝑡𝑖g𝑖) > lm(𝑡 𝑗g𝑗), there
is nothing to prove, as h can be reduced by g𝑖 , then g𝑗 .

So assume that lm(𝑡𝑖g𝑖) = lm(𝑡 𝑗g𝑗). Note that m𝑖, 𝑗 divides the

common multiple lm(𝑡𝑖g𝑖) = lm(𝑡 𝑗g𝑗), say, lm(𝑡𝑖g𝑖) = 𝑡 ′m𝑖, 𝑗 . By

assumption on the leading coefficients, there exists 𝑐 ∈ 𝑅 such that

lt(𝑡𝑖g𝑖) = 𝑡𝑖𝑡
′m𝑖,𝑗

m𝑖
lt(g𝑖) = 𝑡𝑖𝑡

′𝑐
m𝑖,𝑗

m𝑗
lt(g𝑗).

If lm(h) = lm(𝑡𝑖𝑔𝑖), the leading term of h is

lt(h) = lt(𝑡𝑖g𝑖) + lt(𝑡 𝑗g𝑗) = (𝑡𝑖𝑐 + 𝑡 𝑗)𝑡 ′
m𝑖, 𝑗

m𝑗
lt(g𝑗)

and h is reducible by g𝑗 . This reduction is a s-reduction by con-

struction.

The remaining case is the case where lt(h) < lm(𝑡𝑖g𝑖) = lm(𝑡 𝑗g𝑗).
In this case, there exists a term 𝑡 such that 𝑡𝑖 = 𝑡

m𝑖,𝑗

m𝑖
and 𝑡 𝑗 = 𝑐𝑡

m𝑖,𝑗

m𝑗
,

and h = 𝑡S-Pol(g𝑖 , g𝑗). If the pair (g𝑖 , g𝑗) is non-singular, then by

hypothesis, S-Pol(g𝑖 , g𝑗) = SG-Pol(g𝑖 , g𝑗) s-reduces to 0modulo G,
and so does h = 𝑡S-Pol(g𝑖 , g𝑗). If the pair is singular, then sig(h) ň

𝑡sig(g𝑖 , g𝑗) ĺ T, and by hypothesis, h s-reduces to 0modulo G. □

Proof of Th. 4.2. Write G = {g1, . . . , g𝑟 } and G𝑧 = {z1, . . . , z𝑠 }.
For all 𝑖, 𝑗 , let c𝑖 = lc(g𝑖), m𝑖 = lm(g𝑖) and m𝑖, 𝑗 = lcmlm(g𝑖 , g𝑗).
Let h ∈ I with signature T be such that h is not s-reducible modulo

G. Assume that T is minimal for this property, and that among such

elements of I with signature T, lm(h) is minimal.

Consider a decomposition of h with respect to G,

h =
∑𝑘
𝑢=1 𝜏𝑢g𝑖𝑢 +

∑𝑙
𝑣=1 𝑡

(𝑧)
𝑣 z𝑗𝑣 , (2)

such that for all 𝑢, 𝑣 , lt(𝜏𝑢g𝑖𝑢) ≥ lt(𝜏𝑢+1g𝑖𝑢+1), max(𝜏𝑢sig(g𝑖𝑢)) ĺ

T, max(𝑡 (𝑧)𝑣 sig(z𝑗𝑣)) ĺ T and 𝑡
(𝑧)
𝑣 sig(z𝑗𝑣) ≥ 𝑡

(𝑧)
𝑣+1sig(z𝑗𝑣+1). Such a

representation exists, by definition of the signature of h and the first
hypothesis on G. Assume that, among such representation, this one

is minimal in the sense that lm(𝜏1g𝑖1) is minimal, and the largest

𝑗 such that lm(𝜏 𝑗g𝑖 𝑗) = lm(𝜏1g𝑖1) is minimal for this property. For

all 𝑢, let 𝜒𝑢 = lc(𝜏𝑢).

Case 1: h is not a syzygy. We want to prove that lm(𝜏1g𝑖1) >
lm(𝜏2g𝑖2). It will in particular imply that lt(h) = lt(𝜏1g𝑖1), and thus

that h is s-reducible modulo G. By minimality of lm(h), this will
prove that h s-reduces to 0 modulo G.

In order to reach a contradiction, assume that lm(𝜏1g𝑖1)=lm(𝜏1g𝑖2).
By definition of the least common multiplier, there exists 𝑚 ∈
Mon(𝐴) such that lm(𝜏1g𝑖1) = lm(𝜏2g𝑖2) =𝑚m𝑖1,𝑖2 .

If c𝑖1 divides c𝑖2 or c𝑖2 divides c𝑖1 , then by Lemma 4.3, and

expanding the s-reductions, 𝜏1g𝑖1 + 𝜏2g𝑖2 admits a standard Sig-

representation, which can be substituted in the representation (2),

contradicting minimality.

For the other case, by assumption the G-polynomial of g𝑖1 and
g𝑖2 is s-reducible modulo 𝐺 , so there exists g𝑖3 ∈ 𝐺 such that

a. c𝑖1m𝑖1,𝑖2 is divisible by lt(g𝑖3), say, 𝑡 ′1lt(g𝑖3) = c𝑖1m𝑖1,𝑖2 ;

b. 𝑡 ′
1
sig(g𝑖3) ĺ sig(g𝑖1 , g𝑖2);

c. c𝑖2m𝑖1,𝑖2 is divisible by lt(g𝑖3), say, 𝑡 ′2lt(g𝑖3) = c𝑖2m𝑖1,𝑖2 ;

d. 𝑡 ′
2
sig(g𝑖3) ĺ sig(g𝑖1 , g𝑖2).

In particular, c𝑖3 divides c𝑖1 , say, c𝑖1 = 𝑎′
1
c𝑖3 . So the SG-polynomial

of g𝑖1 and g𝑖3 is an S-polynomial, and by Lemma 4.3, it s-reduces to

0 modulo G. So it admits a standard Sig-representation

SG-Pol(g𝑖1 , g𝑖3) =
m𝑖1,𝑖3

m𝑖1

g𝑖1 − 𝑎1
m𝑖1,𝑖3

m𝑖3

g𝑖3 =
∑︁
𝑗≥1

𝑡
(1)
𝑗

g(1)
𝑖 𝑗
+
∑︁

syz.,

where

∑
syz. is a linear combination of elements of G𝑧 . So
m𝑖1,𝑖3

m𝑖1

g𝑖1 = 𝑎1
m𝑖1,𝑖3

m𝑖3

g𝑖3 +
∑︁
𝑗≥1

𝑡
(1)
𝑗

g(1)
𝑖 𝑗
+
∑︁

syz.,

with lt(𝑡 (1)
𝑗

g(1)
𝑖 𝑗
) ≤ lt(S-Pol(g𝑖1 , g𝑖3)) < m𝑖1,𝑖3 . Since m𝑖1,𝑖2 is divisi-

ble by m𝑖3 , m𝑖1,𝑖2 is divisible by m𝑖1,𝑖3 , say, m𝑖1,𝑖2 = 𝜇1m𝑖1,𝑖3 . So all

in all,

𝜏1g𝑖1 = 𝜒1𝑚𝜇1
m𝑖1,𝑖3

m𝑖1

g𝑖1

= 𝜒1𝑧1𝑚𝜇1
m𝑖1,𝑖3

m𝑖3

g𝑖3 +
∑︁
𝑗≥1

𝜒1𝑧1𝑚𝜇1𝑡
(1)
𝑗

g(1)
𝑖 𝑗
+
∑︁

syz.

and it is a standard representation of 𝜏1g1. Furthermore, since the

signature of g𝑖3 is bounded (property b.), it is also a standard Sig-

representation.

Similarly, there exists 𝑧2, 𝜇2 and (𝑡 (2)𝑗
, 𝑖 𝑗) such that

𝜏2g𝑖2 = 𝜒2𝑚𝜇2
m𝑖2,𝑖3

m𝑖2

g𝑖2

= 𝜒2𝑎2𝑚𝜇2
m𝑖2,𝑖3

m𝑖3

g𝑖3 +
∑︁
𝑗≥1

𝜒2𝑎2𝑚𝜇2𝑡
(2)
𝑗

g(2)
𝑖 𝑗
+
∑︁

syz.

and it is a standard Sig-representation.

Table 1: Comparison between Algo. 1 and Algo. 2

System Algo 1 Algo. 2

Pairs/red./to 0 Time Pairs/red./to 0 Time

Katsura-4 420/188/0 1.35 855/412/0 1.60

Katsura-5 2048/723/0 32.40 7178/3983/0 79.87

Cyclic-5 221/63/0 0.37 347/158/0 0.71

Cyclic-6 3019/742/8 200.33 9672/5782/8 616.82

We can group both representations together, and obtain a stan-

dard Sig-representation of 𝜏1g𝑖1 + 𝜏2g𝑖2

𝜏1g𝑖1 + 𝜏2g𝑖2 = 𝜒1𝑎1𝑚𝜇1
m𝑖1,𝑖3

m𝑖3

g𝑖3 + 𝜒2𝑎2𝑚𝜇2
m𝑖2,𝑖3

m𝑖3

g𝑖3 +
∑︁

. . .

=

(
𝜒1𝑐
′
1
𝜇1

m𝑖1,𝑖3

m𝑖3

+ 𝜒2𝑎2𝜇2
m𝑖2,𝑖3

m𝑖3

)
𝑚g𝑖3 +

∑︁
. . .

=

(
𝜒1𝑎1 + 𝜒2𝑎2

)
m𝑖1,𝑖2

m𝑖3

𝑚g𝑖3 +
∑︁

. . .

which, substituted into (2), contradicts the minimality assumption.

Case 2: h is a syzygy. The same proof as above, if lt(h) = 0,

implies that 𝑘 = 0 in (2). Now, consider, among all decompositions

of the form (2), one where 𝑗 = max(𝑣 : 𝑡
(𝑧)
𝑣 sig(z𝑗𝑣)) ≃ 𝑡

(𝑧)
1

sig(z𝑗1)
is minimal. Assume that 𝑗 > 0, and thus 𝑡

(𝑧)
1

sig(z𝑗1) ≃ 𝑡
(𝑧)
2

sig(z𝑗2).
Then, by assumption, the sigG-comb. of z1 and z2 is sig-reducible
by G𝑧 , thus, there exists 𝑡 ′

1
∈ Ter(𝐴) and 𝑗 ′

1
∈ {1, . . . , 𝑠} such

that 𝑡 ′
1
sig(z𝑗 ′

1

) = 𝑡
(𝑧)
1

sig(z𝑗1) + 𝑡
(𝑧)
2

sig(z𝑗2), and so z := 𝑡
(𝑧)
1

z1 +
𝑡
(𝑧)
2

z2 − 𝑡 ′
1
sig(z𝑗 ′

1

) has signature ň T. So subtracting z from the

decomposition (2) results in a decomposition with fewer terms

matching the signature of h, contradicting the minimality of 𝑗 . □

5 ALGORITHMS IN PRACTICE
5.1 Further optimizations
In this section, we briefly describe additional criteria which can

be used to eliminate elements. Firstly, in both algorithms, one can

use Buchberger’s coprime and chain criteria (either as-is or using

Gebauer and Möller’s implementation). Buchberger’s criterion does

not require any modification to work with signatures, whereas the

chain criterion needs to ensure that the signature of the pairs used

to discard the redundant one is small enough [15]. Note that in

all cases, we need to consider terms (with their coefficients) and

not just monomials. For Lichtblau’s algorithm, refined versions of

those criteria relaxing the condition on the coefficients have been

described in [17] and can also be used here.

We have already stated that some criteria can be used to eliminate

pairs based on their signatures. We have also already mentioned

the idea of the F5 criterion, filling the basis of syzygies with the

signatures of predictable syzygies, as well as the possibility of dis-

carding G-polynomials which are sig-reducible by G𝑧 , or which
are super reducible and s-reducible by g ∈ G. Similarly, in Licht-

blau’s algorithm, one can discard any S-polynomial which is super

reducible by G.
A natural question is whether the cover criterion would allow to

systematically discard G-polynomials in Algorithm 1, or to discard

Table 2: Comparative timings for module computations with the signature-based algorithms and with Magma (in seconds)

System With signatures (Algo. 1) Magma

Sig-GB Recons. Total GB GB with coordinates Module of syzygies

Cyclic-5 0.4 0.1 0.5 0.01 954.6 954.8
Cyclic-6 200.3 10.6 210.9 2.08 >24h >24h

new elements in Algorithm 2 (including non-regular S-polynomials).

Experimentally, it appears that indeed, most such elements which

are covered can be discarded without impacting the correctness of

the algorithm.

Another point which can have a large impact on the complexity

is the choice of the order of the pairs, i.e. , how to break ties between

elements with signatures which are ≃. A strategy which seems to

yield good results over Z is to compare the absolute value of the

coefficient of the signatures, so as to create super reducers and

covering candidates sooner.

We have only mentioned top reductions, namely, reductions of

the leading coefficient, but as usual, the definitions generalize to

allow reductions of the rest of the terms. Finally, we have only

defined reductions where the leading coefficient of the reducer

divides the coefficient to be reduced. In some rings, and in particular

in the case of Euclidean rings, it is also possible to perform modular

reductions on the coefficients without impacting the correctness

of the result. This significantly improves the performances of the

algorithm. The same can be done for sig-reductions.

5.2 Experimental data
We have written a prototype implementation of both algorithms

inMagma4, for the PoT ordering and 𝑅 = Z. We report in Table 1

data on the number of pairs being processed, reduced and reduced

to zero for different benchmark systems (Katsura-𝑛 and Cyclic-𝑛),

as well as indicative computation times. In practice, it appears that

Algo. 1 is more efficient than Algo. 2, both in terms of number of

computed pairs and in time. This appears to be due to the relaxed

restrictions allowing non-singular polynomials, more than the lack

of criteria.

Our prototype implementation of both algorithms of the paper

is slower than Magma’s implementation of F4 [9] over Z for merely

computing Gröbner bases. As mentioned earlier, the computation

of signatures also allows to compute the coefficients of the elements

of the Gröbner basis in terms of the input, and a basis of the module

of syzygies, by performing and tracking s-reductions [14]. The

process only depends on the definition of a Sig-GB and a Sig-basis

of syzygies, and therefore works in our setting as well. In Table 2,

we give the computation time for this reconstruction using Algo. 1,

as well as comparable routines inMagma5. In several instances, we

observe that the use of signatures gives a significant speed-up for

those computations.

One particularity of signature-based algorithms over rings is that,

due to the partial order on the signatures, they typically compute

a large number of elements with incomparable signatures. This

problem does not appear over fields, and future work will focus

4
https://gitlab.com/thibaut.verron/signature-groebner-rings

5Groebner of an IdealWithFixedBasis for a GB with coordinates, and SyzygyMatrix
for a basis of the syzygy module.

on ways to eliminate more of those elements, or to speed-up the

computations at a given signature (for instance using linear algebra

techniques similar to F4).

REFERENCES
[1] W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. American

Mathematical Society, 7 1994.

[2] T. Becker, H. Kredel, and V. Weispfenning. Gröbner Bases: A Computational
Approach to Commutative Algebra. Springer-Verlag, 4 1993.

[3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra

and number theory (London, 1993).

[4] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of

Innsbruck, Austria, 1965.

[5] B. Buchberger. A criterion for detecting unnecessary reductions in the construc-

tion of Gröbner-bases. In International Symposium on Symbolic and Algebraic
Manipulation, pages 3–21. Springer, 1979.

[6] C. Eder and Jean-Charles Faugère. A Survey on Signature-based Algorithms for

Computing Gröbner Bases. Journal of Symbolic Computation, 80:719–784, 2017.
[7] C. Eder, G. Pfister, and A. Popescu. On Signature-Based Gröbner Bases over

Euclidean Rings. In Proceedings of the 2017 ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC ’17, pages 141–148, New York, NY,

USA, 2017. ACM.

[8] C. Eder, G. Pfister, and A. Popescu. Standard bases over Euclidean domains.

Journal of Symbolic Computation, 102:21 – 36, 2021.

[9] Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases

(F4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.
[10] Jean Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases

without Reduction to Zero (F5). In Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’02, pages 75–83, New York, NY,

USA, 2002. ACM.

[11] M. Francis and A. Dukkipati. On Ideal Lattices, Gröbner Bases and Generalized

Hash Functions. Journal of Algebra and Its Applications, 2017.
[12] M. Francis and T. Verron. A signature-based algorithm for computing Gröbner

bases over principal ideal domains. Mathematics in Computer Science, Dec 2019.
[13] S. Gao and F. Guan, Y.and Volny IV. A New Incremental Algorithm for Computing

Gröbner bases. In Proceedings of the 2010 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’10, pages 13–19. ACM, 2010.

[14] S. Gao, Volny IV, and M. F, Wang. A new framework for computing Gröbner

bases. Mathematics of Computation, 85(297):449–465, May 2015.

[15] V. P. Gerdt and A. Hashemi. On the use of Buchberger criteria in G
2
V algo-

rithm for calculating Gröbner bases. Program. Comput. Softw., 39(2):81–90, 2013.
Translated from Programmirovanie 39 (2013), no. 2.

[16] A. Kandri-Rody and D. Kapur. Computing a Gröbner Basis of a Polynomial Ideal

over a Euclidean Domain. J. Symbolic Comput., 6(1):37–57, 1988.
[17] D. Lichtblau. Effective Computation of Strong Gröbner Bases over Euclidean

Domains. Illinois J. Math., 56(1):177–194 (2013), 2012.
[18] D. Lichtblau. Applications of Strong Gröbner Bases over Euclidean Domains. Int.

J. Algebra, 7(5-8):369–390, 2013.
[19] V. Lyubashevsky and D. Micciancio. Generalized Compact Knapsacks Are Colli-

sion Resistant. In ICALP (2), pages 144–155, 2006.
[20] H. M. Möller. On the Construction of Gröbner Bases using Syzygies. Journal of

Symbolic Computation, 6(2-3):345–359, 1988.
[21] HM.Möller, T. Mora, and C. Traverso. Gröbner bases computation using syzygies.

In Papers from the international symposium on Symbolic and algebraic computation,
pages 320–328, 1992.

[22] L. Pan. On the D-bases of polynomial ideals over principal ideal domains. J.
Symbolic Comput., 7(1):55–69, 1989.

https://gitlab.com/thibaut.verron/signature-groebner-rings

	Abstract
	1 Introduction
	2 Notations and Preliminaries
	2.1 Conventions and notations
	2.2 Signature Gröbner bases

	3 Adding signatures to Kandri-Rody and Kapur's algorithm
	3.1 Description of the algorithm
	3.2 Proof

	4 Adding signatures to Pan/Lichtblau's algorithm
	4.1 Description of the algorithm
	4.2 Proof

	5 Algorithms in practice
	5.1 Further optimizations
	5.2 Experimental data

	References

