Extensions of signature Gröbner bases: rings and the free algebra

Thibaut Verron

Seminar "Algebra and Discrete Mathematics" Johannes Kepler University

21 October 2021

Gröbner bases

Gröbner bases for commutative polynomials over fields:

- solving equations (parametrization, elimination, dimension of the solutions...)
- simplifications, reductions, computations in modules
- with signatures: optimization, computation of syzygies and cofactors

This talk: two generalizations of signatures

- Gröbner bases over \mathbb{Z}
- Gröbner bases on the free algebra

Notations:

- R ring or field
- Commutative polynomial algebra: $A=R\left[X_{1}, \ldots, X_{n}\right]$ with a monomial order $<$
- Commutative monomial: $\mathbf{X}^{\mathbf{a}}=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}$
- Free algebra: $A=R\left\langle X_{1}, \ldots, X_{n}\right\rangle$ with a monomial order $<$
- Noncommutative monomial (word): $X_{i_{1}} X_{i_{2}} \cdots X_{i_{d}}$

$$
f=\underset{\operatorname{lc}(f) \quad \operatorname{lt}(f)}{\substack{\operatorname{lm}(f)}}+\text { smaller terms }
$$

Buchberger's algorithm

1. Selection: different strategies
2. Construction: S-polynomials: $\operatorname{s-Pol}\left(g_{i}, g_{j}\right)=\frac{\operatorname{lcmlt}\left(g_{i}, g_{j}\right)}{\operatorname{lt}\left(g_{i}\right)} g_{i}-\frac{\operatorname{lcmlt}\left(g_{i}, g_{j}\right)}{\operatorname{lt}\left(g_{j}\right)} g_{j}$
3. Reduction: if $\operatorname{lt}(f)=\operatorname{tlt}(g), f \rightarrow f-\operatorname{tg}$

Reminder on signature Gröbner basis algorithms

Setting:

- Given $f_{1}, \ldots, f_{m} \in A=R[\mathbf{X}]$ generating the ideal $/$
- A-module $A^{m}=A \mathbf{e}_{1} \oplus \cdots \oplus A \mathbf{e}_{m}$ with a A-morphism $\pi: A^{m} \rightarrow I, \mathbf{e}_{i} \mapsto f_{i}$
- A-module $\mathcal{I}=\left\{(\mathbf{f}, \pi(\mathbf{f})): \mathbf{p} \in A^{m}\right\} \subseteq A^{m} \times I$
- \mathcal{I} is isomorphic to A^{m}, we use the same notation: if $f=\pi(f), \mathbf{f} \equiv(\mathbf{f}, f) \equiv f^{[\mathbf{f}]}$

Signatures:

- Assign a monomial ordering on A^{m} (compatible with that on A)
- Signature of $\mathbf{f}: \operatorname{sig}(\mathbf{f})=$ leading monomial of $\mathbf{f} \in A^{m}$ for that ordering
- We use sig for the leading monomial of the module part
- We keep using lt, etc. for the leading term of the polynomial part: $\operatorname{lt}(\mathbf{f})=\operatorname{lt}(f)$

Regular operations

- If $\operatorname{sig}(\mathbf{f})>\operatorname{sig}(\mathbf{g}), \mathbf{f}-\mathbf{g}$ is a regular operation (the signature is preserved)
- If $\operatorname{sig}(\mathbf{f})=\operatorname{sig}(\mathbf{g}), \mathbf{f}-\mathbf{g}$ is a singular operation (the signature may drop)

Buchberger's algorithm, with signatures

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomials: S-Pol $\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)=\frac{\operatorname{lcmlt}\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)}{\operatorname{lt}\left(\mathbf{g}_{i}\right)} \mathbf{g}_{i}-\frac{\operatorname{lcmlt}\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)}{\operatorname{lt}\left(\mathbf{g}_{j}\right)} \mathbf{g}_{j}$
3. Reduction: regular s-reductions: if $\operatorname{lt}(\mathbf{f})=\operatorname{tlt}(\mathbf{g})$ and $\operatorname{tsig}(\mathbf{g}) \lessgtr \operatorname{sig}(\mathbf{f}), \mathbf{f} \rightarrow \mathbf{f}-\operatorname{tg}$

Part 1: signature Gröbner bases over \mathbb{Z}

Joint work with Maria Francis
(Indian Institute of Technology Hyderabad)

Summary of Gröbner basis algorithms over rings

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Buchberger (1965)
Faugère: F4 (1999)

Usual // Usual
 Usual // Usual (linear algebra)

Summary of Gröbner basis algorithms over rings

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Buchberger (1965)
 Faugère: F4 (1999)

```
Usual // Usual
Usual // Usual (linear algebra)
```

General (Noetherian) ring
Möller weak (1988) Multiple // Multiple

Summary of Gröbner basis algorithms over rings

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Buchberger (1965) Faugère: F4 (1999)		Usual // Usual Usual // Usual (linear algebra)
Field		
	Möller strong (1988)	Usual // Usual with G-pol
Principal ideal domain	Pan (1989)	Usual or G-pols // Usual
General (Noetherian) ring	Möller weak (1988)	Multiple // Multiple

Summary of Gröbner basis algorithms over rings

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Signatures over \mathbb{Z}

Definition

- Over fields: signature of $\mathbf{f}=$ leading monomial of the module part of \mathbf{f}
$=$ monomial $m \mathbf{e}_{i}$ in A^{m} such that $f=c m f_{i}+$ "smaller" terms
- In that case, c does not matter!
- Over rings, we cannot divide by c and we need to keep the coefficient in the signature
- The signature of f is $c m \mathbf{e}_{i}$

Consequence for operations

- If $\operatorname{sig}(\mathbf{f})>\operatorname{sig}(\mathbf{g}), \mathbf{f}-\mathbf{g}$ is a regular operation (the signature is preserved)
- If $\operatorname{sig}(\mathbf{f})=\operatorname{sig}(\mathbf{g}), \mathbf{f}-\mathbf{g}$ is a singular operation (the signature does drop)
- If $\operatorname{sig}(\mathbf{f}) \simeq \operatorname{sig}(\mathbf{g})$ with different coefficients, $\mathbf{f}-\mathbf{g}$ has signature $\operatorname{sig}(\mathbf{f})-\operatorname{sig}(\mathbf{g})$

Main question: how to order the signatures with their coefficients?

Summary of Gröbner basis algorithms over rings with signatures

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- How to order signatures?

Case of fields: partial order is enough

Buchberger (1965) \rightarrow B. with sig. Faugère: $\mathrm{F4}$ (1999) \rightarrow F5 (2002)		Usual // Usual Usual // Usual (linear algebra)
Field		
Euclidean ring Kandri	ri-Rody, Kapur (1988) Lichtblau (2012)	Usual and G-pols // Usual Usual or G-pols // Usual
Principal ideal domain	Möller strong (1988) Kandri-Rody, Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring	Möller weak (1988)	Multiple // Multiple

Summary of Gröbner basis algorithms over rings with signatures

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- How to order signatures?

Case of fields: partial order is enough
[Eder, Pfister, Popescu 2017]: cannot order coefs

Buchberger (1965) \rightarrow B. with sig. Faugère: F4 (1999) \rightarrow F5 (2002)		Usual // Usual Usual // Usual (linear algebra)
Field		
Euclidean ring Kand	ri-Rody, Kapur (1988) Lichtblau (2012)	Usual and G-pols // Usual Usual or G-pols // Usual
Principal ideal domain	Möller strong (1988) Kandri-Rody, Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring	Möller weak (1988)	Multiple // Multiple

Summary of Gröbner basis algorithms over rings with signatures

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs
[Francis, V. 2018]: partial order is enough

Buchberger (1965) \rightarrow B. with sig. Faugère: F4 (1999) \rightarrow F5 (2002)	Usual // Usual Usual // Usual (linear algebra)
Field	
Euclidean ring Kandri-Rody, Kapur (1988)Lichtblau (2012)	Usual and G-pols // Usual Usual or G-pols // Usual
Möller weak with sig (2018) Möller strong (1988) \rightarrow with sig (2019) Principal ideal domain Kandri-Rody, Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring Möller weak (1988)	Multiple // Multiple

Summary of Gröbner basis algorithms over rings with signatures

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs [Francis, V. 2018]: partial order is enough

Buchberger (1965) \rightarrow B. with sig. Faugère: F4 (1999) \rightarrow F5 (2002)	Usual // Usual Usual // Usual (linear algebra)
Field	
Euclidean ring Kandri-Rody, Kapur (1988) $\begin{array}{r}\text { Lichtblau (2012) }\end{array}$	Usual and G-pols // Usual Usual or G-pols // Usual
Möller weak with sig (2018) Möller strong (1988) \rightarrow with sig (2019) Principal ideal domain Kandri-Rody, Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring Möller weak (1988)	Multiple // Multiple

This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau

What are G-polynomials?

Example: $f=3 x, g=2 y, I=\langle f, g\rangle$

- Not a strong Gröbner basis: $x y=y f-x g \in I$ is not reducible by f or g
- Adding $\operatorname{S-Pol}(f, g)=0$ does not help
- G-Pol $(f, g)=x y$

What are G-polynomials?

Example: $f=3 x, g=2 y, I=\langle f, g\rangle$

- Not a strong Gröbner basis: $x y=y f-x g \in I$ is not reducible by f or g
- Adding $\mathrm{S}-\operatorname{Pol}(f, g)=0$ does not help
- G-Pol $(f, g)=x y$

Definition

$\mathbf{f}, \mathbf{g} \in \mathcal{I}, u, v$ Bézout coefficients for $\operatorname{lc}(\mathbf{f}), \operatorname{lc}(\mathbf{g})$
$-\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \frac{\operatorname{lcmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{lm}(\mathbf{f})} \mathbf{f}+v \frac{\operatorname{lcmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{lm}(\mathbf{g})} \mathbf{g}$

Main properties

- $\operatorname{lc}(\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g}))=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- If $\operatorname{lt}(\mathbf{f})=t_{1} \operatorname{lt}\left(\mathbf{g}_{1}\right)+t_{2} \operatorname{lt}\left(\mathbf{g}_{2}\right)$, then \mathbf{f} is reducible by $\mathrm{G}-\operatorname{Pol}\left(\mathbf{g}_{1}, \mathbf{g}_{2}\right)$
- One can always choose u, v such that

$$
\operatorname{sig}(\operatorname{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})) \simeq \max \left(\frac{\operatorname{Icmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{Im}(\mathbf{f})} \operatorname{sig}(\mathbf{f}), \frac{\operatorname{Icmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{Im}(\mathbf{g})} \operatorname{sig}(\mathbf{g})\right)
$$

Kandri-Rody and Kapur's algorithm

1. Selection: different strategies
2. Construction: S-polynomial
and G-polynomial if $\operatorname{Ic}\left(g_{i}\right)$ and $\operatorname{lc}\left(g_{j}\right)$ do not divide each other
3. Reduction

G-polynomials for syzygies

Need a similar construction to capture all possible combinations of syzygy signatures.

Definition

$\mathbf{z}_{1}, \mathbf{z}_{2} \in \operatorname{Syz}(\mathcal{I})$ with $\operatorname{sig}\left(\mathbf{z}_{i}\right)=a_{i} m_{i} \mathbf{e}_{j} ; u, v$ Bézout coefficients for a_{1}, a_{2}
$-\operatorname{G-Pol}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=u \frac{\operatorname{lcm}\left(m_{1}, m_{2}\right)}{m_{1}} \mathbf{z}_{1}+v \frac{\operatorname{lcm}\left(m_{1}, m_{2}\right)}{m_{2}} \mathbf{z}_{2}$

Main properties

- $\operatorname{sig}\left(G-\operatorname{Pol}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right) \operatorname{lcm}\left(m_{1}, m_{2}\right) \mathbf{e}_{j}$
- If $\operatorname{sig}(\mathbf{f})=t_{1} \operatorname{sig}\left(\mathbf{z}_{1}\right)+t_{2} \operatorname{sig}\left(\mathbf{z}_{2}\right)$, then \mathbf{f} is sig-reducible by $\operatorname{G-Pol}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)$
- No need to be careful about the choice of u, v

Kandri-Rody and Kapur's algorithm, with signatures

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomial
and G-polynomial if $\operatorname{Ic}\left(\mathbf{g}_{i}\right)$ and $\operatorname{lc}\left(\mathbf{g}_{j}\right)$ do not divide each other
3. Reduction: regular

Pan/Lichtblau's algorithm

(R is a PID)

1. Selection: different strategies
2. Construction: S-polynomial if one of $\operatorname{lc}\left(g_{i}\right)$ and $\operatorname{lc}\left(g_{j}\right)$ divides the other or G-polynomial if $\operatorname{lc}\left(g_{i}\right)$ and $\operatorname{lc}\left(g_{j}\right)$ do not divide each other
3. Reduction

Why does it work?

Idea:

- Let f and g with $a=\operatorname{lc}(f)$ and $b=\operatorname{lc}(g)$ not dividing each other, let $d=\operatorname{gcdlc}(f, g)$
- How to recover S-Pol $(f, g)=\frac{b}{d} \mu f-\frac{a}{d} \nu g$?

Why does it work?

Idea:

- Let f and g with $a=\operatorname{lc}(f)$ and $b=\operatorname{lc}(g)$ not dividing each other, let $d=\operatorname{gcdlc}(f, g)$
- How to recover S-Pol $(f, g)=\frac{b}{d} \mu f-\frac{a}{d} \nu g$?
- The algorithm computes $h=\operatorname{G-Pol}(f, g)=u \mu f+v \nu g$, with $\operatorname{lc}(h)=d$

Why does it work?

Idea:

- Let f and g with $a=\operatorname{lc}(f)$ and $b=\operatorname{lc}(g)$ not dividing each other, let $d=\operatorname{gcdlc}(f, g)$
- How to recover $\operatorname{S-Pol}(f, g)=\frac{b}{d} \mu f-\frac{a}{d} \nu g$?
- The algorithm computes $h=\operatorname{G-Pol}(f, g)=u \mu f+v \nu g$, with $\operatorname{lc}(h)=d$
- $\operatorname{lc}(h)$ divides both $\operatorname{lc}(f)$ and $\operatorname{lc}(g)$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
\operatorname{S-Pol}(f, h) & =\mu f-\frac{a}{d} h \\
& =\left(1-\frac{u a}{d}\right) \mu f-\frac{a v}{d} \mu g \\
& =\frac{v b}{d} \mu f-\frac{a v}{d} \nu g \\
& =v \operatorname{s}-\operatorname{Pol}(f, g)
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(g, h)=u \mathrm{~S}-\operatorname{Pol}(f, g)
$$

Pan/Lichtblau's algorithm, with signatures

1. Selection: non-decreasing signatures
2. Construction: non-singular S-polynomial if one of $\operatorname{lc}\left(\mathbf{g}_{i}\right)$ and $\operatorname{lc}\left(\mathbf{g}_{j}\right)$ divides the other or G-polynomial if $\operatorname{lc}\left(\mathbf{g}_{i}\right)$ and $\operatorname{lc}\left(\mathbf{g}_{j}\right)$ do not divide each other
3. Reduction: regular

Why does it work?

Idea:

- Let \mathbf{f} and \mathbf{g} with $a=\operatorname{lc}(\mathbf{f})$ and $b=\operatorname{lc}(\mathbf{g})$ not dividing each other, let $d=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- How to recover $\operatorname{S-Pol}(\mathbf{f}, \mathbf{g})=\frac{b}{d} \mu \mathbf{f}-\frac{a}{d} \nu \mathbf{g}$?
- The algorithm computes $\mathbf{h}=\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \mu \mathbf{f}+\mathrm{v} \nu \mathbf{g}$, with $\operatorname{lc}(\mathbf{h})=d$
- $\operatorname{lc}(\mathbf{h})$ divides both $\operatorname{lc}(\mathbf{f})$ and $\operatorname{lc}(\mathbf{g})$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
\operatorname{S-Pol}(\mathbf{f}, \mathbf{h}) & =\mu \mathbf{f}-\frac{a}{d} \mathbf{h} \\
& =\left(1-\frac{u a}{d}\right) \mu \mathbf{f}-\frac{a v}{d} \mu \mathbf{g} \\
& =\frac{v b}{d} \mu \mathbf{f}-\frac{a v}{d} \nu \mathbf{g} \\
& =v \operatorname{sS}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(\mathbf{g}, \mathbf{h})=u \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
$$

Why does it work?

Idea:

$$
\text { sig. } \mathbf{s} \quad \mathbf{t} \quad \text { with } \mu \mathbf{s} \succcurlyeq \nu \mathbf{t}
$$

- Let \mathbf{f} and \mathbf{g} with $a=\operatorname{lc}(\mathbf{f})$ and $b=\operatorname{lc}(\mathbf{g})$ not dividing each other, let $d=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- How to recover $\operatorname{S-Pol}(\mathbf{f}, \mathbf{g})=\frac{b}{d} \mu \mathbf{f}-\frac{a}{d} \nu \mathbf{g}$?
- The algorithm computes $\mathbf{h}=\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \mu \mathbf{f}+v \nu \mathbf{g}$, with $\mathrm{Ic}(\mathbf{h})=d$
- $\operatorname{lc}(\mathbf{h})$ divides both $\operatorname{lc}(\mathbf{f})$ and $\operatorname{lc}(\mathbf{g})$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
\mathrm{S}-\operatorname{Pol}(\mathbf{f}, \mathbf{h}) & =\mu \mathbf{f}-\frac{a}{d} \mathbf{h} \\
& =\left(1-\frac{u a}{d}\right) \mu \mathbf{f}-\frac{a v}{d} \mu \mathbf{g} \\
& =\frac{v b}{d} \mu \mathbf{f}-\frac{a v}{d} \nu \mathbf{g} \\
& =\operatorname{vS}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(\mathbf{g}, \mathbf{h})=u \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
$$

Why does it work?

Idea:

$$
\text { sig. } \mathbf{s} \quad \mathbf{t} \quad \text { with } \mu \mathbf{s} \succcurlyeq \nu \mathbf{t}
$$

- Let \mathbf{f} and \mathbf{g} with $a=\operatorname{lc}(\mathbf{f})$ and $b=\operatorname{lc}(\mathbf{g})$ not dividing each other, let $d=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- How to recover $\operatorname{S-Pol}(\mathbf{f}, \mathbf{g})=\frac{b}{d} \mu \mathbf{f}-\frac{a}{d} \nu \mathbf{g}$? Regular, sig. $\simeq \mu \mathbf{s}$
- The algorithm computes $\mathbf{h}=\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \mu \mathbf{f}+v \nu \mathbf{g}$, with $\mathrm{IC}(\mathbf{h})=d$
- $\operatorname{lc}(\mathbf{h})$ divides both $\operatorname{lc}(\mathbf{f})$ and $\operatorname{lc}(\mathbf{g})$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
\mathrm{S}-\operatorname{Pol}(\mathbf{f}, \mathbf{h}) & =\mu \mathbf{f}-\frac{a}{d} \mathbf{h} \\
& =\left(1-\frac{u a}{d}\right) \mu \mathbf{f}-\frac{a v}{d} \mu \mathbf{g} \\
& =\frac{v b}{d} \mu \mathbf{f}-\frac{a v}{d} \nu \mathbf{g} \\
& =v \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(\mathbf{g}, \mathbf{h})=u \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
$$

Why does it work?

Idea:

$$
\text { sig. } \mathbf{s} \quad \mathbf{t} \quad \text { with } \mu \mathbf{s} \succcurlyeq \nu \mathbf{t}
$$

- Let \mathbf{f} and \mathbf{g} with $a=\operatorname{lc}(\mathbf{f})$ and $b=\operatorname{lc}(\mathbf{g})$ not dividing each other, let $d=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- How to recover $\operatorname{S-Pol}(\mathbf{f}, \mathbf{g})=\frac{b}{d} \mu \mathbf{f}-\frac{a}{d} \nu \mathbf{g}$? Regular, sig. $\simeq \mu \mathbf{s}$

$$
\text { sig. } \simeq \mu \mathbf{s}
$$

- The algorithm computes $\mathbf{h}=\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \mu \mathbf{f}+v \nu \mathbf{g}$, with $\operatorname{lc}(\mathbf{h})=d$
- $\operatorname{lc}(\mathbf{h})$ divides both $\operatorname{lc}(\mathbf{f})$ and $\operatorname{lc}(\mathbf{g})$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
\operatorname{S-Pol}(\mathbf{f}, \mathbf{h}) & =\mu \mathbf{f}-\frac{a}{d} \mathbf{h} \\
& =\left(1-\frac{u a}{d}\right) \mu \mathbf{f}-\frac{a v}{d} \mu \mathbf{g} \\
& =\frac{v b}{d} \mu \mathbf{f}-\frac{a v}{d} \nu \mathbf{g} \\
& =v \operatorname{sS}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(\mathbf{g}, \mathbf{h})=u \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
$$

Why does it work?

Idea:

$$
\text { sig. } \mathbf{s} \quad \mathbf{t} \quad \text { with } \mu \mathbf{s} \succcurlyeq \nu \mathbf{t}
$$

- Let \mathbf{f} and \mathbf{g} with $a=\operatorname{lc}(\mathbf{f})$ and $b=\operatorname{lc}(\mathbf{g})$ not dividing each other, let $d=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- How to recover $\operatorname{S-Pol}(\mathbf{f}, \mathbf{g})=\frac{b}{d} \mu \mathbf{f}-\frac{a}{d} \nu \mathbf{g}$? Regular, sig. $\simeq \mu \mathbf{s}$

$$
\text { sig. } \simeq \mu \mathbf{s}
$$

- The algorithm computes $\mathbf{h}=\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \mu \mathbf{f}+v \nu \mathbf{g}$, with $\operatorname{lc}(\mathbf{h})=d$
- $\operatorname{lc}(\mathbf{h})$ divides both $\operatorname{lc}(\mathbf{f})$ and $\operatorname{lc}(\mathbf{g})$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
& \simeq \mu \mathbf{s} \quad \simeq \mu \mathbf{s} \quad \text { not regular } \\
\operatorname{S-Pol}(\mathbf{f}, \mathbf{h}) & =\mu \mathbf{f}-\frac{a}{d} \mathbf{h} \\
& =\left(1-\frac{u a}{d}\right) \mu \mathbf{f}-\frac{a v}{d} \mu \mathbf{g} \\
& =\frac{v b}{d} \mu \mathbf{f}-\frac{a v}{d} \nu \mathbf{g} \\
& =v \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(\mathbf{g}, \mathbf{h})=u \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
$$

Why does it work?

Idea:

$$
\text { sig. } \mathbf{s} \quad \mathbf{t} \quad \text { with } \mu \mathbf{s} \succcurlyeq \nu \mathbf{t}
$$

- Let \mathbf{f} and \mathbf{g} with $a=\operatorname{lc}(\mathbf{f})$ and $b=\operatorname{lc}(\mathbf{g})$ not dividing each other, let $d=\operatorname{gcdlc}(\mathbf{f}, \mathbf{g})$
- How to recover $\operatorname{S-Pol}(\mathbf{f}, \mathbf{g})=\frac{b}{d} \mu \mathbf{f}-\frac{a}{d} \nu \mathbf{g}$? Regular, sig. $\simeq \mu \mathbf{s}$

$$
\text { sig. } \simeq \mu \mathbf{s}
$$

- The algorithm computes $\mathbf{h}=\mathrm{G}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})=u \mu \mathbf{f}+v \nu \mathbf{g}$, with $\operatorname{lc}(\mathbf{h})=d$
- $\operatorname{lc}(\mathbf{h})$ divides both $\operatorname{lc}(\mathbf{f})$ and $\operatorname{lc}(\mathbf{g})$, and the algorithm computes the S-polynomials:

$$
\begin{aligned}
& \simeq \mu \mathbf{s} \quad \simeq \mu \mathbf{s} \quad \text { not regular } \\
\operatorname{S-Pol}(\mathbf{f}, \mathbf{h}) & =\mu \mathbf{f}-\frac{a}{d} \mathbf{h} \\
& =\left(1-\frac{u a}{d}\right) \mu \mathbf{f}-\frac{a v}{d} \mu \mathbf{g} \\
& =\frac{v b}{d} \mu \mathbf{f}-\frac{a v}{d} \nu \mathbf{g} \\
& =v \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
\end{aligned}
$$

$$
\mathrm{S}-\operatorname{Pol}(\mathbf{g}, \mathbf{h})=u \mathrm{~S}-\operatorname{Pol}(\mathbf{f}, \mathbf{g})
$$

Consequence: we need to allow all non-singular S-polynomials

Pan/Lichtblau's algorithm, with signatures

1. Selection: non-decreasing signatures
2. Construction: non-singular S-polynomial if one of $\operatorname{lc}\left(\mathbf{g}_{i}\right)$ and $\operatorname{lc}\left(\mathbf{g}_{j}\right)$ divides the other or G-polynomial if $\operatorname{lc}\left(\mathbf{g}_{i}\right)$ and $\operatorname{lc}\left(\mathbf{g}_{j}\right)$ do not divide each other
3. Reduction: regular

Comparison of the algorithms

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature \mathbf{e}_{i} in $\mathcal{G} \cup \mathcal{G}_{z}$

Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_{z} is a sig-basis of syzygies.

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and Ic divides
G-pol if lc does not divide	G-pol if Ic does not divide
Regular reductions	Regular reductions

Comparison of the algorithms

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature \mathbf{e}_{i} in $\mathcal{G} \cup \mathcal{G}_{z}$
"Correct ideal"
- all regular S-pols of \mathcal{G} s-reduce to $0 \bmod \mathcal{G}$

Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_{z} is a sig-basis of syzygies.

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and Ic divides
G-pol if Ic does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions

Comparison of the algorithms

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature \mathbf{e}_{i} in $\mathcal{G} \cup \mathcal{G}_{z}$
- all regular S-pols of \mathcal{G} s-reduce to $0 \bmod \mathcal{G}$
"Correct ideal"
- if those reductions are regular, their result is sig-reducible $\bmod \mathcal{G}_{z}$

Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_{z} is a sig-basis of syzygies.

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and Ic divides
G-pol if Ic does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions

Comparison of the algorithms

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature \mathbf{e}_{i} in $\mathcal{G} \cup \mathcal{G}_{z}$
"Correct ideal"
- all regular S-pols of \mathcal{G} s-reduce to $0 \bmod \mathcal{G}$
"Gröbner basis"
- if those reductions are regular, their result is sig-reducible $\bmod \mathcal{G}_{z}$ "Basis of syzygies"
- all G-pols of \mathcal{G} are s-reducible $\bmod \mathcal{G}$
- all G-pols of \mathcal{G}_{z} are sig-reducible $\bmod \mathcal{G}_{z}$
"Sufficiently many G-pols"
Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_{z} is a sig-basis of syzygies.

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and Ic divides
G-pol if Ic does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions

Comparison of the algorithms

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature \mathbf{e}_{i} in $\mathcal{G} \cup \mathcal{G}_{z}$
"Correct ideal"
- all regular S-pols of \mathcal{G} s-reduce to $0 \bmod \mathcal{G}$
"Gröbner basis"
- if those reductions are regular, their result is sig-reducible $\bmod \mathcal{G}_{z}$ "Basis of syzygies"
- all G-pols of \mathcal{G} are s-reducible $\bmod \mathcal{G}$
- all G-pols of \mathcal{G}_{z} are sig-reducible $\bmod \mathcal{G}_{z}$
"Sufficiently many G-pols"
Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_{z} is a sig-basis of syzygies.

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and Ic divides
G-pol if Ic does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions
More criteria?	More criteria?

Super-reductibility

Super-reducible criterion in the case of fields

- \mathbf{f} is super reducible modulo \mathbf{g} if $\operatorname{tsig}(\mathbf{g}) \simeq \operatorname{sig}(\mathbf{f})$ and $\operatorname{tlt}(\mathbf{g})=\operatorname{lt}(\mathbf{f})$
- $\mathbf{h}=\mathbf{f}-\operatorname{tg}$ is a singular s-reduction
- If $\mathbf{h} s$-reduces to $0 \bmod \mathcal{G}$, then $\mathbf{f} \mathrm{s}$-reduces to $0 \bmod \mathcal{G}$
- Consequence: we can exclude super-reducible polynomials

Super-reducible criterion in the case of rings

- \mathbf{f} is super reducible modulo \mathbf{g} if $\operatorname{tsig}(\mathbf{g})=\operatorname{sig}(\mathbf{f})$ and $\operatorname{ttt}(\mathbf{g}) \simeq \operatorname{lt}(\mathbf{f})$
- $\mathbf{f}^{\prime}=\mathbf{f}-\mathrm{tg}$ is not a reduction!
- If $\mathbf{f}^{\prime} \mathrm{s}$-reduces to $0 \bmod \mathcal{G}$ and G-pols of \mathcal{G} s-reduce to 0 , then $\mathbf{f} \mathrm{s}$-reduces to $0 \bmod \mathcal{G}$
- Consequence: we can exclude super-reducible S-polynomials

Cover property

Definition: cover property in the case of fields

The pair $\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)$ is covered by $\mathbf{g} \in \mathcal{G} \cup \mathcal{G}_{z}$ if:

- there exists a term t such that $\operatorname{sig}\left(\mathrm{S}-\operatorname{Pol}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)\right)=\operatorname{tsig}(\mathbf{g})$
- $\operatorname{tlt}(\mathbf{g})<\operatorname{lcm} \operatorname{lm}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)$ (with $\operatorname{lt}(\mathbf{g})=0$ if syzygy)

Cover property

Definition: cover property in the case of fields

The pair $\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)$ is covered by $\mathbf{g} \in \mathcal{G} \cup \mathcal{G}_{z}$ if:

- there exists a term t such that $\operatorname{sig}\left(\mathrm{S}-\operatorname{Pol}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)\right)=t \operatorname{sig}(\mathbf{g})$
- $\operatorname{tlt}(\mathbf{g})<\operatorname{lcmlm}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)$ (with $\operatorname{lt}(\mathbf{g})=0$ if syzygy)

Definition: cover property in the case of rings
The pair ($\mathbf{f}_{1}, \mathbf{f}_{2}$) is covered by $\mathbf{g} \in \mathcal{G}$ and $\mathbf{z} \in \mathcal{G}_{z}$ if:

- there exist terms t_{g}, t_{z} such that $\operatorname{sig}\left(\mathrm{S}-\operatorname{Pol}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)\right)=t_{g} \operatorname{sig}(\mathbf{g})+t_{z} \operatorname{sig}(\mathbf{z})$
- $t_{g} \operatorname{lt}(\mathbf{g})<\operatorname{lcmlm}\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right)$

Correctness criterion with the cover property

Reminder: general criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature \mathbf{e}_{i} in $\mathcal{G} \cup \mathcal{G}_{z}$
- all regular S-pols of \mathcal{G} s-reduce to $0 \bmod \mathcal{G}$
- if those reductions are regular, their result is sig-reducible mod \mathcal{G}_{z}
- all G-pols of \mathcal{G} are s-reducible $\bmod \mathcal{G}$
- all G-pols of \mathcal{G}_{z} are sig-reducible $\bmod \mathcal{G}_{z}$

Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_{z} is a sig-basis of syzygies.

Correctness criterion with the cover property

Theorem: cover criterion for correctness
Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_{z} \subset \operatorname{Syz}(I)$ be such that:

- for all i, there is an element with signature $\mathbf{e}_{\boldsymbol{i}}$ in $\mathcal{G} \cup \mathcal{G}_{z}$
- all regular S-pols of \mathcal{G} are covered by a pair of $\mathcal{G}, \mathcal{G}_{z}$
- all G-pols of \mathcal{G} are s-reducible modulo \mathcal{G}
- all G-pols of \mathcal{G}_{z} are sig-reducible $\bmod \mathcal{G}_{z}$

Then \mathcal{G} is a SGB and \mathcal{G}_{z} is a sig-basis of syzygies.

This criterion is convenient...

- in practice, because it allows to eliminate many elements
- in theory, because it allows for a simpler proof of correctness

But it requires that all regular S-pols of \mathcal{G} be covered, which Pan/Lichtblau a priori cannot enforce.

Quantitative comparison between the algorithms

System	Algorithm	Total pairs	Reduced	To zero	Time (s)
Katsura-4	Kandri-Rody, Kapur	420	188	0	1.35
	Pan/Lichtblau	855	412	0	1.6
Katsura-5	Kandri-Rody, Kapur	248	723	0	32.40
	Pan/Lichtblau	7178	3983	0	79.87
Cyclic-5	Kandri-Rody, Kapur	221	63	0	0.37
	Pan/Lichtblau	347	158	0	0.71
Cyclic-6	Kandri-Rody, Kapur	3019	742	8	200.33
	Pan/Lichtblau	9672	5782	8	616.82

- Toy implementation of both algorithms in Magma
- Available at https://gitlab.com/thibaut.verron/signature-groebner-rings
- Kandri-Rody and Kapur is almost always more efficient than Pan/Lichtblau
- It is not due to the lack of cover criterion

Indicative timings

Operations

- Gröbner basis: signatures (Kandri-Rody and Kapur) vs Magma’s GroebnerBasis (F4)
- GB with coefs.: signature reconstruction vs Magma's IdealWithFixedBasis (F4 + tracking)
- Basis of syzygy module: signature reconstruction vs Magma’s SyzygyMatrix (module GB)

System	S-GB (s)	Recons. (s)	Total (s)	GB (s)	GB + coefs (s)	Syz. basis (s)
Cyclic-5	0.4	0.1	$\mathbf{0 . 5}$	0.01	$\mathbf{9 5 4 . 6}$	$\mathbf{9 5 4 . 8}$
Cyclic-6	200.3	10.6	$\mathbf{2 1 0 . 9}$	2.08	$\mathbf{~ 2 4 h}$	>24h

Conclusion of part 1

This work

- Two signature-based algorithms for PID's following closely Buchberger's algorithm
- Compatible with powerful criteria such as super-reducibility and the cover criterion
- Additional criteria and optimizations are available (coprime criterion, Gebauer-Möller criteria, coefficient reductions...)
- Toy implementation in Magma

Future directions

- Linear algebra algorithms à la F4
- Improve implementation
- Extend use of signature bases

More details and references

- Francis and Verron, On Two Signature Variants Of Buchberger's Algorithm Over Principal Ideal Domains, ISSAC 2021

Part 2: signature Gröbner bases in the free algebra

Joint work with Clemens Hofstadler

Non-commutative Gröbner bases

Context:

- R field
- $A=R\left\langle X_{1}, \ldots, X_{n}\right\rangle$ free algebra over R
- Monomials are words $X_{i_{1}} X_{i_{2}} \cdots X_{i_{d}}$

Gröbner bases:

- Monomial ordering and reduction are defined as usual
- Gröbner bases are defined as usual

Particularity:

- The free algebra is not Noetherian
- Most ideals do not admit a finite Gröbner basis
- It is not decidable whether an ideal admits a finite Gröbner basis

Non-commutative Buchberger's algorithm

1. Selection: fair selection strategy
2. Construction: S-polynomials
3. Reduction

Constructions in the non-commutative case

Several ways to make S-polynomials

- Overlap ambiguity

$$
\operatorname{SPol}(f, g)=f \square-\square g
$$

- Inclusion ambiguity

$$
\begin{array}{ll}
f= & +\cdots \\
g= & +\cdots
\end{array}
$$

$$
\operatorname{SPol}(f, g)=\square f \square-g
$$

Constructions in the non-commutative case

Several ways to make S-polynomials

- Overlap ambiguity

$$
\begin{array}{ll}
f= & +\cdots \\
g= & +\cdots
\end{array}
$$

$$
\operatorname{SPol}(f, g)=f \square-\square g
$$

- Inclusion ambiguity

$\operatorname{SPol}(f, g)=\square f \square-g$

Remarks:

- The combination need not be minimal, and S-polynomials are not unique!
- xyxy has an (overlap) ambiguity with itself:
- xxyx and $x y$ have two ambiguities:

- Two polynomials can only give rise to finitely many S-polynomials
- It is required that the central part is non-trivial (coprime criterion)

Non-commutative Buchberger's algorithm

1. Selection: fair selection strategy "Every S-polynomial is selected eventually."
2. Construction: S-polynomials
3. Reduction

Signatures for non-commutative polynomials

Setting:

- Bimodule $M=A \mathbf{e}_{1} A \oplus \cdots \oplus A \mathbf{e}_{m} A$ with the usual morphism $M \rightarrow A$ with image I
- Equipped with a module monomial ordering
- We require the ordering to be fair (isomorphic to \mathbb{N})
- Signature of $\mathbf{f}=$ leading monomial of the module part of \mathbf{f}
- Regular and singular operations are defined as before

Non-commutative Buchberger's algorithm with signatures

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials
3. Reduction (regular)

Termination

Question 1: does the algorithm terminate?

- Of course not, because some ideals do not have a finite Gröbner basis.

Termination

Question 1: does the algorithm terminate?

- Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if $n>1$ (non-commutative) and $m>1$ (non-principal)

Termination: trivial syzygies

Question 1: does the algorithm terminate?

- Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if $n>1$ (non-commutative) and $m>1$ (non-principal)

Obstruction: trivial syzygies!

- Syzygies of the form $\mathbf{f} \square g-f \square \mathbf{g}$ for any monomial \square
- Signature: $\max (\operatorname{sig}(\mathbf{f}) \square \operatorname{lm}(g), \operatorname{lm}(f) \square \operatorname{sig}(\mathbf{g}))$
- Because \square is put in the middle, there is no reason to expect this set to be finitely generated!

Termination: trivial syzygies and how to find them

Question 1: does the algorithm terminate?

- Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if $n>1$ (non-commutative) and $m>1$ (non-principal)

Obstruction: trivial syzygies!

- Syzygies of the form $\mathbf{f} \square g-f \square \mathbf{g}$ for any monomial \square
- Signature: $\max (\operatorname{sig}(\mathbf{f}) \square \operatorname{lm}(g), \operatorname{lm}(f) \square \operatorname{sig}(\mathbf{g}))$
- Because \square is put in the middle, there is no reason to expect this set to be finitely generated!

Solution: signatures!

- Identifying trivial syzygies is what signatures were made for! (F5 criterion)
- In the commutative case, this is an optimization
- In the non-commutative case, it is a requirement

Non-commutative Buchberger's algorithm with signatures

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials which are not eliminated by the F5 criterion
3. Reduction (regular)

What do we get?

Output of the algorithm: a signature Gröbner basis, allowing to recover

- a sig-Gröbner basis \mathcal{G} (with coordinates)
- a set \mathcal{H} of syzygies such that $\mathcal{H} \cup\{$ trivial syzygies of $\mathcal{G}\}$ is a basis of the module of syzygies
- a way to test if any module monomial is the leading term of a syzygy (trivial or not)

Results:

- The algorithm enumerates such a signature Gröbner basis
- The algorithm terminates iff the ideal admits a finite signature Gröbner basis
- This implies that the ideal admits a finite GB and a finite "basis of non-trivial syzygies" \mathcal{H}
- Conjecture: the converse holds

This is the first algorithm producing an effective representation of some modules of syzygies in the free algebra!

Implementation

What we have

- Toy implementation in Mathematica
- Part of the package OperatorGB, available at https://clemenshofstadler.com/software/
- Too slow to report on timings

Particularity

- The F5 criterion is necessary to maximize the chances of the algorithm terminating
- The PoT ordering is not fair
- The F5 criterion is expensive! (quadratic in the size of \mathcal{G})

Conclusion of part 2

This work

- Signature-based algorithm for enumerating signature Gröbner bases in the free algebra
- Terminates whenever a finite signature Gröbner basis exists
- Unlike the commutative case, taking care of trivial syzygies is more than an optimization
- Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

- Improve implementation
- Conjecture on characterization of existence of finite signature Gröbner basis
- Free algebra over \mathbb{Z} ? (worse than the worst of both worlds)
- Application to the computation of short representations
- Computations in quotients of the algebra

More details and references

- Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra, ArXiV:2107.14675

