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Grobner bases

Grobner bases for commutative polynomials over fields:
» solving equations (parametrization, elimination, dimension of the solutions...)
» simplifications, reductions, computations in modules
» with signatures: optimization, computation of syzygies and cofactors

This talk: two generalizations of signatures
» Grobner bases over Z
» Grobner bases on the free algebra

Notations:
» Rring or field
» Commutative polynomial algebra: A = R[X1, ..., Xn] with @ monomial order <
» Commutative monomial: X3 = X" ... X"
» Free algebra: A = R(Xs,...,Xn) with @ monomial order <
» Noncommutative monomial (word): X; X;, - - - X;,
t(f)
f= ¢ - X* + smallerterms

le(f)  Im(f)



Buchberger's algorithm (R is a field)
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1. Selection: different strategies
lemlt(gi,g;) ~ leml(g;,g;)

2. Construction: S-polynomials: S-Pol(g;, g;) = it(0)) gi it(g) g;

3. Reduction: if lt(f) =tlt(g),f —f —tg



Reminder on signature Grobner basis algorithms

Setting:
» Given fi,...,fm € A= R[X] generating the ideal |
» A-module A™ = Ae @ - - - ® Aem with a A-morphism 7 : A™ — |, e; — f;
» A-module Z = {(f,n(f)) : p€ A"} C A" x|
» T is isomorphic to A™, we use the same notation: if f = = (f), f = (f,f) = fIfl

Signatures:
» Assign a monomial ordering on A™ (compatible with that on A)
» Signature of f: sig(f) = leading monomial of f € A™ for that ordering
» We use sig for the leading monomial of the module part
» We keep using lt, etc. for the leading term of the polynomial part: lt(f) = lt(f)

Regular operations
» If sig(f) > sig(g), f — g is a regular operation (the signature is preserved)
» If sig(f) = sig(g), f — g is a singular operation (the signature may drop)



Buchberger's algorithm, with signatures (Ris a field)

(81,f1),. EEK) (em7fm)

L> S-Grobner basis

Basis of syzygies

1. Selection: non-decreasing signatures

(S|g(g,),g,)
/\ New polynomial
®\/ from pair @

(sig(g), ;)

Reduction (3)

lemlt(g;, §;) lemlt(gi, g)

2. Construction: regular S-polynomials: S-Pol(g;, g;) = g —

t(g) lt(g) ~

3. Reduction: regular s-reductions: if lt(f) = tlt(g) and tsig(g) < sig(f) ,f — f —tg



Part 1: signature Grobner bases over Z

Joint work with Maria Francis

(Indian Institute of Technology Hyderabad)



Summary of Grobner basis algorithms over rings

Two questions:
» How to compute S-polynomials?
» How to compute reductions?

Buchberger (1965)
Faugére: F4 (1999)
Field 5

Usual // Usual
Usual // Usual (linear algebra)
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Signatures over Z

Definition
» Over fields: signature of f = leading monomial of the module part of f

= monomial me; in A™ such that f = cmf; + “smaller” terms
» In that case, c does not matter!
» Over rings, we cannot divide by ¢ and we need to keep the coefficient in the signature
» The signature of f is cme;

Consequence for operations
» If sig(f) > sig(g), f — g is a regular operation (the signature is preserved)
» If sig(f) = sig(g), f — g is a singular operation (the signature does drop)
» If sig(f) ~ sig(g) with different coefficients, f — g has signature sig(f) — sig(g)

Main question: how to order the signatures with their coefficients?
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Summary of Grobner basis algorithms over rings with signatures

Three questions:
» How to compute S-polynomials?
» How to compute reductions?

Case of fields: partial order is enough
[Eder, Pfister, Popescu 2017]: cannot order coefs

» How to order signatures? [Francis, V. 2018]: partial order is enough

Buchberger (1965) — B. with sig.
Faugere: F4 (1999) — F5 (2002)
Field :

Kandri-Rody, Kapur (1988)
Lichtblau (2012)

Moller weak with sig (2018)

Moller strong (1988)— with sig (2019)
Kandri-Rody, Kapur (1988)
Pan (1989)

Euclidean ring

Principal ideal domain

Usual // Usual
Usual // Usual (linear algebra)

Usual and G-pols // Usual
Usual or G-pols // Usual

Usual // Usual with G-pol
Usual and G-pols // Usual
Usual or G-pols // Usual

General (Noetherian) ring Moller weak (1988) Multiple // Multiple

This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau



What are G-polynomials?

Example: f =3x,9 =2y, = (f,g)
» Not a strong Grobner basis: xy = yf — xg € I is not reducible by f or g
» Adding S-Pol(f, g) = 0 does not help

» G-Pol(f,g) = xy



What are G-polynomials?

Example: f =3x,9 =2y, = (f,g)
» Not a strong Grobner basis: xy = yf — xg € I is not reducible by f or g
» Adding S-Pol(f, g) = 0 does not help

» G-Pol(f,g) = xy

Definition
f,g € 7, u,v Bézout coefficients for lc(f), lc(g)

lemIm(f, g)f lemlm(f, g)

» G-Pol(f,g) =u () +v m(e)

Main properties

» lc(G-Pol(f, g)) = gcdlc(f, 8)
> If lt(F) = t11t(g1) + talt(g2), then f is reducible by G-Pol(g1, 8,)
» One can always choose u, v such that

lemlm(f, g) .

lemlm(f, 8)
Im() sig(f),

tm(g)

sig(G-Pol(f, g)) ~ max( sig(g))



Kandri-Rody and Kapur's algorithm (Ris aPID)
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Reduction (3)

1. Selection: different strategies
2. Construction: S-polynomial

and G-polynomial if lc(g;) and lc(g;) do not divide each other
3. Reduction



G-polynomials for syzygies

Need a similar construction to capture all possible combinations of syzygy signatures.

Definition
21,2, € Syz(Z) with sig(z;) = a;me;; u, v Bézout coefficients for a, a;

lem(mq, m
v (ma, z)z2
my

lcm(m1,m2)z1 i
m

» G-Pol(z1,z) =u

Main properties

> sig(G-Pol(z1,2;)) = ged(as, az)lem(mq, my)e;
» If sig(f) = tysig(z1) + t2sig(22), then f is sig-reducible by G-Pol(z;,2;)
» No need to be careful about the choice of u,v



Kandri-Rody and Kapur’s algorithm, with signatures (Ris aPID)

(e17f‘|),~--7(em7fm) (Slg(g,),g,)

k} S-Grébner basis () New polynomial )

\—/ from pair

(sig(g)), g;)

#0
Basis of syzygies — L \/\/\/\/\,—D

Reduction (3)

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomial

and G-polynomial if lc(g;) and lc(g;) do not divide each other
3. Reduction: regular



Pan/Lichtblau’s algorithm (Ris a PID)

fi,- s fm gi

k, Grébner basis (1) e EL @

\—/ from pair

9

Reduction (3)

1. Selection: different strategies
2. Construction: S-polynomial if one of lc(g;) and lc(g;) divides the other

or G-polynomial if lc(g;) and lc(g;) do not divide each other
3. Reduction



Why does it work?
Idea:
» Letf and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, g)

» How to recover S-Pol(f,g) = guf - gug?
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Pan/Lichtblau’s algorithm, with signatures (Ris a PID)
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=0 .
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Why does it work?
Idea:
» Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, 8)

» How to recover S-Pol(f,g) = gﬂf — %ug?

» The algorithm computes h = G-Pol(f, 8) = uuf + vvg, with lc(h) = d
» lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(f, h) = uf — gh

_(17E> f,ﬂ
= q ) - e

—Q f—ﬂu
=g ge

= vS-Pol(f, 8)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

Idea: . .
sig.s t  with us > vt

» Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, 8)

» How to recover S-Pol(f,g) = g'“f — %ug?

» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with lc(h) = d
» lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(f, h) = uf — %h

_(17E> f,ﬂ
= q ) - e

—Q f—ﬂu
=g ge

= vS-Pol(f, 8)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

Idea: . .
sig.s t  with us > vt

» Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, 8)

» How to recover S-Pol(f,g) = gp,f — %ug? Regular, sig. ~ us

» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with lc(h) = d
» lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(f, h) = uf — %h

_(17E> f,ﬂ
= q ) - e

—Q f—ﬂu
=g ge

= vS-Pol(f, 8)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

Idea: . .
sig.s t  with us > vt

» Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, 8)
» How to recover S-Pol(f,g) = gp,f — %ug? Regular, sig. ~ us

sig. ~ us
» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with lc(h) = d
» lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(f, h) = uf — %h

_(17E> f,ﬂ
= q ) - e

—Q f—ﬂu
=g ge

= vS-Pol(f, 8)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

Idea: . .
sig.s t  with us > vt

» Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, 8)
» How to recover S-Pol(f,g) = gp,f — %ug? Regular, sig. ~ us

sig. ~ us
» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with lc(h) = d
» lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

~us ~pus  notregular
S-Pol(f, h) = uf — gh

_(17E> f,ﬂ
= q ) - e

—Q f—ﬂu
=g ge

= vS-Pol(f, 8)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?
Idea: . .
sig.s t  with us > vt
» Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, 8)
» How to recover S-Pol(f,g) = gp,f — %ug? Regular, sig. ~ us

sig. ~ us
» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with lc(h) = d
» lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

~us ~pus  notregular

S-Pol(f, h) = uf — %h

_(17E> f,ﬂ
= q ) - e

av
L
att T g

= vS-Pol(f, 8)

S-Pol(g, h) = uS-Pol(f, g)

Consequence: we need to allow all non-singular S-polynomials



Pan/Lichtblau’s algorithm, with signatures (Ris a PID)
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Comparison of the algorithms

Theorem: criterion for correctness
Let G C 7 and G; C Syz(l) be such that:
» foralli, there is an element with signature e; in G U G, “Correct ideal’
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Comparison of the algorithms

Theorem: criterion for correctness
Let G C 7 and G; C Syz(l) be such that:

» foralli, there is an element with signature e; in G U G, “Correct ideal”
» all regular S-pols of G s-reduce to 0 mod G “Grobner basis”
» if those reductions are regular, their result is sig-reducible mod G, “Basis of syzygies”

» all G-pols of G are s-reducible mod G
» all G-pols of G; are sig-reducible mod G,
Then G is a sig-Grobner basis and G; is a sig-basis of syzygies.

“Sufficiently many G-pols”

Kandri-Rody, Kapur Pan/Lichtblau
S-pol if regular S-pol if non-singular and lc divides
G-pol if lc does not divide G-pol if lc does not divide
Regular reductions Regular reductions

More criteria? More criteria?



Super-reductibility

Super-reducible criterion in the case of fields

» fis super reducible modulo g if tsig(g) ~ sig(f) and tlt(g) = lt(f)
» h=f —tgisasingular s-reduction

» If h s-reduces to 0 mod G, then f s-reduces to 0 mod G

» Consequence: we can exclude super-reducible polynomials

Super-reducible criterion in the case of rings

» fis super reducible modulo g if tsig(g) = sig(f) and tlt(g) ~ lt(f)
» f’ =f — tg is not a reduction!

» If f’ s-reduces to 0 mod G and G-pols of G s-reduce to 0, then f s-reduces to 0 mod G
» Consequence: we can exclude super-reducible S-polynomials



Cover property

Definition: cover property in the case of fields

The pair (fy,f,) is covered by g € G U G; if:
» there exists a term t such that sig(S-Pol(f,f;)) = tsig(g)
> tlt(g) < lemlm(fy, f2) (with lt(g) = 0 if syzygy)



Cover property

Definition: cover property in the case of fields
The pair (fy,f,) is covered by g € G U G; if:
» there exists a term t such that sig(S-Pol(f,f;)) = tsig(g)
> tlt(g) < lemlm(fy, f2) (with lt(g) = 0 if syzygy)

Definition: cover property in the case of rings

The pair (f;, ;) is covered by g € Gand z € G; if:
» there exist terms tg, t; such that sig(S-Pol(fi, f,)) = tgsig(g) + t-sig(z)
> tlt(g) < lemim(fy, f)



Correctness criterion with the cover property

Reminder: general criterion for correctness

Let G C Z and G; C Syz(l) be such that:
» foralli, there is an element with signature e; in G U G,
» all regular S-pols of G s-reduce to 0 mod G
» if those reductions are regular, their result is sig-reducible mod G,
» all G-pols of G are s-reducible mod G
» all G-pols of G; are sig-reducible mod G,
Then G is a sig-Grobner basis and G; is a sig-basis of syzygies.



Correctness criterion with the cover property

Theorem: cover criterion for correctness
Let G C 7 and G; C Syz(!) be such that:
» for alli, there is an element with signature e; in G U G,
» all regular S-pols of G are covered by a pair of G, G,
» all G-pols of G are s-reducible modulo G
» all G-pols of G, are sig-reducible mod G,
Then G is a SGB and G; is a sig-basis of syzygies.

This criterion is convenient...
» in practice, because it allows to eliminate many elements
» in theory, because it allows for a simpler proof of correctness

But it requires that all regular S-pols of G be covered, which Pan/Lichtblau a priori cannot
enforce.



Quantitative comparison between the algorithms

System Algorithm Total pairs Reduced Tozero Time (s)
Katsura-4 | Kandri-Rody, Kapur 420 188 0 1.35
Pan/Lichtblau 855 412 0 1.6
Katsura-5 | Kandri-Rody, Kapur 248 723 0 32.40
Pan/Lichtblau 7178 3983 0 79.87
Cyclic-5 Kandri-Rody, Kapur 221 63 0 0.37
Pan/Lichtblau 347 158 0 0.71
Cyclic-6 Kandri-Rody, Kapur 3019 742 8 200.33
Pan/Lichtblau 9672 5782 8 616.82

Toy implementation of both algorithms in Magma

Available at https://gitlab.com/thibaut.verron/signature-groebner-rings
Kandri-Rody and Kapur is almost always more efficient than Pan/Lichtblau

It is not due to the lack of cover criterion

vV vV VY


https://gitlab.com/thibaut.verron/signature-groebner-rings

Indicative timings

Operations
» Grobner basis: signatures (Kandri-Rody and Kapur) vs Magma's GroebnerBasis (F4)
» GB with coefs.: signature reconstruction vs Magma’s IdealWithFixedBasis (F4 + tracking)
» Basis of syzygy module: signature reconstruction vs Magma'’s SyzygyMatrix (module GB)

System | S-GB(s) Recons.(s) Total(s) | GB(s) GB+coefs(s) Syz basis (s)
Cyclic-5 0.4 0.1 0.5 0.01 954.6 954.8
Cyclic-6 200.3 10.6 2109 2.08 >24h >24h




Conclusion of part 1

This work
» Two signature-based algorithms for PID’s following closely Buchberger’s algorithm
» Compatible with powerful criteria such as super-reducibility and the cover criterion

» Additional criteria and optimizations are available (coprime criterion, Gebauer-Méller
criteria, coefficient reductions...)

» Toy implementation in Magma

Future directions
» Linear algebra algorithms a la F4
» Improve implementation
» Extend use of signature bases

More details and references

» Francis and Verron, On Two Signature Variants Of Buchberger’s Algorithm Over Principal
Ideal Domains, ISSAC 2021



Part 2: signature Grobner bases in the free algebra

Joint work with Clemens Hofstadler



Non-commutative Grobner bases

Context:
» Rfield
» A= R(Xq,...,Xn) free algebra over R

» Monomials are words X; X;, - - - X;_

Grobner bases:
» Monomial ordering and reduction are defined as usual
» Grobner bases are defined as usual

Particularity:
» The free algebra is not Noetherian
» Most ideals do not admit a finite Grobner basis
» Itis not decidable whether an ideal admits a finite Grobner basis



Non-commutative Buchberger’s algorithm

f'h e ’fm gi
. > New polynomial
k» Grébner basis (1) e\/\]irzrzy:;i:’ma @
9j
£0
1] «—— e—rrrn—
n Reduction (3)

1. Selection: fair selection strategy
2. Construction: S-polynomials
3. Reduction



Constructions in the non-commutative case

Several ways to make S-polynomials
» Overlap ambiguity

f = mm— +o

g=  m—— SPol(f,g) = f e — wmm g

» Inclusion ambiguity

f= [ +o

SPol(f,g) = mmm f mmm —g
g = IEmmmm— -



Constructions in the non-commutative case

Several ways to make S-polynomials
» Overlap ambiguity

f = mm— +o

g=  m—— SPol(f,g) = f e — wmm g

» Inclusion ambiguity

f= [ +o

g = nem— SPol(f,g) = mmm f mem — g

Remarks:
» The combination need not be minimal, and S-polynomials are not unique!
» xyxy has an (overlap) ambiguity with itself: XYXy
Xyxy
» xxyx and xy have two ambiguities: XXY X XXyX
Xy Xy

» Two polynomials can only give rise to finitely many S-polynomials
» It is required that the central part is non-trivial (coprime criterion)



Non-commutative Buchberger’s algorithm

f'ly""fm gi

L Grébner basis (1) Ne\/\]irgz:y:;irrmal @

9

Reduction (3

1. Selection: fair selection strategy “Every S-polynomial is selected eventually.”
2. Construction: S-polynomials
3. Reduction



Signatures for non-commutative polynomials

Setting:
» Bimodule M = AeA @ - - - @ AepA with the usual morphism M — A with image |
» Equipped with a module monomial ordering

We require the ordering to be fair (isomorphic to N)

Signature of f = leading monomial of the module part of f

Regular and singular operations are defined as before

v VY



Non-commutative Buchberger’s algorithm with signatures

(e17f‘|),---a(em,fm) (S|g(gl)7gl)

L» S-Grobner basis @ Nev:rg%ly;:irrmal @

(sig(g)), ;)

Basis of syzygies — 1 N\NANN— ]

Reduction (3)

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials
3. Reduction (regular)



Termination

Question 1: does the algorithm terminate?
» Of course not, because some ideals do not have a finite Grobner basis.



Termination

Question 1: does the algorithm terminate?
» Of course not, because some ideals do not have a finite Grobner basis.

Question 2: okay, but what if they do?
» Still not. In most cases, the module of syzygies does not have a finite Grobner basis
» Conjecture: it's always the case if n > 1(non-commutative) and m > 1 (non-principal)



Termination: trivial syzygies

Question 1: does the algorithm terminate?
» Of course not, because some ideals do not have a finite Grobner basis.

Question 2: okay, but what if they do?
» Still not. In most cases, the module of syzygies does not have a finite Grobner basis
» Conjecture: it's always the case if n > 1(non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!
» Syzygies of the form fl g — f W g for any monomial M
» Signature: max(sig(f) M Im(g), Im(f) M sig(g))
» Because M is putin the middle, there is no reason to expect this set to be finitely generated!



Termination: trivial syzygies and how to find them

Question 1: does the algorithm terminate?
» Of course not, because some ideals do not have a finite Grobner basis.

Question 2: okay, but what if they do?
» Still not. In most cases, the module of syzygies does not have a finite Grobner basis
» Conjecture: it's always the case if n > 1(non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!
» Syzygies of the form fl g — f W g for any monomial M
» Signature: max(sig(f) M Im(g), Im(f) M sig(g))
» Because M is putin the middle, there is no reason to expect this set to be finitely generated!

Solution: signatures!
» Identifying trivial syzygies is what signatures were made for! (F5 criterion)
» In the commutative case, this is an optimization
» In the non-commutative case, it is a requirement



Non-commutative Buchberger’s algorithm with signatures

(e17f‘|),---a(em,fm) (S|g(gl)7gl)

k» S-Grobner basis @ Nev:rg%ly;:irrmal @

(sig(g)), gj)

Basis of syzygies — L1 NANNN—] ]

Reduction (3)

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials which are not eliminated by the F5 criterion
3. Reduction (regular)



What do we get?

Output of the algorithm: a signature Grobner basis, allowing to recover
» a sig-Grobner basis G (with coordinates)
» aset H of syzygies such that H U {trivial syzygies of G} is a basis of the module of syzygies
» a way to test if any module monomial is the leading term of a syzygy (trivial or not)

Results:
» The algorithm enumerates such a signature Grobner basis
» The algorithm terminates iff the ideal admits a finite signature Grobner basis
» This implies that the ideal admits a finite GB and a finite “basis of non-trivial syzygies” H
» Conjecture: the converse holds

This is the first algorithm producing an effective representation of some modules of syzygies
in the free algebra!



Implementation

What we have
» Toy implementation in Mathematica
» Part of the package OperatorGB, available at https://clemenshofstadler.com/software/
» Too slow to report on timings

Particularity
» The F5 criterion is necessary to maximize the chances of the algorithm terminating
» The PoT ordering is not fair
» The F5 criterion is expensive! (quadratic in the size of G)


https://clemenshofstadler.com/software/

Conclusion of part 2

This work
» Signature-based algorithm for enumerating signature Grobner bases in the free algebra
» Terminates whenever a finite signature Grobner basis exists
» Unlike the commutative case, taking care of trivial syzygies is more than an optimization
» Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

Improve implementation

Conjecture on characterization of existence of finite signature Grobner basis
Free algebra over Z? (worse than the worst of both worlds)

Application to the computation of short representations

Computations in quotients of the algebra

vV VY vV VY

More details and references

» Hofstadler and Verron, Signature Grobner bases, bases of syzygies and cofactor
reconstruction in the free algebra, ArXiV:2107.14675
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