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Gröbner bases

Gröbner bases for commutative polynomials over fields:
I solving equations (parametrization, elimination, dimension of the solutions...)
I simplifications, reductions, computations in modules
I with signatures: optimization, computation of syzygies and cofactors

This talk: two generalizations of signatures
I Gröbner bases over Z
I Gröbner bases on the free algebra

Notations:
I R ring or field
I Commutative polynomial algebra: A = R[X1, . . . , Xn] with a monomial order <
I Commutative monomial: Xa = Xa11 · · · X

an
n

I Free algebra: A = R〈X1, . . . , Xn〉 with a monomial order <
I Noncommutative monomial (word): Xi1Xi2 · · · Xid

f = c · Xa + smaller terms
lm(f )

lt(f)

lc(f)
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Buchberger’s algorithm (R is a field)

Gröbner basis

f1, . . . , fm

New polynomial
from pair

Reduction

6=0

1 =0

1 2

3

gi

gj

1. Selection: di�erent strategies

2. Construction: S-polynomials: S-Pol(gi, gj) =
lcmlt(gi, gj)

lt(gi)
gi −

lcmlt(gi, gj)
lt(gj)

gj

3. Reduction: if lt(f ) = tlt(g) , f → f − tg
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Reminder on signature Gröbner basis algorithms

Setting:
I Given f1, . . . , fm ∈ A = R[X] generating the ideal I
I A-module Am = Ae1 ⊕ · · · ⊕ Aem with a A-morphism π : Am → I, ei 7→ fi
I A-module I = {(f, π(f)) : p ∈ Am} ⊆ Am × I
I I is isomorphic to Am, we use the same notation: if f = π(f), f ≡ (f, f) ≡ f [f]

Signatures:
I Assign a monomial ordering on Am (compatible with that on A)
I Signature of f : sig(f) = leading monomial of f ∈ Am for that ordering
I We use sig for the leading monomial of the module part
I We keep using lt, etc. for the leading term of the polynomial part: lt(f) = lt(f )

Regular operations
I If sig(f) > sig(g), f − g is a regular operation (the signature is preserved)
I If sig(f) = sig(g), f − g is a singular operation (the signature may drop)
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Buchberger’s algorithm, with signatures (R is a field)

S-Gröbner basis

(e1, f1), . . . , (em, fm)

New polynomial
from pair

Reduction

6=0
Basis of syzygies

=0

1 2

3

(sig(gi), gi)

(sig(gj), gj)

1. Selection: non-decreasing signatures

2. Construction: regular S-polynomials: S-Pol(gi, gj) =
lcmlt(gi, gj)

lt(gi)
gi −

lcmlt(gi, gj)
lt(gj)

gj

3. Reduction: regular s-reductions: if lt(f) = tlt(g) and tsig(g) ň sig(f) , f → f − tg



Part 1: signature Gröbner bases over Z

Joint work with Maria Francis

(Indian Institute of Technology Hyderabad)
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Summary of Gröbner basis algorithms over rings

Two questions:
I How to compute S-polynomials?
I How to compute reductions?

I How to order signatures?

Field

Euclidean ring

Principal ideal domain

General (Noetherian) ring

Buchberger (1965)
Faugère: F4 (1999)

...

Kandri-Rody, Kapur (1988)
Lichtblau (2012)

Möller strong (1988)

Kandri-Rody, Kapur (1988)

Pan (1989)

Möller weak (1988)

Möller weak with sig (2018)

Usual and G-pols // Usual

Usual and G-pols // Usual

Usual or G-pols // Usual

Multiple // Multiple

Usual // Usual with G-pol

Usual or G-pols // Usual

Usual // Usual
Usual // Usual (linear algebra)

This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau
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Signatures over Z

Definition
I Over fields: signature of f = leading monomial of the module part of f

= monomial mei in Am such that f = cmfi + “smaller” terms
I In that case, c does not matter!
I Over rings, we cannot divide by c and we need to keep the coe�cient in the signature
I The signature of f is cmei

Consequence for operations
I If sig(f) > sig(g), f − g is a regular operation (the signature is preserved)
I If sig(f) = sig(g), f − g is a singular operation (the signature does drop)
I If sig(f) ' sig(g) with di�erent coe�cients, f − g has signature sig(f)− sig(g)

Main question: how to order the signatures with their coe�cients?
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Summary of Gröbner basis algorithms over rings with signatures

Three questions:
I How to compute S-polynomials?
I How to compute reductions?
I How to order signatures?

Case of fields: partial order is enough

[Eder, Pfister, Popescu 2017]: cannot order coefs
[Francis, V. 2018]: partial order is enough

Field

Euclidean ring

Principal ideal domain

General (Noetherian) ring

Buchberger (1965)→ B. with sig.
Faugère: F4 (1999)→ F5 (2002)

...

Kandri-Rody, Kapur (1988)
Lichtblau (2012)

Möller strong (1988)
Kandri-Rody, Kapur (1988)

Pan (1989)

Möller weak (1988)

Möller weak with sig (2018)

Usual and G-pols // Usual

Usual and G-pols // Usual

Usual or G-pols // Usual

Multiple // Multiple

Usual // Usual with G-pol

Usual or G-pols // Usual

Usual // Usual
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This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau
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What are G-polynomials?

Example: f = 3x, g = 2y, I = 〈f , g〉
I Not a strong Gröbner basis: xy = yf − xg ∈ I is not reducible by f or g
I Adding S-Pol(f , g) = 0 does not help
I G-Pol(f , g) = xy

Definition
f, g ∈ I, u, v Bézout coe�cients for lc(f), lc(g)

I G-Pol(f, g) = u lcmlm(f, g)
lm(f)

f + v lcmlm(f, g)
lm(g)

g

Main properties

I lc(G-Pol(f, g)) = gcdlc(f, g)
I If lt(f) = t1lt(g1) + t2lt(g2), then f is reducible by G-Pol(g1, g2)
I One can always choose u, v such that

sig(G-Pol(f, g)) ' max(
lcmlm(f, g)

lm(f)
sig(f), lcmlm(f, g)

lm(g)
sig(g))
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Kandri-Rody and Kapur’s algorithm (R is a PID)

Gröbner basis

f1, . . . , fm

New polynomial
from pair

Reduction

6=0

1 =0

1 2

3

gi

gj

1. Selection: di�erent strategies
2. Construction: S-polynomial

and G-polynomial if lc(gi) and lc(gj) do not divide each other
3. Reduction
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G-polynomials for syzygies

Need a similar construction to capture all possible combinations of syzygy signatures.

Definition
z1, z2 ∈ Syz(I) with sig(zi) = aimiej; u, v Bézout coe�cients for a1, a2

I G-Pol(z1, z2) = u lcm(m1,m2)

m1
z1 + v lcm(m1,m2)

m2
z2

Main properties

I sig(G-Pol(z1, z2)) = gcd(a1, a2)lcm(m1,m2)ej
I If sig(f) = t1sig(z1) + t2sig(z2), then f is sig-reducible by G-Pol(z1, z2)
I No need to be careful about the choice of u, v



13

Kandri-Rody and Kapur’s algorithm, with signatures (R is a PID)

S-Gröbner basis

(e1, f1), . . . , (em, fm)

New polynomial
from pair

Reduction

6=0
Basis of syzygies

=0

1 2

3

(sig(gi), gi)

(sig(gj), gj)

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomial

and G-polynomial if lc(gi) and lc(gj) do not divide each other
3. Reduction: regular
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Pan/Lichtblau’s algorithm (R is a PID)

Gröbner basis

f1, . . . , fm

New polynomial
from pair

Reduction

6=0

1 =0

1 2

3

gi

gj

1. Selection: di�erent strategies
2. Construction: S-polynomial if one of lc(gi) and lc(gj) divides the other

or G-polynomial if lc(gi) and lc(gj) do not divide each other
3. Reduction
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Why does it work?
Idea:

I Let f and g with a = lc(f ) and b = lc(g) not dividing each other, let d = gcdlc(f , g)

I How to recover S-Pol(f , g) = b
d
µf − a

d
νg?

I The algorithm computes h = G-Pol(f , g) = uµf + vνg, with lc(h) = d
I lc(h) divides both lc(f ) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(f , h) = µf − a
d
h

=

(
1− ua

d

)
µf − av

d
µg

=
vb
d
µf − av

d
νg

= vS-Pol(f , g)

S-Pol(g, h) = uS-Pol(f , g)

Consequence: we need to allow all non-singular S-polynomials
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Pan/Lichtblau’s algorithm, with signatures (R is a PID)

S-Gröbner basis

(e1, f1), . . . , (em, fm)

New polynomial
from pair

Reduction

6=0
Basis of syzygies

=0

1 2

3

(sig(gi), gi)

(sig(gj), gj)

1. Selection: non-decreasing signatures
2. Construction: non-singular S-polynomial if one of lc(gi) and lc(gj) divides the other

or G-polynomial if lc(gi) and lc(gj) do not divide each other
3. Reduction: regular
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Pan/Lichtblau’s algorithm, with signatures (R is a PID)

S-Gröbner basis

(e1, f1), . . . , (em, fm)

New polynomial
from pair

Reduction

6=0
Basis of syzygies

=0

1 2

3

(sig(gi), gi)

(sig(gj), gj)

1. Selection: non-decreasing signatures
2. Construction: non-singular S-polynomial if one of lc(gi) and lc(gj) divides the other

or G-polynomial if lc(gi) and lc(gj) do not divide each other
3. Reduction: regular
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Comparison of the algorithms

Theorem: criterion for correctness
Let G ⊂ I and Gz ⊂ Syz(I) be such that:
I for all i, there is an element with signature ei in G ∪ Gz

I all regular S-pols of G s-reduce to 0 mod G
I if those reductions are regular, their result is sig-reducible mod Gz
I all G-pols of G are s-reducible mod G
I all G-pols of Gz are sig-reducible mod Gz

Then G is a sig-Gröbner basis and Gz is a sig-basis of syzygies.

“Correct ideal”
“Gröbner basis”

“Basis of syzygies”

“Su�ciently many G-pols”

Kandri-Rody, Kapur Pan/Lichtblau

S-pol if regular S-pol if non-singular and lc divides

G-pol if lc does not divide G-pol if lc does not divide

Regular reductions Regular reductions

More criteria? More criteria?
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Super-reductibility

Super-reducible criterion in the case of fields

I f is super reducible modulo g if tsig(g) ' sig(f) and tlt(g) = lt(f)
I h = f − tg is a singular s-reduction
I If h s-reduces to 0 mod G, then f s-reduces to 0 mod G
I Consequence: we can exclude super-reducible polynomials

Super-reducible criterion in the case of rings

I f is super reducible modulo g if tsig(g) = sig(f) and tlt(g) ' lt(f)
I f′ = f − tg is not a reduction!
I If f′ s-reduces to 0 mod G and G-pols of G s-reduce to 0, then f s-reduces to 0 mod G
I Consequence: we can exclude super-reducible S-polynomials



21

Cover property

Definition: cover property in the case of fields
The pair (f1, f2) is covered by g ∈ G ∪ Gz if:
I there exists a term t such that sig(S-Pol(f1, f2)) = tsig(g)
I tlt(g) < lcmlm(f1, f2) (with lt(g) = 0 if syzygy)

Definition: cover property in the case of rings
The pair (f1, f2) is covered by g ∈ G and z ∈ Gz if:
I there exist terms tg, tz such that sig(S-Pol(f1, f2)) = tgsig(g) + tzsig(z)
I tglt(g) < lcmlm(f1, f2)
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Correctness criterion with the cover property

Reminder: general criterion for correctness
Let G ⊂ I and Gz ⊂ Syz(I) be such that:
I for all i, there is an element with signature ei in G ∪ Gz
I all regular S-pols of G s-reduce to 0 mod G
I if those reductions are regular, their result is sig-reducible mod Gz
I all G-pols of G are s-reducible mod G
I all G-pols of Gz are sig-reducible mod Gz

Then G is a sig-Gröbner basis and Gz is a sig-basis of syzygies.
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Correctness criterion with the cover property

Theorem: cover criterion for correctness
Let G ⊂ I and Gz ⊂ Syz(I) be such that:
I for all i, there is an element with signature ei in G ∪ Gz
I all regular S-pols of G are covered by a pair of G, Gz
I all G-pols of G are s-reducible modulo G
I all G-pols of Gz are sig-reducible mod Gz

Then G is a SGB and Gz is a sig-basis of syzygies.

This criterion is convenient...
I in practice, because it allows to eliminate many elements
I in theory, because it allows for a simpler proof of correctness

But it requires that all regular S-pols of G be covered, which Pan/Lichtblau a priori cannot
enforce.
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Quantitative comparison between the algorithms

System Algorithm Total pairs Reduced To zero Time (s)

Katsura-4 Kandri-Rody, Kapur 420 188 0 1.35

Pan/Lichtblau 855 412 0 1.6

Katsura-5 Kandri-Rody, Kapur 248 723 0 32.40

Pan/Lichtblau 7178 3983 0 79.87

Cyclic-5 Kandri-Rody, Kapur 221 63 0 0.37

Pan/Lichtblau 347 158 0 0.71

Cyclic-6 Kandri-Rody, Kapur 3019 742 8 200.33

Pan/Lichtblau 9672 5782 8 616.82

I Toy implementation of both algorithms in Magma
I Available at https://gitlab.com/thibaut.verron/signature-groebner-rings
I Kandri-Rody and Kapur is almost always more e�cient than Pan/Lichtblau
I It is not due to the lack of cover criterion

https://gitlab.com/thibaut.verron/signature-groebner-rings
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Indicative timings

Operations
I Gröbner basis: signatures (Kandri-Rody and Kapur) vs Magma’s GroebnerBasis (F4)
I GB with coefs.: signature reconstruction vs Magma’s IdealWithFixedBasis (F4 + tracking)
I Basis of syzygy module: signature reconstruction vs Magma’s SyzygyMatrix (module GB)

System S-GB (s) Recons. (s) Total (s) GB (s) GB + coefs (s) Syz. basis (s)

Cyclic-5 0.4 0.1 0.5 0.01 954.6 954.8

Cyclic-6 200.3 10.6 210.9 2.08 >24h >24h
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Conclusion of part 1

This work
I Two signature-based algorithms for PID’s following closely Buchberger’s algorithm
I Compatible with powerful criteria such as super-reducibility and the cover criterion
I Additional criteria and optimizations are available (coprime criterion, Gebauer-Möller

criteria, coe�cient reductions...)
I Toy implementation in Magma

Future directions
I Linear algebra algorithms à la F4
I Improve implementation
I Extend use of signature bases

More details and references
I Francis and Verron, On Two Signature Variants Of Buchberger’s Algorithm Over Principal

Ideal Domains, ISSAC 2021



Part 2: signature Gröbner bases in the free algebra

Joint work with Clemens Hofstadler
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Non-commutative Gröbner bases

Context:
I R field
I A = R〈X1, . . . , Xn〉 free algebra over R
I Monomials are words Xi1Xi2 · · · Xid

Gröbner bases:
I Monomial ordering and reduction are defined as usual
I Gröbner bases are defined as usual

Particularity:
I The free algebra is not Noetherian
I Most ideals do not admit a finite Gröbner basis
I It is not decidable whether an ideal admits a finite Gröbner basis
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Non-commutative Buchberger’s algorithm

Gröbner basis

f1, . . . , fm

New polynomial
from pair

Reduction

6=0

1 =0

1 2

3

gi

gj

1. Selection: fair selection strategy
2. Construction: S-polynomials
3. Reduction
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Constructions in the non-commutative case

Several ways to make S-polynomials
I Overlap ambiguity

f =
g = + · · ·

+ · · ·
SPol(f , g) = f − g

I Inclusion ambiguity

g =

f =
+ · · ·
+ · · ·

SPol(f , g) = f − g

Remarks:
I The combination need not be minimal, and S-polynomials are not unique!
I xyxy has an (overlap) ambiguity with itself: xyxy

xyxy
I xxyx and xy have two ambiguities: xxxy

xy
xyx x
xy

I Two polynomials can only give rise to finitely many S-polynomials
I It is required that the central part is non-trivial (coprime criterion)
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Non-commutative Buchberger’s algorithm

Gröbner basis

f1, . . . , fm

New polynomial
from pair

Reduction

6=0

1 =0

1 2

3

gi

gj

1. Selection: fair selection strategy “Every S-polynomial is selected eventually.”
2. Construction: S-polynomials
3. Reduction
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Signatures for non-commutative polynomials

Setting:
I Bimodule M = Ae1A⊕ · · · ⊕ AemA with the usual morphism M→ A with image I
I Equipped with a module monomial ordering
I We require the ordering to be fair (isomorphic to N)
I Signature of f = leading monomial of the module part of f
I Regular and singular operations are defined as before
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Non-commutative Buchberger’s algorithm with signatures

S-Gröbner basis

(e1, f1), . . . , (em, fm)

New polynomial
from pair

Reduction

6=0
Basis of syzygies

=0

1 2

3

(sig(gi), gi)

(sig(gj), gj)

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials
3. Reduction (regular)



33

Termination

Question 1: does the algorithm terminate?
I Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?
I Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
I Conjecture: it’s always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!
I Syzygies of the form f � g− f � g for any monomial �
I Signature: max

(
sig(f)� lm(g), lm(f )� sig(g)

)
I Because � is put in the middle, there is no reason to expect this set to be finitely generated!

Solution: signatures!
I Identifying trivial syzygies is what signatures were made for! (F5 criterion)
I In the commutative case, this is an optimization
I In the non-commutative case, it is a requirement



33

Termination

Question 1: does the algorithm terminate?
I Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?
I Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
I Conjecture: it’s always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!
I Syzygies of the form f � g− f � g for any monomial �
I Signature: max

(
sig(f)� lm(g), lm(f )� sig(g)

)
I Because � is put in the middle, there is no reason to expect this set to be finitely generated!

Solution: signatures!
I Identifying trivial syzygies is what signatures were made for! (F5 criterion)
I In the commutative case, this is an optimization
I In the non-commutative case, it is a requirement



33

Termination: trivial syzygies

Question 1: does the algorithm terminate?
I Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?
I Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
I Conjecture: it’s always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!
I Syzygies of the form f � g− f � g for any monomial �
I Signature: max

(
sig(f)� lm(g), lm(f )� sig(g)

)
I Because � is put in the middle, there is no reason to expect this set to be finitely generated!

Solution: signatures!
I Identifying trivial syzygies is what signatures were made for! (F5 criterion)
I In the commutative case, this is an optimization
I In the non-commutative case, it is a requirement



33

Termination: trivial syzygies and how to find them

Question 1: does the algorithm terminate?
I Of course not, because some ideals do not have a finite Gröbner basis.
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Non-commutative Buchberger’s algorithm with signatures

S-Gröbner basis

(e1, f1), . . . , (em, fm)

New polynomial
from pair

Reduction

6=0
Basis of syzygies

=0

1 2

3

(sig(gi), gi)

(sig(gj), gj)

1. Selection: non-decreasing signatures for a fair ordering
2. Construction: regular S-polynomials which are not eliminated by the F5 criterion
3. Reduction (regular)
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What do we get?

Output of the algorithm: a signature Gröbner basis, allowing to recover
I a sig-Gröbner basis G (with coordinates)
I a setH of syzygies such thatH∪ {trivial syzygies of G} is a basis of the module of syzygies
I a way to test if any module monomial is the leading term of a syzygy (trivial or not)

Results:
I The algorithm enumerates such a signature Gröbner basis
I The algorithm terminates i� the ideal admits a finite signature Gröbner basis
I This implies that the ideal admits a finite GB and a finite “basis of non-trivial syzygies”H
I Conjecture: the converse holds

This is the first algorithm producing an e�ective representation of some modules of syzygies
in the free algebra!
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Implementation

What we have
I Toy implementation in Mathematica
I Part of the package OperatorGB, available at https://clemenshofstadler.com/software/
I Too slow to report on timings

Particularity
I The F5 criterion is necessary to maximize the chances of the algorithm terminating
I The PoT ordering is not fair
I The F5 criterion is expensive! (quadratic in the size of G)

https://clemenshofstadler.com/software/
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Conclusion of part 2

This work
I Signature-based algorithm for enumerating signature Gröbner bases in the free algebra
I Terminates whenever a finite signature Gröbner basis exists
I Unlike the commutative case, taking care of trivial syzygies is more than an optimization
I E�ective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions
I Improve implementation
I Conjecture on characterization of existence of finite signature Gröbner basis
I Free algebra over Z? (worse than the worst of both worlds)
I Application to the computation of short representations
I Computations in quotients of the algebra

More details and references
I Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor

reconstruction in the free algebra, ArXiV:2107.14675
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