Extensions of signature Gröbner bases: rings and the free algebra

Thibaut Verron

Seminar "Algebra and Discrete Mathematics"

Johannes Kepler University

21 October 2021

Gröbner bases

Gröbner bases for commutative polynomials over fields:

- solving equations (parametrization, elimination, dimension of the solutions...)
- simplifications, reductions, computations in modules
- with signatures: optimization, computation of syzygies and cofactors

This talk: two generalizations of signatures

- ▶ Gröbner bases over Z
- Gröbner bases on the free algebra

Notations:

- R ring or field
- Commutative polynomial algebra: $A = R[X_1, ..., X_n]$ with a monomial order <
- Commutative monomial: $\mathbf{X}^{\mathbf{a}} = X_1^{a_1} \cdots X_n^{a_n}$
- Free algebra: $A = R(X_1, \ldots, X_n)$ with a monomial order <
- ► Noncommutative monomial (word): $X_{i_1}X_{i_2}\cdots X_{i_d}$

$$f = \begin{array}{c} lt(f) \\ f = \begin{array}{c} & \mathbf{X}^{\mathbf{a}} \\ lc(f) & lm(f) \end{array} + \text{ smaller terms} \end{array}$$

1. Selection: different strategies

2. Construction: S-polynomials: S-Pol
$$(g_i, g_j) = rac{\mathsf{lcmlt}(g_i, g_j)}{\mathsf{lt}(g_i)}g_i - rac{\mathsf{lcmlt}(g_i, g_j)}{\mathsf{lt}(g_j)}g_j$$

3. **Reduction:** if lt(f) = tlt(g), $f \rightarrow f - tg$

Reminder on signature Gröbner basis algorithms

Setting:

- Given $f_1, \ldots, f_m \in A = R[\mathbf{X}]$ generating the ideal I
- ▶ A-module $A^m = A\mathbf{e}_1 \oplus \cdots \oplus A\mathbf{e}_m$ with a A-morphism $\pi : A^m \to I$, $\mathbf{e}_i \mapsto f_i$
- ► A-module $\mathcal{I} = \{(\mathbf{f}, \pi(\mathbf{f})) : \mathbf{p} \in A^m\} \subseteq A^m \times I$
- \mathcal{I} is isomorphic to A^m , we use the same notation: if $f = \pi(f)$, $\mathbf{f} \equiv (\mathbf{f}, f) \equiv f^{[\mathbf{f}]}$

Signatures:

- Assign a monomial ordering on A^m (compatible with that on A)
- ▶ Signature of **f**: sig(**f**) = leading monomial of $\mathbf{f} \in A^m$ for that ordering
- We use sig for the leading monomial of the **module part**
- We keep using lt, etc. for the leading term of the **polynomial part**: lt(f) = lt(f)

Regular operations

- If $sig(\mathbf{f}) > sig(\mathbf{g})$, $\mathbf{f} \mathbf{g}$ is a regular operation (the signature is preserved)
- If $sig(\mathbf{f}) = sig(\mathbf{g})$, $\mathbf{f} \mathbf{g}$ is a singular operation (the signature may drop)

- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomials: S-Pol($\mathbf{g}_i, \mathbf{g}_j$) = $\frac{\text{lcmlt}(\mathbf{g}_i, \mathbf{g}_j)}{\text{lt}(\mathbf{g}_i)} \mathbf{g}_i \frac{\text{lcmlt}(\mathbf{g}_i, \mathbf{g}_j)}{\text{lt}(\mathbf{g}_i)} \mathbf{g}_j$
- 3. Reduction: regular s-reductions: if $lt(\mathbf{f}) = tlt(\mathbf{g})$ and $tsig(\mathbf{g}) \leq sig(\mathbf{f})$, $\mathbf{f} \rightarrow \mathbf{f} t\mathbf{g}$

Part 1: signature Gröbner bases over $\ensuremath{\mathbb{Z}}$

Joint work with Maria Francis (Indian Institute of Technology Hyderabad)

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

	Buchberger (1965) Faugère: F4 (1999)
Field	÷

Usual // Usual Usual // Usual (linear algebra)

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Buchber Faugère Field	rger (1965) : F4 (1999) :		Usual // Usual Usual // Usual (linear algebra)
	Möller strong (1988)		Usual // Usual with G-pol
Principal ideal domain	Pan (1989)		Usual or G-pols // Usual
General (Noetherian) ring	Möller weak (1988	8)	Multiple // Multiple

Two questions:

- How to compute S-polynomials?
- How to compute reductions?

Buchber Faugère Field	rger (1965) : F4 (1999) :		Usual // Usual Usual // Usual (linear algebra)
Euclidean ring Kandri-R	ody, Kapur (1988) Lichtblau (2012)		Usual and G-pols // Usual Usual or G-pols // Usual
Principal ideal domain Kar	Möller strong (1988) ndri-Rody, Kapur (1988) Pan (1989)		Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring	Möller weak (19	88)	Multiple // Multiple

Definition

Over fields: signature of f = leading monomial of the module part of f

```
= monomial m\mathbf{e}_i in A^m such that f = cmf_i + "smaller" terms
```

- In that case, c does not matter!
- > Over rings, we cannot divide by c and we need to keep the coefficient in the signature
- The signature of f is cme_i

Consequence for operations

- If $sig(\mathbf{f}) > sig(\mathbf{g})$, $\mathbf{f} \mathbf{g}$ is a regular operation (the signature is preserved)
- If $sig(\mathbf{f}) = sig(\mathbf{g})$, $\mathbf{f} \mathbf{g}$ is a singular operation (the signature does drop)
- ▶ If $sig(f) \simeq sig(g)$ with different coefficients, f g has signature sig(f) sig(g)

Main question: how to order the signatures with their coefficients?

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- How to order signatures?

Case of fields: partial order is enough

Buchberger (1965) \rightarrow B. with sig. Faugère: F4 (1999) \rightarrow F5 (2002)		Usual // Usual Usual // Usual (linear algebra)
	(1000)	
Euclidean ring Kandri-Rody, Kapur (1988) Lichtblau (2012)		Usual and G-pols // Usual Usual or G-pols // Usual
Möller : Principal ideal domain Kandri-Rody,	strong (1988) Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring Mö	ller weak (1988)	Multiple // Multiple

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs

Buchberger (1965) → B. with sig Faugère: F4 (1999) → F5 (2002 Field	;;	Usual // Usual Usual // Usual (linear algebra)
Euclidean ring Kandri-Rody, Kapur (1988) Lichtblau (2012)		Usual and G-pols // Usual Usual or G-pols // Usual
Möller Principal ideal domain Kandri-Rody	strong (1988) , Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring M	öller weak (1988)	Multiple // Multiple

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- ► How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs [Francis, V. 2018]: partial order is enough

Buchberger (1965) → B. with sig. Faugère: F4 (1999) → F5 (2002) Field		Usual // Usual Usual // Usual (linear algebra)
Euclidean ring Kandri-Rody, Kapur (1988) Lichtblau (2012)		Usual and G-pols // Usual Usual or G-pols // Usual
Möller weak with sig (2018) Möller strong (1988)→ with sig (2019) Principal ideal domain Pan (1989)		Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring Möller weak (198	38)	Multiple // Multiple

Three questions:

- How to compute S-polynomials?
- How to compute reductions?
- ► How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs [Francis, V. 2018]: partial order is enough

Buchberger (1965) → B. v Faugère: F4 (1999) → F5 Field	vith sig. 5 (2002) :		Usual // Usual Usual // Usual (linear algebra)
Euclidean ring Kandri-Rod	y, Kapur (1988) ichtblau (2012)		Usual and G-pols // Usual Usual or G-pols // Usual
Möller weak with sig (2018)Möller strong (1988)→ with sig (2019)Principal ideal domainKandri-Rody, Kapur (1988)Pan (1989)			Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring	Möller weak (1988	8)	Multiple // Multiple

This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau

What are G-polynomials?

Example: f = 3x, g = 2y, $I = \langle f, g \rangle$

- ▶ Not a strong Gröbner basis: $xy = yf xg \in I$ is not reducible by f or g
- Adding S-Pol(f, g) = 0 does not help
- ▶ G-Pol(f, g) = xy

What are G-polynomials?

Example: f = 3x, g = 2y, $I = \langle f, g \rangle$

- ▶ Not a strong Gröbner basis: $xy = yf xg \in I$ is not reducible by f or g
- Adding S-Pol(f, g) = 0 does not help
- G-Pol(f,g) = xy

Definition

 $\boldsymbol{f}, \boldsymbol{g} \in \mathcal{I},$ u, v Bézout coefficients for lc($\boldsymbol{f}),$ lc($\boldsymbol{g})$

► G-Pol(**f**, **g**) =
$$u \frac{\operatorname{lcmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{lm}(\mathbf{f})} \mathbf{f} + v \frac{\operatorname{lcmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{lm}(\mathbf{g})} \mathbf{g}$$

Main properties

- $lc(G-Pol(\mathbf{f}, \mathbf{g})) = gcdlc(\mathbf{f}, \mathbf{g})$
- If $lt(\mathbf{f}) = t_1 lt(\mathbf{g}_1) + t_2 lt(\mathbf{g}_2)$, then **f** is reducible by G-Pol($\mathbf{g}_1, \mathbf{g}_2$)
- One can always choose *u*, *v* such that

$$\mathsf{sig}(\mathsf{G-Pol}(\mathbf{f},\mathbf{g})) \simeq \mathsf{max}(\frac{\mathsf{lcmlm}(\mathbf{f},\mathbf{g})}{\mathsf{lm}(\mathbf{f})}\mathsf{sig}(\mathbf{f}),\frac{\mathsf{lcmlm}(\mathbf{f},\mathbf{g})}{\mathsf{lm}(\mathbf{g})}\mathsf{sig}(\mathbf{g}))$$

- 1. Selection: different strategies
- 2. Construction: S-polynomial

and G-polynomial if $lc(g_i)$ and $lc(g_j)$ do not divide each other

3. Reduction

G-polynomials for syzygies

Need a similar construction to capture all possible combinations of syzygy signatures.

Definition

$$\mathbf{z}_1, \mathbf{z}_2 \in Syz(\mathcal{I})$$
 with $sig(\mathbf{z}_i) = a_i m_i \mathbf{e}_i$; u, v Bézout coefficients for a_1, a_2

• G-Pol(
$$\mathbf{z}_1, \mathbf{z}_2$$
) = $u \frac{\operatorname{lcm}(m_1, m_2)}{m_1} \mathbf{z}_1 + v \frac{\operatorname{lcm}(m_1, m_2)}{m_2} \mathbf{z}_2$

Main properties

- $sig(G-Pol(\mathbf{z}_1, \mathbf{z}_2)) = gcd(a_1, a_2)lcm(m_1, m_2)\mathbf{e}_i$
- If $sig(\mathbf{f}) = t_1 sig(\mathbf{z}_1) + t_2 sig(\mathbf{z}_2)$, then **f** is sig-reducible by G-Pol($\mathbf{z}_1, \mathbf{z}_2$)
- ▶ No need to be careful about the choice of *u*, *v*

- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomial

and G-polynomial if $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_i)$ do not divide each other

3. Reduction: regular

- 1. Selection: different strategies
- 2. Construction: S-polynomial if one of $lc(g_i)$ and $lc(g_j)$ divides the other

or G-polynomial if $lc(g_i)$ and $lc(g_i)$ do not divide each other

3. Reduction

- Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f,g)
- How to recover S-Pol(f, g) = $\frac{b}{d}\mu f \frac{a}{d}\nu g$?

- Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f,g)
- How to recover S-Pol $(f,g) = \frac{b}{d}\mu f \frac{a}{d}\nu g$?
- ▶ The algorithm computes h = G-Pol $(f, g) = u\mu f + v\nu g$, with lc(h) = d

- Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, g)
- How to recover S-Pol(f, g) = $\frac{b}{d}\mu f \frac{a}{d}\nu g$?
- The algorithm computes $h = G-Pol(f,g) = u\mu f + v\nu g$, with lc(h) = d
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

$$S-\operatorname{Pol}(f,h) = \mu f - \frac{a}{d}h$$
$$= \left(1 - \frac{ua}{d}\right)\mu f - \frac{av}{d}\mu g$$
$$= \frac{vb}{d}\mu f - \frac{av}{d}\nu g$$
$$= vS-\operatorname{Pol}(f,g)$$

$$S-Pol(g,h) = uS-Pol(f,g)$$

Pan/Lichtblau's algorithm, with signatures

- 1. Selection: non-decreasing signatures
- 2. Construction: non-singular S-polynomial if one of $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_i)$ divides the other

or G-polynomial if $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_i)$ do not divide each other

3. Reduction: regular

- Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$
- How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d} \mu \mathbf{f} \frac{a}{d} \nu \mathbf{g}$?
- The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

$$S-\text{Pol}(\mathbf{f}, \mathbf{h}) = \mu \mathbf{f} - \frac{a}{d} \mathbf{h}$$
$$= \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$$
$$= \frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g}$$
$$= vS-\text{Pol}(\mathbf{f}, \mathbf{g})$$

$$S-Pol(\mathbf{g}, \mathbf{h}) = uS-Pol(\mathbf{f}, \mathbf{g})$$

Idea:

sig. **s t** with μ **s** $\geq \nu$ **t**

▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$

- How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d} \mu \mathbf{f} \frac{a}{d} \nu \mathbf{g}$?
- The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

$$S-\text{Pol}(\mathbf{f}, \mathbf{h}) = \mu \mathbf{f} - \frac{a}{d} \mathbf{h}$$
$$= \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$$
$$= \frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g}$$
$$= vS-\text{Pol}(\mathbf{f}, \mathbf{g})$$

$$S-Pol(\mathbf{g}, \mathbf{h}) = uS-Pol(\mathbf{f}, \mathbf{g})$$

Idea:

sig. **s t** with μ **s** $\geq \nu$ **t**

▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$

- ► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d}\mu\mathbf{f} \frac{a}{d}\nu\mathbf{g}$? Regular, sig. $\simeq \mu\mathbf{s}$
- The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

$$S-\text{Pol}(\mathbf{f}, \mathbf{h}) = \mu \mathbf{f} - \frac{a}{d} \mathbf{h}$$
$$= \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$$
$$= \frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g}$$
$$= vS-\text{Pol}(\mathbf{f}, \mathbf{g})$$

$$S-Pol(\mathbf{g}, \mathbf{h}) = uS-Pol(\mathbf{f}, \mathbf{g})$$

Idea:

sig. **s t** with μ **s** $\geq \nu$ **t**

▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$

► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d}\mu\mathbf{f} - \frac{a}{d}\nu\mathbf{g}$? Regular, sig. $\simeq \mu\mathbf{s}$

sig.
$$\simeq \mu$$
s

- The algorithm computes $\mathbf{h} = G$ -Pol $(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

$$S-\text{Pol}(\mathbf{f}, \mathbf{h}) = \mu \mathbf{f} - \frac{a}{d} \mathbf{h}$$
$$= \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$$
$$= \frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g}$$
$$= vS-\text{Pol}(\mathbf{f}, \mathbf{g})$$

$$S-Pol(\mathbf{g}, \mathbf{h}) = uS-Pol(\mathbf{f}, \mathbf{g})$$

Idea:

sig. **s t** with μ **s** $\geq \nu$ **t**

• Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$

► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d}\mu\mathbf{f} - \frac{a}{d}\nu\mathbf{g}$? Regular, sig. $\simeq \mu\mathbf{s}$

sig.
$$\simeq \mu$$
s

- The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

	$\simeq \mu$ S	$\simeq \mu { m S}$	not regular
S-Pol(f , h)	$= \mu \mathbf{f} -$	$\frac{a}{d}h$	
	= (1 -	$\left(\frac{ua}{d}\right)\mu\mathbf{f}$	$-\frac{av}{d}\mu \mathbf{g}$
	$=rac{vb}{d}\mu$	$\mathbf{f} - \frac{a\mathbf{v}}{d}\nu\mathbf{g}$	
	= vS-P	ol(f , g)	

 $S-Pol(\mathbf{g}, \mathbf{h}) = uS-Pol(\mathbf{f}, \mathbf{g})$

Idea:

sig. **s t** with μ **s** $\geq \nu$ **t**

• Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$

► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d}\mu\mathbf{f} - \frac{a}{d}\nu\mathbf{g}$? Regular, sig. $\simeq \mu\mathbf{s}$

sig.
$$\simeq \mu$$
s

- The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- \blacktriangleright lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

	$\simeq \mu$ S	$\simeq \mu { m S}$	not regular
S-Pol(f , h)	$= \mu \mathbf{f} -$	$\frac{a}{d}h$	
	= (1 -	$\left(\frac{ua}{d}\right)\mu\mathbf{f}$	$-\frac{av}{d}\mu \mathbf{g}$
	$=\frac{vb}{d}\mub$	$\mathbf{f} - \frac{av}{d}\nu\mathbf{g}$	
	= vS-P	ol(f , g)	

 $S-Pol(\mathbf{g}, \mathbf{h}) = uS-Pol(\mathbf{f}, \mathbf{g})$

Consequence: we need to allow all non-singular S-polynomials

Pan/Lichtblau's algorithm, with signatures

- 1. Selection: non-decreasing signatures
- 2. Construction: non-singular S-polynomial if one of $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_i)$ divides the other

or G-polynomial if $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_i)$ do not divide each other

3. Reduction: regular

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset Syz(I)$ be such that:

▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$

"Correct ideal"

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and lc divides
G-pol if lc does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset Syz(I)$ be such that:

- ▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$
- \blacktriangleright all regular S-pols of ${\cal G}$ s-reduce to 0 mod ${\cal G}$

"Correct ideal" "Gröbner basis"

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and lc divides
G-pol if lc does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset Syz(I)$ be such that:

- \blacktriangleright for all i, there is an element with signature $\bm{e}_{\textit{i}}$ in $\mathcal{G} \cup \mathcal{G}_{\textit{z}}$
- \blacktriangleright all regular S-pols of ${\cal G}$ s-reduce to 0 mod ${\cal G}$
- if those reductions are regular, their result is sig-reducible mod G_z

"Correct ideal" "Gröbner basis" "Basis of syzygies"

Kandri-Rody, Kapur	Pan/Lichtblau
S-pol if regular	S-pol if non-singular and lc divides
G-pol if lc does not divide	G-pol if lc does not divide
Regular reductions	Regular reductions

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset Syz(I)$ be such that:

- \blacktriangleright for all i, there is an element with signature \boldsymbol{e}_i in $\mathcal{G}\cup\mathcal{G}_z$
- \blacktriangleright all regular S-pols of ${\cal G}$ s-reduce to 0 mod ${\cal G}$
- if those reductions are regular, their result is sig-reducible mod \mathcal{G}_z
- \blacktriangleright all G-pols of ${\cal G}$ are s-reducible mod ${\cal G}$
- all G-pols of \mathcal{G}_z are sig-reducible mod \mathcal{G}_z

Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_z is a sig-basis of syzygies.

"Correct ideal" "Gröbner basis" "Basis of syzygies"

"Sufficiently many G-pols"

Kandri-Rody, Kapur	Pan/Lichtblau		
S-pol if regular	S-pol if non-singular and lc divides		
G-pol if lc does not divide	G-pol if lc does not divide		
Regular reductions	Regular reductions		

Theorem: criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset Syz(I)$ be such that:

- \blacktriangleright for all i, there is an element with signature \boldsymbol{e}_i in $\mathcal{G}\cup\mathcal{G}_z$
- \blacktriangleright all regular S-pols of ${\cal G}$ s-reduce to 0 mod ${\cal G}$
- if those reductions are regular, their result is sig-reducible mod \mathcal{G}_z
- \blacktriangleright all G-pols of ${\cal G}$ are s-reducible mod ${\cal G}$
- all G-pols of \mathcal{G}_z are sig-reducible mod \mathcal{G}_z

Then \mathcal{G} is a sig-Gröbner basis and \mathcal{G}_z is a sig-basis of syzygies.

"Correct ideal" "Gröbner basis" "Basis of syzygies"

"Sufficiently many G-pols"

Pan/Lichtblau		
S-pol if non-singular and lc divides		
G-pol if lc does not divide		
Regular reductions		
More criteria?		

Super-reductibility

Super-reducible criterion in the case of fields

- ▶ **f** is super reducible modulo **g** if $tsig(g) \simeq sig(f)$ and tlt(g) = lt(f)
- ▶ h = f − tg is a singular s-reduction
- \blacktriangleright If h s-reduces to 0 mod ${\cal G},$ then f s-reduces to 0 mod ${\cal G}$
- ► Consequence: we can exclude super-reducible polynomials

Super-reducible criterion in the case of rings

- **f** is super reducible modulo **g** if tsig(g) = sig(f) and $tlt(g) \simeq lt(f)$
- $\mathbf{f}' = \mathbf{f} t\mathbf{g}$ is not a reduction!
- ▶ If **f**′ s-reduces to 0 mod *G* and G-pols of *G* s-reduce to 0, then **f** s-reduces to 0 mod *G*
- ► Consequence: we can exclude super-reducible S-polynomials

Definition: cover property in the case of fields

The pair $(\mathbf{f}_1, \mathbf{f}_2)$ is covered by $\mathbf{g} \in \mathcal{G} \cup \mathcal{G}_z$ if:

- there exists a term t such that $sig(S-Pol(\mathbf{f}_1, \mathbf{f}_2)) = tsig(\mathbf{g})$
- $tlt(\mathbf{g}) < lcmlm(\mathbf{f}_1, \mathbf{f}_2)$ (with $lt(\mathbf{g}) = 0$ if syzygy)

Definition: cover property in the case of fields

The pair $(\mathbf{f}_1, \mathbf{f}_2)$ is covered by $\mathbf{g} \in \mathcal{G} \cup \mathcal{G}_z$ if:

- there exists a term t such that $sig(S-Pol(\mathbf{f}_1, \mathbf{f}_2)) = tsig(\mathbf{g})$
- $tlt(\mathbf{g}) < lcmlm(\mathbf{f}_1, \mathbf{f}_2)$ (with $lt(\mathbf{g}) = 0$ if syzygy)

Definition: cover property in the case of rings

The pair $(\mathbf{f}_1, \mathbf{f}_2)$ is covered by $\mathbf{g} \in \mathcal{G}$ and $\mathbf{z} \in \mathcal{G}_z$ if:

- ▶ there exist terms t_g , t_z such that $sig(S-Pol(\mathbf{f}_1, \mathbf{f}_2)) = t_g sig(\mathbf{g}) + t_z sig(\mathbf{z})$
- $t_g \operatorname{lt}(\mathbf{g}) < \operatorname{lcmlm}(\mathbf{f}_1, \mathbf{f}_2)$

Correctness criterion with the cover property

Reminder: general criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset Syz(I)$ be such that:

- ▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$
- \blacktriangleright all regular S-pols of ${\cal G}$ s-reduce to 0 mod ${\cal G}$
- if those reductions are regular, their result is sig-reducible mod G_z
- ▶ all G-pols of *G* are s-reducible mod *G*
- ▶ all G-pols of G_z are sig-reducible mod G_z

Correctness criterion with the cover property

Theorem: cover criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset \text{Syz}(\textit{I})$ be such that:

- \blacktriangleright for all i, there is an element with signature $\bm{e}_{\textit{i}}$ in $\mathcal{G} \cup \mathcal{G}_{\textit{z}}$
- ▶ all regular S-pols of G are covered by a pair of G, G_z
- ▶ all G-pols of *G* are s-reducible modulo *G*
- all G-pols of \mathcal{G}_z are sig-reducible mod \mathcal{G}_z

Then \mathcal{G} is a SGB and \mathcal{G}_z is a sig-basis of syzygies.

This criterion is convenient ...

- ▶ in practice, because it allows to eliminate many elements
- ▶ in theory, because it allows for a simpler proof of correctness

But it requires that all regular S-pols of \mathcal{G} be covered, which Pan/Lichtblau a priori cannot enforce.

Quantitative comparison between the algorithms

System	Algorithm	Total pairs	Reduced	To zero	Time (s)
Katsura-4	Kandri-Rody, Kapur	420	188	0	1.35
	Pan/Lichtblau	855	412	0	1.6
Katsura-5	Kandri-Rody, Kapur	248	723	0	32.40
	Pan/Lichtblau	7178	3983	0	79.87
Cyclic-5	Kandri-Rody, Kapur	221	63	0	0.37
	Pan/Lichtblau	347	158	0	0.71
Cyclic-6	Kandri-Rody, Kapur	3019	742	8	200.33
	Pan/Lichtblau	9672	5782	8	616.82

- ► Toy implementation of both algorithms in Magma
- Available at https://gitlab.com/thibaut.verron/signature-groebner-rings
- ▶ Kandri-Rody and Kapur is almost always more efficient than Pan/Lichtblau
- It is not due to the lack of cover criterion

Operations

- ▶ Gröbner basis: signatures (Kandri-Rody and Kapur) vs Magma's GroebnerBasis (F4)
- ▶ GB with coefs.: signature reconstruction vs Magma's IdealWithFixedBasis (F4 + tracking)
- Basis of syzygy module: signature reconstruction vs Magma's SyzygyMatrix (module GB)

System	S-GB (s)	Recons. (s)	Total (s)	GB (s)	GB + coefs (s)	Syz. basis (s)
Cyclic-5	0.4	0.1	0.5	0.01	954.6	954.8
Cyclic-6	200.3	10.6	210.9	2.08	>24h	>24h

Conclusion of part 1

This work

- ▶ Two signature-based algorithms for PID's following closely Buchberger's algorithm
- Compatible with powerful criteria such as super-reducibility and the cover criterion
- Additional criteria and optimizations are available (coprime criterion, Gebauer-Möller criteria, coefficient reductions...)
- Toy implementation in Magma

Future directions

- Linear algebra algorithms à la F4
- Improve implementation
- Extend use of signature bases

More details and references

▶ Francis and Verron, On Two Signature Variants Of Buchberger's Algorithm Over Principal Ideal Domains, ISSAC 2021

Part 2: signature Gröbner bases in the free algebra

Joint work with Clemens Hofstadler

Non-commutative Gröbner bases

Context:

- R field
- $A = R\langle X_1, \ldots, X_n \rangle$ free algebra over R
- Monomials are words $X_{i_1}X_{i_2}\cdots X_{i_d}$

Gröbner bases:

- Monomial ordering and reduction are defined as usual
- Gröbner bases are defined as usual

Particularity:

- ▶ The free algebra is not Noetherian
- Most ideals do not admit a finite Gröbner basis
- > It is not decidable whether an ideal admits a finite Gröbner basis

Non-commutative Buchberger's algorithm

- 1. Selection: fair selection strategy
- 2. Construction: S-polynomials
- 3. Reduction

Constructions in the non-commutative case

Several ways to make S-polynomials

Overlap ambiguity

Inclusion ambiguity

Constructions in the non-commutative case

Several ways to make S-polynomials

Overlap ambiguity

► Inclusion ambiguity

Remarks:

> The combination need not be minimal, and S-polynomials are not unique!

•	xyxy has an (overlap) ambiguity with	xyxy xyxy	
•	xxyx and xy have two ambiguities:	xxyx xy	xxyx xy

- Two polynomials can only give rise to finitely many S-polynomials
- It is required that the central part is non-trivial (coprime criterion)

Non-commutative Buchberger's algorithm

1. Selection: fair selection strategy "Every S-polynomial is selected eventually."

- 2. Construction: S-polynomials
- 3. Reduction

Setting:

- ▶ Bimodule $M = A\mathbf{e}_1 A \oplus \cdots \oplus A\mathbf{e}_m A$ with the usual morphism $M \to A$ with image I
- Equipped with a module monomial ordering
- We require the ordering to be fair (isomorphic to \mathbb{N})
- Signature of f = leading monomial of the module part of f
- Regular and singular operations are defined as before

Non-commutative Buchberger's algorithm with signatures

- 1. Selection: non-decreasing signatures for a fair ordering
- 2. Construction: regular S-polynomials
- 3. Reduction (regular)

Termination

Question 1: does the algorithm terminate?

> Of course not, because some ideals do not have a finite Gröbner basis.

Termination

Question 1: does the algorithm terminate?

> Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Termination: trivial syzygies

Question 1: does the algorithm terminate?

> Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!

- Syzygies of the form $\mathbf{f} = g f = \mathbf{g}$ for any monomial
- Signature: $\max(\operatorname{sig}(\mathbf{f}) \square \operatorname{lm}(g), \operatorname{lm}(f) \square \operatorname{sig}(\mathbf{g}))$
- ▶ Because **■** is put in the middle, there is no reason to expect this set to be finitely generated!

Termination: trivial syzygies and how to find them

Question 1: does the algorithm terminate?

> Of course not, because some ideals do not have a finite Gröbner basis.

Question 2: okay, but what if they do?

- Still not. In most cases, the module of syzygies does not have a finite Gröbner basis
- Conjecture: it's always the case if n > 1 (non-commutative) and m > 1 (non-principal)

Obstruction: trivial syzygies!

- Syzygies of the form $\mathbf{f} = g f = \mathbf{g}$ for any monomial
- Signature: $\max(\operatorname{sig}(\mathbf{f}) \square \operatorname{lm}(g), \operatorname{lm}(f) \square \operatorname{sig}(\mathbf{g}))$
- Because is put in the middle, there is no reason to expect this set to be finitely generated!

Solution: signatures!

- ▶ Identifying trivial syzygies is what signatures were made for! (F5 criterion)
- In the commutative case, this is an optimization
- In the non-commutative case, it is a requirement

Non-commutative Buchberger's algorithm with signatures

- 1. Selection: non-decreasing signatures for a fair ordering
- 2. Construction: regular S-polynomials which are not eliminated by the F5 criterion
- 3. Reduction (regular)

Output of the algorithm: a signature Gröbner basis, allowing to recover

- ▶ a sig-Gröbner basis *G* (with coordinates)
- a set \mathcal{H} of syzygies such that $\mathcal{H} \cup \{$ trivial syzygies of $\mathcal{G}\}$ is a basis of the module of syzygies
- > a way to test if any module monomial is the leading term of a syzygy (trivial or not)

Results:

- ▶ The algorithm enumerates such a signature Gröbner basis
- > The algorithm terminates iff the ideal admits a finite signature Gröbner basis
- \blacktriangleright This implies that the ideal admits a finite GB and a finite "basis of non-trivial syzygies" ${\cal H}$
- Conjecture: the converse holds

This is the first algorithm producing an effective representation of some modules of syzygies in the free algebra!

What we have

- ► Toy implementation in Mathematica
- Part of the package OperatorGB, available at https://clemenshofstadler.com/software/
- Too slow to report on timings

Particularity

- > The F5 criterion is necessary to maximize the chances of the algorithm terminating
- The PoT ordering is not fair
- ► The F5 criterion is expensive! (quadratic in the size of *G*)

Conclusion of part 2

This work

- ▶ Signature-based algorithm for enumerating signature Gröbner bases in the free algebra
- Terminates whenever a finite signature Gröbner basis exists
- > Unlike the commutative case, taking care of trivial syzygies is more than an optimization
- > Effective and finite representation of the module of syzygies in some non-trivial cases

Open questions and future directions

- Improve implementation
- > Conjecture on characterization of existence of finite signature Gröbner basis
- Free algebra over \mathbb{Z} ? (worse than the worst of both worlds)
- Application to the computation of short representations
- Computations in quotients of the algebra

More details and references

▶ Hofstadler and Verron, Signature Gröbner bases, bases of syzygies and cofactor reconstruction in the free algebra, ArXiV:2107.14675