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Setting and definitions

Valued field, valuation ring

I Field with a valuation val : K → Z ∪∞ Qp k((X))

I Integer ring K◦ = {x : val(x) ≥ 0} Zp k[[X]]

I Uniformizer π s.t. πK◦ = {x : val(x) ≥ 1} p X

a = a3π3 +a4π4 + · · ·

b = b−3π−3 + · · ·

val(a) = 3

val(b) = −3Metric and topology
I “a is small” ⇐⇒ “val(a) is large”
I Non-archimedean metric: “small + small = small”
I Qp,Zp, k((X)), k[[X]] are complete for that topology

Rigid geometry and Tate series
I “Algebraic geometry, analytic geometry” bridge for non-archimedean geometry
I Main object: Tate series
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Tate series

Definitions
I Tate algebra K{X1, . . . , Xn; r1, . . . , rn } = K{X; r}

I Set of series
∑
α∈Nn

aαXα11 · · · X
αn
n with val(aα)−

∑
rjαj →∞

I “Convergent for substitutions with val(xi) ≥ −ri”
I smaller ri ⇐⇒ smaller convergence radius ⇐⇒ larger algebra
I Convention: ri =∞ if finitely many terms in Xi (polynomial)

r ∈ Qn: convergence (log)-radii

Examples
I Polynomials are Tate series for all radii (finite sums)

I f =
∞∑
i,j=0

πiXi = 1 + πX + π2X2 + π3X3 + · · ·

I f ∈ K{X} = K{X; 0}
I f /∈ K{X; 1} : for all terms, val(πα)− α = 0 6→ ∞

I If K = Qp, exp(X) is a Tate series with r < 1
p−1
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Gröbner bases over Tate algebras

Gröbner bases
I Multi-purpose tool for ideal arithmetic in polynomial algebras
I Ex: membership testing, elimination, intersection...
I Uses successive (terminating) reductions
I Requires the definition of a term ordering

Construction for Tate series
I Term ordering compatible with the topology
I First compare val(aα)−

∑
rjαj and break ties with a monomial order

· · · > 1 Xi1 > π Xi2 > π · 1 > π2 Xi3 > · · ·

I Non-terminating but convergent reduction (+ precision bound)
I Allows to use usual algorithms (Buchberger, F4) to compute Gröbner bases
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Complexity bottleneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I Question: can we do better?

Possible improvements?
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series
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Change of ordering and the FGLM algorithm

Change of ordering
I Useful in the classical case for two-steps strategies
I For zero-dimensional ideals, can be done e�ciently with the FGLM algorithm

[Faugère, Gianni, Lazard, Mora 1993]
I Complexity cubic (or faster) in the degree (number of solutions)

For Tate algebras
I Change of term ordering (monomial ordering and convergence radii)
I Complexity cubic in the degree, quasi-linear in the precision
I Can reduce partially reduced bases

Idea for overconvergence
1. Compute a Gröbner basis in the smaller Tate algebra
2. Use change of ordering to transfer to the larger one
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FGLM algorithm

Zero-dimensional ideal in K[X]

I Finitely many solutions
I K[X]/I has finite dimension δ

as a K-vector space
I Key object: matrices of P 7→ XiP mod I

Leading terms of GB wrt <

Staircase basis of K[X]/I wrt <

Algorithm FGLM

G1 reduced GB
of I ⊂ K[X]
wrt the order <1

Mult. matrices
by X1, . . . , Xn
in staircase B1

Mult. matrices
by X1, . . . , Xn
in staircase B1

G2 reduced GB
of I ⊂ K[X]
wrt the order <2
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Iterative computation of the multiplication matrices

r = (0, . . . , 0)I Idea: need to compute NF(Xim) for all i ∈ {1, . . . ,n},m ∈ B
I Proceed in increasing order and reuse the computations

3 cases

1. Xim ∈ B: → NF(Xim) = Xim
2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g
3. Otherwise, write m = Xjm′ with

NF(Xim′) =
∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑
aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�cient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk:

a · b = ab

?
?
? ?
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Improvements on the computation of the multiplication matrices

Incremental algorithm
I Follows the monomial ordering
I Cubic in δ, quadratic in precision
I Fast arithmetic does not help!

Recursive algorithm
I Query digits of the coefs as needed
I Functionally equivalent to incr. algo.
I Cubic in δ, quadratic in precision
I Order-agnostic (e.g. for other radii)

[v. d. Hoeven 1997] [Berthomieu, Lebreton 2012]
[Berthomieu, v. d. Hoeven, Lecerf 2011]

What about non-reduced bases?
I We may need elements out of the staircase
I If reduced mod π, their coe�cient is div. by π
I The relaxed algorithm still works!
I Complexity quasi-linear in precision, but unbounded in δ
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Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .
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Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Multiplication matrix by x Characteristic poly.

T6x − p−5T2x = 0

Slope factorization

T2x · (T4x − p−5) = 0

p
T2 6

-5

ker(T2x)

Eigenvalues with valuation∞ ≥ 0

Vectors in the staircase

ker(T4x − p−5)

“Eigenvalues” with valuation −5/4 < 0

Vectors sent to 0
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Construction of the new staircase: theoretical point of view

I J

K{X; r} K{X; u}

K{X; r}/I K{X; u}/J

= I · K{X; u}

Φ

Staircase Br

Staircase Bu : basis of⋂
“Eigenspace” of Ti with val. ≥ ui

Basis of ker(Φ)

=
∑

“Eigenspace” of Ti with val. < uiSlope fact.

Topological computation (completion+separation) using linear algebra!
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Full FGLM algorithm for Tate algebras

G1 reduced GB
of I ⊂ K{X; r}
wrt the order <1

Mult. matrices
by X1, . . . , Xn
in staircase B1,r

Mult. matrices
by X1, . . . , Xn
in staircase B1,u

G2 reduced GB
of I ⊂ K{X; u}
wrt the order <2

Recursive traversal
of the staircase

FGLM in F[X]
+ Lifting

Slope fact.

Base comp.:
Õ(nδ3prec)

Linear algebra in K:
arith. comp. O(nδ3)

FGLM: base comp. O(nδ3)
Lifting: arith. comp. O(nδ3)

Total base complexity
Õ(nδ3prec)
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Õ(nδ3prec)

Linear algebra in K:
arith. comp. O(nδ3)

FGLM: base comp. O(nδ3)
Lifting: arith. comp. O(nδ3)

Total base complexity
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Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of convergence radii in dimension 0
I Complexity cubic in degree and quasi-linear in precision

Future work
I Implement FGLM for Tate series in SageMath
I Generalizations of interreductions before a basis is complete
I Improve the complexity of reduction in positive dimension

Thank you for your attention!
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