
1

On FGLM algorithms over Tate algebras

Xavier Caruso1 Tristan Vaccon2 Thibaut Verron3

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France

2. Université de Limoges, CNRS, XLIM, Limoges, France

3. Johannes Kepler University, Institute for Algebra, Linz, Austria

International Symposium on Symbolic and Algebraic Computation, 2021/07/23



2

Setting and definitions

Valued field, valuation ring

I Field with a valuation val : K → Z ∪∞ Qp k((X))

I Integer ring K◦ = {x : val(x) ≥ 0} Zp k[[X]]

I Uniformizer π s.t. πK◦ = {x : val(x) ≥ 1} p X

a = a3π3 +a4π4 + · · ·

b = b−3π−3 + · · ·

val(a) = 3

val(b) = −3Metric and topology
I “a is small” ⇐⇒ “val(a) is large”
I Non-archimedean metric: “small + small = small”
I Qp,Zp, k((X)), k[[X]] are complete for that topology

Rigid geometry and Tate series
I “Algebraic geometry, analytic geometry” bridge for non-archimedean geometry
I Main object: Tate series



3

Tate series

Definitions
I Tate algebra K{X1, . . . , Xn; r1, . . . , rn } = K{X; r}

I Set of series
∑
α∈Nn

aαXα11 · · · X
αn
n with val(aα)−

∑
rjαj →∞

I “Convergent for substitutions with val(xi) ≥ −ri”
I smaller ri ⇐⇒ smaller convergence radius ⇐⇒ larger algebra
I Convention: ri =∞ if finitely many terms in Xi (polynomial)

r ∈ Qn: convergence (log)-radii

Examples
I Polynomials are Tate series for all radii (finite sums)

I f =
∞∑
i,j=0

πiXi = 1 + πX + π2X2 + π3X3 + · · ·

I f ∈ K{X} = K{X; 0}
I f /∈ K{X; 1} : for all terms, val(πα)− α = 0 6→ ∞

I If K = Qp, exp(X) is a Tate series with r < 1
p−1



4

Gröbner bases over Tate algebras

Gröbner bases
I Multi-purpose tool for ideal arithmetic in polynomial algebras
I Ex: membership testing, elimination, intersection...
I Uses successive (terminating) reductions
I Requires the definition of a term ordering

Construction for Tate series
I Term ordering compatible with the topology
I First compare val(aα)−

∑
rjαj and break ties with a monomial order

· · · > 1 Xi1 > π Xi2 > π · 1 > π2 Xi3 > · · ·

I Non-terminating but convergent reduction (+ precision bound)
I Allows to use usual algorithms (Buchberger, F4) to compute Gröbner bases



5

Complexity bottleneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I Question: can we do better?

Possible improvements?
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series



5

Complexity bottleneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I Question: can we do better?

Possible improvements?
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series

Signature algorithms [CVV 2020]



5

Complexity bottleneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I Question: can we do better?

Possible improvements?
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series

Signature algorithms [CVV 2020]

In dim. 0: with FGLM [this work]



6

Change of ordering and the FGLM algorithm

Change of ordering
I Useful in the classical case for two-steps strategies
I For zero-dimensional ideals, can be done e�ciently with the FGLM algorithm

[Faugère, Gianni, Lazard, Mora 1993]
I Complexity cubic (or faster) in the degree (number of solutions)

For Tate algebras
I Change of term ordering (monomial ordering and convergence radii)
I Complexity cubic in the degree, quasi-linear in the precision
I Can reduce partially reduced bases

Idea for overconvergence
1. Compute a Gröbner basis in the smaller Tate algebra
2. Use change of ordering to transfer to the larger one



7

FGLM algorithm

Zero-dimensional ideal in K[X]

I Finitely many solutions
I K[X]/I has finite dimension δ

as a K-vector space
I Key object: matrices of P 7→ XiP mod I

Leading terms of GB wrt <

Staircase basis of K[X]/I wrt <

Algorithm FGLM

G1 reduced GB
of I ⊂ K[X]
wrt the order <1

Mult. matrices
by X1, . . . , Xn
in staircase B1

Mult. matrices
by X1, . . . , Xn
in staircase B1

G2 reduced GB
of I ⊂ K[X]
wrt the order <2



7

FGLM algorithm

Zero-dimensional ideal in K{X; r}
I Finitely many solutions
I K{X; r}/I has finite dimension δ

as a K-vector space
I Key object: matrices of P 7→ XiP mod I

Leading terms of GB wrt <

Staircase basis of K{X; r}/I wrt <

Algorithm FGLM

G1 reduced GB
of I ⊂ K{X; r}
wrt the order <1

Mult. matrices
by X1, . . . , Xn
in staircase B1,r

Mult. matrices
by X1, . . . , Xn
in staircase B1,u

G2 reduced GB
of I ⊂ K{X; u}
wrt the order <2



8

Iterative computation of the multiplication matrices

r = (0, . . . , 0)I Idea: need to compute NF(Xim) for all i ∈ {1, . . . ,n},m ∈ B
I Proceed in increasing order and reuse the computations

3 cases

1. Xim ∈ B: → NF(Xim) = Xim
2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g
3. Otherwise, write m = Xjm′ with

NF(Xim′) =
∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑
aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�cient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk:

a · b = ab

?
?
? ?



8

Iterative computation of the multiplication matrices

r = (0, . . . , 0)I Idea: need to compute NF(Xim) for all i ∈ {1, . . . ,n},m ∈ B
I Proceed in increasing order and reuse the computations

1

3 cases
1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g
3. Otherwise, write m = Xjm′ with

NF(Xim′) =
∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑
aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�cient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk:

a · b = ab

?
?
? ?



8

Iterative computation of the multiplication matrices

r = (0, . . . , 0)I Idea: need to compute NF(Xim) for all i ∈ {1, . . . ,n},m ∈ B
I Proceed in increasing order and reuse the computations

1
2

3 cases
1. Xim ∈ B: → NF(Xim) = Xim
2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑
aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�cient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk:

a · b = ab

?
?
? ?



8

Iterative computation of the multiplication matrices

r = (0, . . . , 0)I Idea: need to compute NF(Xim) for all i ∈ {1, . . . ,n},m ∈ B
I Proceed in increasing order and reuse the computations

1
2

3

3 cases
1. Xim ∈ B: → NF(Xim) = Xim
2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g
3. Otherwise, write m = Xjm′ with

NF(Xim′) =
∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑
aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�cient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk:

a · b = ab

?
?
? ?



8

Iterative computation of the multiplication matrices

r = (0, . . . , 0)I Idea: need to compute NF(Xim) for all i ∈ {1, . . . ,n},m ∈ B
I Proceed in increasing order and reuse the computations

1
2

3

3 cases
1. Xim ∈ B: → NF(Xim) = Xim
2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g
3. Otherwise, write m = Xjm′ with

NF(Xim′) =
∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑
aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�cient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk:

a · b = ab

?
?
? ?



9

Improvements on the computation of the multiplication matrices

Incremental algorithm
I Follows the monomial ordering
I Cubic in δ, quadratic in precision
I Fast arithmetic does not help!

Recursive algorithm
I Query digits of the coefs as needed
I Functionally equivalent to incr. algo.
I Cubic in δ, quadratic in precision
I Order-agnostic (e.g. for other radii)

[v. d. Hoeven 1997] [Berthomieu, Lebreton 2012]
[Berthomieu, v. d. Hoeven, Lecerf 2011]

What about non-reduced bases?
I We may need elements out of the staircase
I If reduced mod π, their coe�cient is div. by π
I The relaxed algorithm still works!
I Complexity quasi-linear in precision, but unbounded in δ



9

Improvements on the computation of the multiplication matrices

Recursive algorithm
I Query digits of the coefs as needed
I Functionally equivalent to incr. algo.
I Cubic in δ, quadratic in precision
I Order-agnostic (e.g. for other radii)

Relaxed algorithm for Qp or Q((X))

I Lazy representation of objects
+ recursive definition

I Amortized log cost for each digit
I Complexity quasi-linear in precision

[v. d. Hoeven 1997] [Berthomieu, Lebreton 2012]
[Berthomieu, v. d. Hoeven, Lecerf 2011]

What about non-reduced bases?
I We may need elements out of the staircase
I If reduced mod π, their coe�cient is div. by π
I The relaxed algorithm still works!
I Complexity quasi-linear in precision, but unbounded in δ



9

Improvements on the computation of the multiplication matrices

Recursive algorithm
I Query digits of the coefs as needed
I Functionally equivalent to incr. algo.
I Cubic in δ, quadratic in precision
I Order-agnostic (e.g. for other radii)

Relaxed algorithm for Qp or Q((X))

I Lazy representation of objects
+ recursive definition

I Amortized log cost for each digit
I Complexity quasi-linear in precision

[v. d. Hoeven 1997] [Berthomieu, Lebreton 2012]
[Berthomieu, v. d. Hoeven, Lecerf 2011]

What about non-reduced bases?
I We may need elements out of the staircase
I If reduced mod π, their coe�cient is div. by π
I The relaxed algorithm still works!
I Complexity quasi-linear in precision, but unbounded in δ



9

Improvements on the computation of the multiplication matrices

Recursive algorithm
I Query digits of the coefs as needed
I Functionally equivalent to incr. algo.
I Cubic in δ, quadratic in precision
I Order-agnostic (e.g. for other radii)

Relaxed algorithm for Qp or Q((X))

I Lazy representation of objects
+ recursive definition

I Amortized log cost for each digit
I Complexity quasi-linear in precision

[v. d. Hoeven 1997] [Berthomieu, Lebreton 2012]
[Berthomieu, v. d. Hoeven, Lecerf 2011]

What about non-reduced bases?
I We may need elements out of the staircase
I If reduced mod π, their coe�cient is div. by π
I The relaxed algorithm still works!
I Complexity quasi-linear in precision, but unbounded in δ



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x

=
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2

=
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5

= p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0

or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



10

Changing convergence radii: what happens to the staircase?

Example with K = Qp

Gröbner bases

I K[x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2,py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2

I Why does x disappear from the staircase?

Consider x4 · x =
1
px

3y2 =
1
p2 xy

4 =
1
p3 x

2y =
1
p4 y

3 =
1
p5 x

so x = p5x5 = p10x9= · · · = 0 or equivalently
Invertible in K{x, y}

x(1− p5x4) = 0 =⇒ x = 0 .



11

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Multiplication matrix by x Characteristic poly.

T6x − p−5T2x = 0

Slope factorization

T2x · (T4x − p−5) = 0

p
T2 6

-5

ker(T2x)

Eigenvalues with valuation∞ ≥ 0

Vectors in the staircase

ker(T4x − p−5)

“Eigenvalues” with valuation −5/4 < 0

Vectors sent to 0



11

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Multiplication matrix by x Characteristic poly.

T6x − p−5T2x = 0

Slope factorization

T2x · (T4x − p−5) = 0

p
T2 6

-5

ker(T2x)

Eigenvalues with valuation∞ ≥ 0

Vectors in the staircase

ker(T4x − p−5)

“Eigenvalues” with valuation −5/4 < 0

Vectors sent to 0



11

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Multiplication matrix by x Characteristic poly.

T6x − p−5T2x = 0

Slope factorization

T2x · (T4x − p−5) = 0

p
T2 6

-5

5/4∞

ker(T2x)

Eigenvalues with valuation∞ ≥ 0

Vectors in the staircase

ker(T4x − p−5)

“Eigenvalues” with valuation −5/4 < 0

Vectors sent to 0



11

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Multiplication matrix by x Characteristic poly.

T6x − p−5T2x = 0

Slope factorization

T2x · (T4x − p−5) = 0

p
T2 6

-5

5/4∞

ker(T2x)

Eigenvalues with valuation∞ ≥ 0

Vectors in the staircase

ker(T4x − p−5)

“Eigenvalues” with valuation −5/4 < 0

Vectors sent to 0



12

Construction of the new staircase: theoretical point of view

I J

K{X; r} K{X; u}

K{X; r}/I K{X; u}/J

= I · K{X; u}

Φ

Staircase Br

Staircase Bu : basis of⋂
“Eigenspace” of Ti with val. ≥ ui

Basis of ker(Φ)

=
∑

“Eigenspace” of Ti with val. < uiSlope fact.

Topological computation (completion+separation) using linear algebra!



12

Construction of the new staircase: theoretical point of view

I J

K{X; r} K{X; u}

K{X; r}/I K{X; u}/J

= I · K{X; u}

Φ

Staircase Br

Staircase Bu : basis of⋂
“Eigenspace” of Ti with val. ≥ ui

Basis of ker(Φ)

=
∑

“Eigenspace” of Ti with val. < uiSlope fact.

Topological computation (completion+separation) using linear algebra!



12

Construction of the new staircase: theoretical point of view

I J

K{X; r} K{X; u}

K{X; r}/I K{X; u}/J

= I · K{X; u}

Φ

Staircase Br

Staircase Bu : basis of⋂
“Eigenspace” of Ti with val. ≥ ui

Basis of ker(Φ)

=
∑

“Eigenspace” of Ti with val. < uiSlope fact.

Topological computation (completion+separation) using linear algebra!



12

Construction of the new staircase: theoretical point of view

I J

K{X; r} K{X; u}

K{X; r}/I K{X; u}/J

= I · K{X; u}

Φ

Staircase Br

Staircase Bu : basis of⋂
“Eigenspace” of Ti with val. ≥ ui

Basis of ker(Φ)

=
∑

“Eigenspace” of Ti with val. < uiSlope fact.

Topological computation (completion+separation) using linear algebra!



13

Full FGLM algorithm for Tate algebras

G1 reduced GB
of I ⊂ K{X; r}
wrt the order <1

Mult. matrices
by X1, . . . , Xn
in staircase B1,r

Mult. matrices
by X1, . . . , Xn
in staircase B1,u

G2 reduced GB
of I ⊂ K{X; u}
wrt the order <2

Recursive traversal
of the staircase

FGLM in F[X]
+ Lifting

Slope fact.

Base comp.:
Õ(nδ3prec)

Linear algebra in K:
arith. comp. O(nδ3)

FGLM: base comp. O(nδ3)
Lifting: arith. comp. O(nδ3)

Total base complexity
Õ(nδ3prec)



13

Full FGLM algorithm for Tate algebras

G1 reduced GB
of I ⊂ K{X; r}
wrt the order <1

Mult. matrices
by X1, . . . , Xn
in staircase B1,r

Mult. matrices
by X1, . . . , Xn
in staircase B1,u

G2 reduced GB
of I ⊂ K{X; u}
wrt the order <2

Recursive traversal
of the staircase

FGLM in F[X]
+ Lifting

Slope fact.

Base comp.:
Õ(nδ3prec)

Linear algebra in K:
arith. comp. O(nδ3)

FGLM: base comp. O(nδ3)
Lifting: arith. comp. O(nδ3)

Total base complexity
Õ(nδ3prec)



14

Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of convergence radii in dimension 0
I Complexity cubic in degree and quasi-linear in precision

Future work
I Implement FGLM for Tate series in SageMath
I Generalizations of interreductions before a basis is complete
I Improve the complexity of reduction in positive dimension

Thank you for your attention!



14

Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of convergence radii in dimension 0
I Complexity cubic in degree and quasi-linear in precision

Future work
I Implement FGLM for Tate series in SageMath
I Generalizations of interreductions before a basis is complete
I Improve the complexity of reduction in positive dimension

Thank you for your attention!



14

Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of convergence radii in dimension 0
I Complexity cubic in degree and quasi-linear in precision

Future work
I Implement FGLM for Tate series in SageMath
I Generalizations of interreductions before a basis is complete
I Improve the complexity of reduction in positive dimension

Thank you for your attention!


	Introduction and definitions
	FGLM algorithm for zero-dimensional Tate ideals

