
1

FGLM algorithm over Tate algebras

Xavier Caruso1 Tristan Vaccon2 Thibaut Verron3

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France

2. Université de Limoges, CNRS, XLIM, Limoges, France

3. Johannes Kepler University, Institute for Algebra, Linz, Austria

Seminar Algebra and Discrete Mathematics, 2021/04/15



2

Se�ing and definitions

Valued field, valuation ring

I Field with a valuation val : K → Z ∪∞ Qp k((X))

I Integer ring K◦ = {x : val(x) ≥ 0} Zp k[[X ]]

I Uniformizer π s.t. πK◦ = {x : val(x) ≥ 1} p X

a = a3π
3 + a4π

4 + · · ·

b = b−3π
−3 + · · ·

val(a) = 3

val(b) = −3Metric and topology
I “a is small” ⇐⇒ “val(a) is large”
I Non-archimedean metric: “small + small = small”
I Qp,Zp, k((X)), k[[X ]] are complete for that topology

Rigid geometry and Tate series
I “Algebraic geometry, analytic geometry” bridge for non-archimedean geometry
I Main object: Tate series



3

Tate series

Definitions
I Tate algebra K{X1, . . . , Xn; r1, . . . , rn } = K{X; r}

I Set of series
∑
α∈Nn

aαXα1
1 · · ·X

αn
n with val(aα)−

∑
rjαj →∞

I “Convergent for substitutions with val(xi) ≥ −ri”
I smaller ri ⇐⇒ smaller convergence radius ⇐⇒ larger algebra
I Convention: ri =∞→ finitely many terms in Xi (polynomial)

r ∈ Qn: convergence (log)-radii

Examples:
I Polynomials are Tate series for all radii (finite sums)

I f =
∞∑

i,j=0

πiX i = 1 + πX + π2X 2 + π3X 3 + · · ·

I f ∈ K{X} = K{X ; 0}
I f /∈ K{X ; 1} : for all terms, val(πα)− α = 0 6→ ∞



4

Gröbner bases over Tate algebras

Gröbner bases:
I Multi-purpose tool for ideal arithmetic in polynomial algebras
I Membership testing, elimination, intersection...
I Uses successive (terminating) reductions
I Requires the definition of an ordering on terms

Construction for Tate series
I Term order considering terms according to the valuation of their coe�icient
I First compare val(aα)−

∑
rjαj , break ties with a monomial order

· · · > 1 Xi1 > π Xi2 > π · 1 > π2 Xi3 > · · ·

I Convergent reductions (interrupted at the precision bound) instead of terminating ones
I Allows to use usual algorithms (Buchberger, F4) to compute Gröbner bases



5

Complexity bo�leneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I �estion: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series



5

Complexity bo�leneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I �estion: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series

Signature algorithms [CVV 2020]



5

Complexity bo�leneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I �estion: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series

Signature algorithms [CVV 2020]

In dim. 0: with FGLM [this work]



6

Change of ordering and the FGLM algorithm

Change of ordering:
I Useful in the classical case for two-steps strategies
I For zero-dimensional ideals, can be done e�iciently with the FGLM algorithm

[Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:
I Change of monomial ordering
I But also change of term ordering and radius of convergence

Idea for overconvergence:

1. Compute a Gröbner basis in the smaller Tate algebra

2. Use change of ordering to restrict to the larger one



7

Characteristics of the FGLM algorithm

0-dimensional ideals:
I Variety = finitely many points
I �otient K [X]/I has finite dimension as a vector space over K
I Given a Gröbner basis G, the staircase under G is

B = {m monomial not divisible by any LT of G}
I B is a K -basis of K [X]/I

Outline of the algorithm:

In: G1 a reduced Gröbner basis wrt an order <1

<2 a monomial order

Out: G2 a reduced Gröbner basis wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1 (computing B1)

2. Convert them into the Gröbner basis G2 (computing B2)

Complexity
I Degree δ of the ideal = size of B = number of solutions (with multiplicity)
I Complexity cubic (or subcubic) in δ



7

Characteristics of the FGLM algorithm

0-dimensional ideals:
I Variety = finitely many points
I �otient K [X]/I has finite dimension as a vector space over K
I Given a Gröbner basis G, the staircase under G is

B = {m monomial not divisible by any LT of G}
I B is a K -basis of K [X]/I

Outline of the algorithm:

In: G1 a reduced Gröbner basis wrt an order <1

<2 a monomial order

Out: G2 a reduced Gröbner basis wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1 (computing B1)

2. Convert them into the Gröbner basis G2 (computing B2)

Complexity
I Degree δ of the ideal = size of B = number of solutions (with multiplicity)
I Complexity cubic (or subcubic) in δ



8

FGLM algorithm for Tate ideals

0-dimensional Tate ideals
I Same definition as in the polynomial case: K{X}/I has finite dimension
I B is a K -basis of K{X}/I
I Any element of K{X}/I can be represented as a polynomial

Outline of the algorithm

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis in K{X; u} wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices in the basis B1,u (computing B1,u)

3. Convert them into the Gröbner basis G2

Complexity
I Complexity cubic in δ
I Base complexity quasi-linear in the precision



8

FGLM algorithm for Tate ideals

0-dimensional Tate ideals
I Same definition as in the polynomial case: K{X}/I has finite dimension
I B is a K -basis of K{X}/I
I Any element of K{X}/I can be represented as a polynomial

Outline of the algorithm

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis in K{X; u} wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices in the basis B1,u (computing B1,u)

3. Convert them into the Gröbner basis G2

Complexity
I Complexity cubic in δ
I Base complexity quasi-linear in the precision



8

FGLM algorithm for Tate ideals

0-dimensional Tate ideals
I Same definition as in the polynomial case: K{X}/I has finite dimension
I B is a K -basis of K{X}/I
I Any element of K{X}/I can be represented as a polynomial

Outline of the algorithm

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis in K{X; u} wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices in the basis B1,u (computing B1,u)

3. Convert them into the Gröbner basis G2

Complexity
I Complexity cubic in δ
I Base complexity quasi-linear in the precision



9

Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

3 cases:

1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?



9

Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

1

3 cases:
1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?



9

Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

1
2

3 cases:
1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?



9

Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

1
2

3

3 cases:
1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?



9

Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

1
2

3

3 cases:
1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?



10

Two improvements on the computation of the multiplication matrices

Recursive computation:
I The previous algorithm relies on the order of the monomials
I Base complexity cubic in δ but quadratic in the precision
I Alternative: recursive algorithm, computing the coe�icients mod πk as needed
I Gives an order-agnostic algorithm which also works with non-0 log-radii
I Fast arithmetic + relaxed algorithms→ base complexity quasi-linear in the precision

[van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:
I Usual case: need bases to be reduced to ensure structure of the order
I Here, we have to consider monomials which we have not yet seen in any case
I As long as the basis is reduced mod π, the hypotheses hold
I So FGLM (with same order and log-radii as input and output)

gives an algorithm for interreduction with complexity quasi-linear in precision
I The complexity is not only bounded in terms of δ anymore



10

Two improvements on the computation of the multiplication matrices

Recursive computation:
I The previous algorithm relies on the order of the monomials
I Base complexity cubic in δ but quadratic in the precision
I Alternative: recursive algorithm, computing the coe�icients mod πk as needed
I Gives an order-agnostic algorithm which also works with non-0 log-radii
I Fast arithmetic + relaxed algorithms→ base complexity quasi-linear in the precision

[van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:
I Usual case: need bases to be reduced to ensure structure of the order
I Here, we have to consider monomials which we have not yet seen in any case
I As long as the basis is reduced mod π, the hypotheses hold
I So FGLM (with same order and log-radii as input and output)

gives an algorithm for interreduction with complexity quasi-linear in precision
I The complexity is not only bounded in terms of δ anymore



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x

=
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2

=
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4

=
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y

=
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3

=
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5

= p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9

= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0

or equivalently x(1− p5x4) = 0 =⇒ x = 0.



11

Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.



12

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Characteristic polynomial:
χx = T 6 − p−5T 2

= T 2 · (T 4 − p−5)

p T2 6

-5

Slope factorization:
I ker(T 4

x − p−5) : characteristic space with “eigenvalue” with valuation −5/4 < 0
→ vectors sent to 0

I ker(T 2
x ) : characteristic space with “eigenvalue” with valuation ∞ ≥ 0

→ vectors in the staircase



12

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Characteristic polynomial:
χx = T 6 − p−5T 2

= T 2 · (T 4 − p−5)

p T2 6

-5

Slope factorization:
I ker(T 4

x − p−5) : characteristic space with “eigenvalue” with valuation −5/4 < 0
→ vectors sent to 0

I ker(T 2
x ) : characteristic space with “eigenvalue” with valuation ∞ ≥ 0

→ vectors in the staircase



12

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Characteristic polynomial:
χx = T 6 − p−5T 2

= T 2 · (T 4 − p−5)

p T2 6

-5

Slope: 5/4
Slope:
∞

Slope factorization:
I ker(T 4

x − p−5) : characteristic space with “eigenvalue” with valuation −5/4 < 0
→ vectors sent to 0

I ker(T 2
x ) : characteristic space with “eigenvalue” with valuation ∞ ≥ 0

→ vectors in the staircase



12

Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Characteristic polynomial:
χx = T 6 − p−5T 2

= T 2 · (T 4 − p−5)

p T2 6

-5

Slope: 5/4
Slope:
∞

Slope factorization:
I ker(T 4

x − p−5) : characteristic space with “eigenvalue” with valuation −5/4 < 0
→ vectors sent to 0

I ker(T 2
x ) : characteristic space with “eigenvalue” with valuation ∞ ≥ 0

→ vectors in the staircase



13

Characterization and construction of the new staircase

Construction
I Inclusion K{X; r} → K{X; u} map Φ : V = K{X; r}/I → K{X; u}/(I K{X; u})
I Φ is surjective but not injective
I Vectors sent to 0:

N =
⋂

“Eigenspace” of Ti with valuation < ui

I New quotient:

K{X; u}/(I + N) =
∑

“Eigenspace” of Ti with valuation ≥ ui

I Or simply compute a monomial basis of the quotient

I This linear algebra encodes a topological construction



13

Characterization and construction of the new staircase

Construction
I Inclusion K{X; r} → K{X; u} map Φ : V = K{X; r}/I → K{X; u}/(I K{X; u})
I Φ is surjective but not injective
I Vectors sent to 0:

N =
⋂

“Eigenspace” of Ti with valuation < ui

I New quotient:

K{X; u}/(I + N) =
∑

“Eigenspace” of Ti with valuation ≥ ui

I Or simply compute a monomial basis of the quotient

I This linear algebra encodes a topological construction



14

Full FGLM algorithm for Tate algebras

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis wrt <2 in K{X; u}

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices of multiplication by X1, . . . , Xn in the basis B1,u

(slope factorization)

3. Convert into the basis G2

3.1 Use the usual algorithm modulo π (in F) to compute B2,u and G2

3.2 Li� the linear algebra operations to obtain G2

Complexity
I Step 1 has base complexity Õ(nδ3prec)

I Each other step has arithmetic complexity Õ(nδ3)

I Final base complexity: Õ(nδ3prec)



14

Full FGLM algorithm for Tate algebras

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis wrt <2 in K{X; u}

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices of multiplication by X1, . . . , Xn in the basis B1,u

(slope factorization)

3. Convert into the basis G2

3.1 Use the usual algorithm modulo π (in F) to compute B2,u and G2

3.2 Li� the linear algebra operations to obtain G2

Complexity
I Step 1 has base complexity Õ(nδ3prec)

I Each other step has arithmetic complexity Õ(nδ3)

I Final base complexity: Õ(nδ3prec)



15

Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of log-radii in dimension 0
I Complexity cubic in degree, quasi-linear in precision

Future work
I Integrate FGLM in the tate_algebra package of SageMath
I Generalizations of the interreduction in the middle of GB calculations
I Improve the complexity of reduction in positive dimension

Thank you for your a�ention!
References
I Gröbner bases over Tate algebras, ISSAC 2019
I Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
I On FGLM algorithms with Tate algebras, preprint 2021



15

Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of log-radii in dimension 0
I Complexity cubic in degree, quasi-linear in precision

Future work
I Integrate FGLM in the tate_algebra package of SageMath
I Generalizations of the interreduction in the middle of GB calculations
I Improve the complexity of reduction in positive dimension

Thank you for your a�ention!
References
I Gröbner bases over Tate algebras, ISSAC 2019
I Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
I On FGLM algorithms with Tate algebras, preprint 2021



15

Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of log-radii in dimension 0
I Complexity cubic in degree, quasi-linear in precision

Future work
I Integrate FGLM in the tate_algebra package of SageMath
I Generalizations of the interreduction in the middle of GB calculations
I Improve the complexity of reduction in positive dimension

Thank you for your a�ention!
References
I Gröbner bases over Tate algebras, ISSAC 2019
I Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
I On FGLM algorithms with Tate algebras, preprint 2021


	Introduction and definitions
	FGLM algorithm for zero-dimensional Tate ideals

