# FGLM algorithm over Tate algebras 

Xavier Caruso ${ }^{1} \quad$ Tristan Vaccon ${ }^{2} \quad$ Thibaut Verron ${ }^{3}$

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
2. Université de Limoges, CNRS, XLIM, Limoges, France
3. Johannes Kepler University, Institute for Algebra, Linz, Austria

Seminar Algebra and Discrete Mathematics, 2021/04/15

## Setting and definitions

Valued field, valuation ring

- Field with a valuation val : $K \rightarrow \mathbb{Z} \cup \infty$
- Integer ring $K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$
- Uniformizer $\pi$ s.t. $\pi K^{\circ}=\{x: \operatorname{val}(x) \geq 1\}$

Metric and topology

- " $a$ is small" $\Longleftrightarrow " \operatorname{val}(a)$ is large"

$$
\mathbb{Q}_{p} \quad k((X))
$$

$$
\mathbb{Z}_{p} \quad k \llbracket X \rrbracket
$$

p $X$

- Non-archimedean metric: "small + small = small"
- $\mathbb{Q}_{p}, \mathbb{Z}_{p}, k((X)), k \llbracket X \rrbracket$ are complete for that topology

Rigid geometry and Tate series

- "Algebraic geometry, analytic geometry" bridge for non-archimedean geometry
- Main object: Tate series


## Tate series

## Definitions <br> $$
\mathbf{r} \in \mathbb{Q}^{n}: \text { convergence (log)-radii }
$$

- Tate algebra $K\left\{X_{1}, \ldots, X_{n} ; r_{1}, \ldots, r_{n}\right\}=K\{\mathbf{X} ; \mathbf{r}\}$
- Set of series $\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$ with val $\left(a_{\alpha}\right)-\sum r_{j} \alpha_{j} \rightarrow \infty$
- "Convergent for substitutions with $\mathrm{val}\left(x_{i}\right) \geq-r_{i}$ "
- smaller $r_{i} \Longleftrightarrow$ smaller convergence radius $\Longleftrightarrow$ larger algebra
- Convention: $r_{i}=\infty \rightarrow$ finitely many terms in $X_{i}$ (polynomial)


## Examples:

- Polynomials are Tate series for all radii (finite sums)
- $f=\sum_{i, j=0}^{\infty} \pi^{i} x^{i}=1+\pi X+\pi^{2} X^{2}+\pi^{3} X^{3}+\cdots$
- $f \in K\{X\}=K\{X ; 0\}$
- $f \notin K\{X ; 1\}$ : for all terms, $\operatorname{val}\left(\pi^{\alpha}\right)-\alpha=0 \nrightarrow \infty$


## Gröbner bases over Tate algebras

## Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions
- Requires the definition of an ordering on terms


## Construction for Tate series

- Term order considering terms according to the valuation of their coefficient
- First compare $\operatorname{val}\left(a_{\alpha}\right)-\sum r_{j} \alpha_{j}$, break ties with a monomial order

$$
\begin{array}{llll} 
& \ddots & \ddots & \ddots \\
& \ddots & \ddots & \circ \\
& \ddots & X^{\mathbf{i}_{1}}>\pi \mathbf{X}^{\mathbf{i}_{2}}>\pi \cdot 1>\pi^{2} \mathbf{X}^{\mathbf{i}_{3}}>\cdots
\end{array}
$$

- Convergent reductions (interrupted at the precision bound) instead of terminating ones
- Allows to use usual algorithms (Buchberger, F4) to compute Gröbner bases


## Complexity bottleneck: reductions

Cost of reductions

- Not unusual with Gröbner bases
- Tate case: reductions are interrupted at the precision bound
- The cost grows badly with the precision
- Question: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:

- Avoid useless reductions to zero
- Speed-up interreductions
- Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii $\infty$ ) seen as Tate series

## Complexity bottleneck: reductions

Cost of reductions

- Not unusual with Gröbner bases
- Tate case: reductions are interrupted at the precision bound
- The cost grows badly with the precision
- Question: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:
$\rightarrow$ Avoid useless reductions to zero $\longrightarrow$ Signature algorithms [CVV 2020]

- Speed-up interreductions
- Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii $\infty$ ) seen as Tate series

## Complexity bottleneck: reductions

Cost of reductions

- Not unusual with Gröbner bases
- Tate case: reductions are interrupted at the precision bound
- The cost grows badly with the precision
- Question: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:
$\checkmark$ Avoid useless reductions to zero $\longrightarrow$ Signature algorithms [CVV 2020]

- Speed-up interreductions
- Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii $\infty$ ) seen as Tate series

## Change of ordering and the FGLM algorithm

## Change of ordering:

- Useful in the classical case for two-steps strategies
- For zero-dimensional ideals, can be done efficiently with the FGLM algorithm [Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:

- Change of monomial ordering
- But also change of term ordering and radius of convergence

Idea for overconvergence:

1. Compute a Gröbner basis in the smaller Tate algebra
2. Use change of ordering to restrict to the larger one

## Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- Quotient $K[\mathbf{X}] / I$ has finite dimension as a vector space over $K$
- Given a Gröbner basis $G$, the staircase under $G$ is $B=\{m$ monomial not divisible by any LT of $G\}$
- $B$ is a $K$-basis of $K[\mathbf{X}] / I$


## Outline of the algorithm:

In: $G_{1}$ a reduced Gröbner basis wrt an order $<_{1}$
$<_{2}$ a monomial order
Out: $G_{2}$ a reduced Gröbner basis wrt $<2$

1. Compute the matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1}$ (computing $B_{1}$ )
2. Convert them into the Gröbner basis $G_{2}$ (computing $B_{2}$ )

## Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- Quotient $K[\mathbf{X}] / I$ has finite dimension as a vector space over $K$
- Given a Gröbner basis $G$, the staircase under $G$ is $B=\{m$ monomial not divisible by any LT of $G\}$
- $B$ is a $K$-basis of $K[\mathbf{X}] / I$


## Outline of the algorithm:

In: $G_{1}$ a reduced Gröbner basis wrt an order $<_{1}$
$<_{2}$ a monomial order
Out: $G_{2}$ a reduced Gröbner basis wrt $<2$

1. Compute the matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1}$ (computing $B_{1}$ )
2. Convert them into the Gröbner basis $G_{2}$ (computing $B_{2}$ )

Complexity

- Degree $\delta$ of the ideal = size of $B=$ number of solutions (with multiplicity)
- Complexity cubic (or subcubic) in $\delta$


## FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K\{\mathbf{X}\} / I$ has finite dimension
- B is a $K$-basis of $K\{\mathbf{X}\} / I$
- Any element of $K\{\mathbf{X}\} / I$ can be represented as a polynomial


## FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K\{\mathbf{X}\} / I$ has finite dimension
- B is a $K$-basis of $K\{\mathbf{X}\} / I$
- Any element of $K\{\mathbf{X}\} / I$ can be represented as a polynomial


## Outline of the algorithm

In: $G_{1}$ a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: $G_{2}$ a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{u}\}$ wrt $<_{2}$

1. Compute the matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1, \mathbf{r}}$
2. Convert them into matrices in the basis $B_{1, \mathbf{u}}$ (computing $B_{1, \mathbf{u}}$ )
3. Convert them into the Gröbner basis $G_{2}$

## FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K\{\mathbf{X}\} / I$ has finite dimension
- B is a $K$-basis of $K\{\mathbf{X}\} / I$
- Any element of $K\{\mathbf{X}\} / I$ can be represented as a polynomial


## Outline of the algorithm

In: $G_{1}$ a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: $G_{2}$ a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{u}\}$ wrt $<_{2}$

1. Compute the matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1, \mathbf{r}}$
2. Convert them into matrices in the basis $B_{1, \mathbf{u}}$ (computing $B_{1, \mathbf{u}}$ )
3. Convert them into the Gröbner basis $G_{2}$

Complexity

- Complexity cubic in $\delta$
- Base complexity quasi-linear in the precision


## Iterative computation of the multiplication matrices

- Idea: need to compute $\operatorname{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations



## Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations



## Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations



## Iterative computation of the multiplication matrices

- Idea: need to compute $\operatorname{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations


3 cases:

1. $X_{i} m \in B: \rightarrow \mathrm{NF}\left(X_{i} m\right)=X_{i} m$
2. $X_{i} m=\mathrm{LT}(g)$ for $g \in G \rightarrow \mathrm{NF}\left(X_{i} m\right)=X_{i} m-g$
3. Otherwise, write $m=X_{j} m^{\prime}$ with

$$
\begin{aligned}
& \operatorname{NF}\left(X_{i} m^{\prime}\right)=\sum a_{\mu} \mu \\
& \rightarrow \operatorname{NF}\left(X_{i} m\right)=\operatorname{NF}\left(X_{j} X_{i} m^{\prime}\right)=\sum a_{\mu} \operatorname{NF}\left(X_{j} \mu\right)
\end{aligned}
$$

## Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations


1. $X_{i} m \in B: \rightarrow \mathrm{NF}\left(X_{i} m\right)=X_{i} m$
2. $X_{i} m=\mathrm{LT}(g)$ for $g \in G \rightarrow \mathrm{NF}\left(X_{i} m\right)=X_{i} m-g$
3. Otherwise, write $m=X_{j} m^{\prime}$ with

$$
\begin{aligned}
& \operatorname{NF}\left(X_{i} m^{\prime}\right)=\sum a_{\mu} \mu \\
& \rightarrow \operatorname{NF}\left(X_{i} m\right)=\operatorname{NF}\left(X_{j} X_{i} m^{\prime}\right)=\sum a_{\mu} \operatorname{NF}\left(X_{j} \mu\right)
\end{aligned}
$$

Why does it work?

- Usual case: NF $(m)$ only involves monomials smaller than $m$
- Tate case: not true, but if not their coefficient is smaller than 1 (i.e. divisible by $\pi$ )
- So we can recover the value $\bmod \pi$, and repeating $k$ times, the value $\bmod \pi^{k}$ :



## Two improvements on the computation of the multiplication matrices

Recursive computation:

- The previous algorithm relies on the order of the monomials
- Base complexity cubic in $\delta$ but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod $\pi^{k}$ as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- Fast arithmetic + relaxed algorithms $\rightarrow$ base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]


## Two improvements on the computation of the multiplication matrices

Recursive computation:

- The previous algorithm relies on the order of the monomials
- Base complexity cubic in $\delta$ but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod $\pi^{k}$ as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- Fast arithmetic + relaxed algorithms $\rightarrow$ base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:

- Usual case: need bases to be reduced to ensure structure of the order
- Here, we have to consider monomials which we have not yet seen in any case
- As long as the basis is reduced $\bmod \pi$, the hypotheses hold
- So FGLM (with same order and log-radii as input and output) gives an algorithm for interreduction with complexity quasi-linear in precision
- The complexity is not only bounded in terms of $\delta$ anymore


## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, \dot{x}-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !


## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $\left.J=\left\langle\begin{array}{c}\bullet \\ \bullet \\ \bullet \\ y^{2}-p x^{2}, \\ \bullet \\ \bullet \\ e\end{array}\right) \stackrel{\bullet}{p y^{3}}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
-Why does $x$ disappear from the staircase?
Consider $x^{4} \cdot x$


## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}$

## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}$

## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
$-I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $J=\left\langle\begin{array}{c}\bullet \\ \bullet \\ y^{2}-p x^{2}, \\ \bullet \\ e\end{array}-p y^{3}\right\rangle$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y$

## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $\left.J=\left\langle\begin{array}{c}\bullet \\ \bullet \\ \bullet \\ y^{2}-p x^{2}, \\ \bullet \\ \bullet \\ e\end{array}\right) \stackrel{\bullet}{p y^{3}}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}$

## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $J=\left\langle y^{2}-p x^{2}, \dot{\bullet}-p y^{3}\right\rangle$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$

## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
$-I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $J=\left\langle\begin{array}{c}\bullet \\ \bullet \\ y^{2}-p x^{2}, \\ \bullet \\ e\end{array}-p y^{3}\right\rangle$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$
so $x=p^{5} x^{5}$

## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
$-I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $J=\left\langle\begin{array}{c}\bullet \\ \bullet \\ y^{2}-p x^{2}, \\ \bullet \\ e\end{array}-p y^{3}\right\rangle$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$


## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
$-I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $J=\left\langle y^{2}-p x^{2}, \dot{\bullet}-p y^{3}\right\rangle$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$


## Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
$-I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $J=\left\langle\begin{array}{c}\bullet \\ \bullet \\ y^{2}-p x^{2}, \\ \bullet \\ x\end{array}-p y^{3}\right\rangle$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does $x$ disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$


## Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by $x$ :
$T_{x}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & p^{-1} & 0 & p^{-2} & 0 & p^{-3} \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right) \begin{gathered}1 \\ x \\ y \\ 1\end{gathered} x_{y}$

Characteristic polynomial:

$$
\chi_{x}=T^{6}-p^{-5} T^{2}
$$

## Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by $x$ :


Characteristic polynomial:

$$
\chi_{x}=T^{6}-p^{-5} T^{2}
$$



## Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by $x$ :


Characteristic polynomial:

$$
\begin{aligned}
\chi_{x} & =T^{6}-p^{-5} T^{2} \\
& =T^{2} \cdot\left(T^{4}-p^{-5}\right)
\end{aligned}
$$



## Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by $x$ :


Characteristic polynomial:

$$
\begin{aligned}
\chi_{x} & =T^{6}-p^{-5} T^{2} \\
& =T^{2} \cdot\left(T^{4}-p^{-5}\right)
\end{aligned}
$$



Slope factorization:

- $\operatorname{ker}\left(T_{x}^{4}-p^{-5}\right)$ : characteristic space with "eigenvalue" with valuation $-5 / 4<0$
$\rightarrow$ vectors sent to 0
- $\operatorname{ker}\left(T_{x}^{2}\right)$ : characteristic space with "eigenvalue" with valuation $\infty \geq 0$
$\rightarrow$ vectors in the staircase


## Characterization and construction of the new staircase

## Construction

- Inclusion $K\{\mathbf{X} ; \mathbf{r}\} \rightarrow K\{\mathbf{X} ; \mathbf{u}\} \rightsquigarrow \operatorname{map} \Phi: V=K\{\mathbf{X} ; \mathbf{r}\} / I \rightarrow K\{\mathbf{X} ; \mathbf{u}\} /(I K\{\mathbf{X} ; \mathbf{u}\})$
- $\Phi$ is surjective but not injective
- Vectors sent to 0 :

$$
N=\bigcap \text { "Eigenspace" of } T_{i} \text { with valuation }<u_{i}
$$

## Characterization and construction of the new staircase

## Construction

- Inclusion $K\{\mathbf{X} ; \mathbf{r}\} \rightarrow K\{\mathbf{X} ; \mathbf{u}\} \rightsquigarrow \operatorname{map} \Phi: V=K\{\mathbf{X} ; \mathbf{r}\} / I \rightarrow K\{\mathbf{X} ; \mathbf{u}\} /(I K\{\mathbf{X} ; \mathbf{u}\})$
- $\Phi$ is surjective but not injective
- Vectors sent to 0 :

$$
N=\bigcap \text { "Eigenspace" of } T_{i} \text { with valuation }<u_{i}
$$

- New quotient:

$$
K\{\mathbf{X} ; \mathbf{u}\} /(I+N)=\sum \text { "Eigenspace" of } T_{i} \text { with valuation } \geq u_{i}
$$

- Or simply compute a monomial basis of the quotient
- This linear algebra encodes a topological construction


## Full FGLM algorithm for Tate algebras

In: $G_{1}$ a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: $G_{2}$ a reduced Gröbner basis wrt $<_{2}$ in $K\{\mathbf{X} ; \mathbf{u}\}$

1. Compute the matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1, \mathrm{r}}$
2. Convert them into matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1, \mathrm{u}}$ (slope factorization)
3. Convert into the basis $G_{2}$
3.1 Use the usual algorithm modulo $\pi$ (in $\mathbb{F}$ ) to compute $B_{2, \mathbf{u}}$ and $\overline{G_{2}}$
3.2 Lift the linear algebra operations to obtain $G_{2}$

## Full FGLM algorithm for Tate algebras

In: $G_{1}$ a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: $G_{2}$ a reduced Gröbner basis wrt $<_{2}$ in $K\{\mathbf{X} ; \mathbf{u}\}$

1. Compute the matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1, \mathrm{r}}$
2. Convert them into matrices of multiplication by $X_{1}, \ldots, X_{n}$ in the basis $B_{1, \mathrm{u}}$ (slope factorization)
3. Convert into the basis $G_{2}$
3.1 Use the usual algorithm modulo $\pi$ (in $\mathbb{F}$ ) to compute $B_{2, \mathbf{u}}$ and $\overline{G_{2}}$
3.2 Lift the linear algebra operations to obtain $G_{2}$

Complexity

- Step 1 has base complexity $\tilde{O}\left(n \delta^{3}\right.$ prec)
- Each other step has arithmetic complexity $\tilde{O}\left(n \delta^{3}\right)$
- Final base complexity: $\tilde{O}\left(n \delta^{3}\right.$ prec $)$


## Conclusion

## Summary

- FGLM algorithm for Tate series
- Allows to perform interreduction and change of log-radii in dimension 0
- Complexity cubic in degree, quasi-linear in precision


## Conclusion

## Summary

- FGLM algorithm for Tate series
- Allows to perform interreduction and change of log-radii in dimension 0
- Complexity cubic in degree, quasi-linear in precision

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension


## Conclusion

## Summary

- FGLM algorithm for Tate series
- Allows to perform interreduction and change of log-radii in dimension 0
- Complexity cubic in degree, quasi-linear in precision

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension


## Thank you for your attention!

## References

- Gröbner bases over Tate algebras, ISSAC 2019
- Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
- On FGLM algorithms with Tate algebras, preprint 2021

