## FGLM algorithm over Tate algebras

Xavier Caruso<sup>1</sup>

Tristan Vaccon<sup>2</sup> Thibaut Verron<sup>3</sup>

- 1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
- 2. Université de Limoges, CNRS, XLIM, Limoges, France
- 3. Johannes Kepler University, Institute for Algebra, Linz, Austria

Seminar Algebra and Discrete Mathematics, 2021/04/15

# Setting and definitions

## Valued field, valuation ring

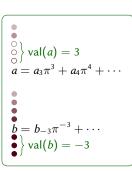
- ► Field with a valuation val :  $K \to \mathbb{Z} \cup \infty$   $\mathbb{Q}_p$  k((X))
- ► Integer ring  $K^{\circ} = \{x : val(x) \ge 0\}$   $\mathbb{Z}_p \quad k[X]$
- ▶ Uniformizer  $\pi$  s.t.  $\pi K^{\circ} = \{x : val(x) \ge 1\}$  p X

## Metric and topology

- "a is small"  $\iff$  "val(a) is large"
- ► Non-archimedean metric: "small + small = small"
- ▶  $\mathbb{Q}_p$ ,  $\mathbb{Z}_p$ , k((X)), k[X] are complete for that topology

## Rigid geometry and Tate series

- "Algebraic geometry, analytic geometry" bridge for non-archimedean geometry
- Main object: Tate series



#### Tate series

#### **Definitions**

 $\mathbf{r} \in \mathbb{O}^n$ : convergence (log)-radii

- ► Tate algebra  $K\{X_1, \ldots, X_n; r_1, \ldots, r_n\} = K\{X; r\}$
- Set of series  $\sum a_{\alpha} X_1^{\alpha_1} \cdots X_n^{\alpha_n}$  with val $(a_{\alpha}) \sum r_j \alpha_j \to \infty$
- "Convergent for substitutions with val $(x_i) \geq -r_i$ "
- smaller  $r_i \iff$  smaller convergence radius  $\iff$  larger algebra
- Convention:  $r_i = \infty \rightarrow \text{finitely many terms in } X_i \text{ (polynomial)}$

## Examples:

Polynomials are Tate series for all radii (finite sums)



- - ▶  $f \in K\{X\} = K\{X: 0\}$
  - $f \notin K\{X; 1\}$ : for all terms,  $val(\pi^{\alpha}) \alpha = 0 \nrightarrow \infty$

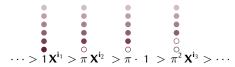
## Gröbner bases over Tate algebras

#### Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions
- Requires the definition of an ordering on terms

#### Construction for Tate series

- Term order considering terms according to the valuation of their coefficient
- ▶ First compare val $(a_{\alpha})$  −  $\sum r_{j}\alpha_{j}$ , break ties with a monomial order



- ► Convergent reductions (interrupted at the precision bound) instead of terminating ones
- Allows to use usual algorithms (Buchberger, F4) to compute Gröbner bases

## Complexity bottleneck: reductions

#### Cost of reductions

- Not unusual with Gröbner bases
- ▶ Tate case: reductions are interrupted at the precision bound
- ► The cost grows badly with the precision
- ▶ **Question:** can we compute reductions in time quasi-linear in the precision?

## Ideas for possible improvement:

- Avoid useless reductions to zero
- Speed-up interreductions
- Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii  $\infty$ ) seen as Tate series

## Complexity bottleneck: reductions

#### Cost of reductions

- Not unusual with Gröbner bases
- ▶ Tate case: reductions are interrupted at the precision bound
- ► The cost grows badly with the precision
- ▶ Question: can we compute reductions in time quasi-linear in the precision?

#### Ideas for possible improvement:

- ► Avoid useless reductions to zero Signature algorithms [CVV 2020]
- Speed-up interreductions
- Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii  $\infty$ ) seen as Tate series

## Complexity bottleneck: reductions

#### Cost of reductions

- Not unusual with Gröbner bases
- ▶ Tate case: reductions are interrupted at the precision bound
- ► The cost grows badly with the precision
- ▶ Question: can we compute reductions in time quasi-linear in the precision?

#### Ideas for possible improvement:

- ► Avoid useless reductions to zero Signature algorithms [CVV 2020]
- ► Speed-up interreductions
- ► Exploit overconvergence In dim. 0: with FGLM [this work]

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii  $\infty$ ) seen as Tate series

# Change of ordering and the FGLM algorithm

## Change of ordering:

- Useful in the classical case for two-steps strategies
- ► For zero-dimensional ideals, can be done efficiently with the FGLM algorithm [Faugère, Gianni, Lazard, Mora 1993]

### For Tate algebras:

- Change of monomial ordering
- But also change of term ordering and radius of convergence

### Idea for overconvergence:

- 1. Compute a Gröbner basis in the smaller Tate algebra
- 2. Use change of ordering to restrict to the larger one

# Characteristics of the FGLM algorithm

#### 0-dimensional ideals:

- Variety = finitely many points
- Quotient K[X]/I has finite dimension as a vector space over K
- Given a Gröbner basis G, the staircase under G is
  B = {m monomial not divisible by any LT of G}
- ▶ B is a K-basis of K[X]/I

### Outline of the algorithm:

In:  $G_1$  a reduced Gröbner basis wrt an order  $<_1$ 

<2 a monomial order

Out:  $G_2$  a reduced Gröbner basis wrt  $<_2$ 

- 1. Compute the matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_1$  (computing  $B_1$ )
- 2. Convert them into the Gröbner basis  $G_2$  (computing  $B_2$ )

## Characteristics of the FGLM algorithm

#### 0-dimensional ideals:

- Variety = finitely many points
- Quotient K[X]/I has finite dimension as a vector space over K
- Given a Gröbner basis G, the staircase under G is
  B = {m monomial not divisible by any LT of G}
- ▶ B is a K-basis of K[X]/I

### Outline of the algorithm:

In:  $G_1$  a reduced Gröbner basis wrt an order  $<_1$ 

<2 a monomial order

Out:  $G_2$  a reduced Gröbner basis wrt  $<_2$ 

- 1. Compute the matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_1$  (computing  $B_1$ )
- 2. Convert them into the Gröbner basis  $G_2$  (computing  $B_2$ )

### Complexity

- ▶ Degree  $\delta$  of the ideal = size of B = number of solutions (with multiplicity)
- Complexity cubic (or subcubic) in \( \delta \)

## FGLM algorithm for Tate ideals

#### 0-dimensional Tate ideals

- ▶ Same definition as in the polynomial case:  $K\{X\}/I$  has finite dimension
- ▶ B is a K-basis of  $K\{X\}/I$
- ► Any element of  $K\{X\}/I$  can be represented as a **polynomial**

## FGLM algorithm for Tate ideals

#### 0-dimensional Tate ideals

- ▶ Same definition as in the polynomial case:  $K\{X\}/I$  has finite dimension
- ▶ B is a K-basis of  $K\{X\}/I$
- ▶ Any element of  $K\{X\}/I$  can be represented as a **polynomial**

## Outline of the algorithm

In:  $G_1$  a reduced Gröbner basis in  $K\{X; r\}$  wrt an order  $<_1$   $<_2$  a monomial order  $\mathbf{u} \le \mathbf{r}$  a system of log-radii

Out:  $G_2$  a reduced Gröbner basis in  $K\{X; u\}$  wrt  $<_2$ 

- 1. Compute the matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_{1,\mathbf{r}}$
- 2. Convert them into matrices in the basis  $B_{1,\mathbf{u}}$  (computing  $B_{1,\mathbf{u}}$ )
- 3. Convert them into the Gröbner basis  $G_2$

## FGLM algorithm for Tate ideals

#### 0-dimensional Tate ideals

- ▶ Same definition as in the polynomial case:  $K\{X\}/I$  has finite dimension
- $\triangleright$  B is a K-basis of  $K\{X\}/I$
- ▶ Any element of  $K\{X\}/I$  can be represented as a **polynomial**

## Outline of the algorithm

```
In: G_1 a reduced Gröbner basis in K\{X; r\} wrt an order <_1 <_2 a monomial order u \le r a system of log-radii
```

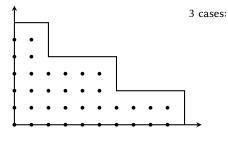
Out:  $G_2$  a reduced Gröbner basis in  $K\{X; u\}$  wrt  $<_2$ 

- 1. Compute the matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_{1,\mathbf{r}}$
- 2. Convert them into matrices in the basis  $B_{1,\mathbf{u}}$  (computing  $B_{1,\mathbf{u}}$ )
- 3. Convert them into the Gröbner basis  $G_2$

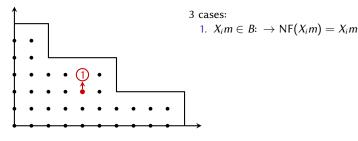
## Complexity

- Complexity cubic in  $\delta$
- Base complexity quasi-linear in the precision

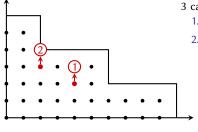
- ▶ Idea: need to compute NF( $X_i m$ ) for all  $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



- ▶ Idea: need to compute NF( $X_i m$ ) for all  $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



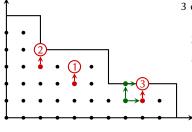
- ▶ Idea: need to compute NF( $X_i m$ ) for all  $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



#### 3 cases:

- 1.  $X_i m \in B: \rightarrow NF(X_i m) = X_i m$
- 2.  $X_i m = \mathsf{LT}(g)$  for  $g \in G \to \mathsf{NF}(X_i m) = X_i m g$

- ▶ Idea: need to compute NF( $X_i m$ ) for all  $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



#### 3 cases:

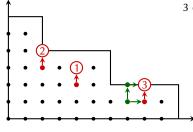
1. 
$$X_i m \in B: \rightarrow NF(X_i m) = X_i m$$

2. 
$$X_i m = \mathsf{LT}(g)$$
 for  $g \in G \to \mathsf{NF}(X_i m) = X_i m - g$ 

3. Otherwise, write  $m = X_j m'$  with NF( $X_i m'$ ) =  $\sum a_{\mu} \mu$ 

$$ightarrow NF(X_im) = NF(X_jX_im') = \sum a_\mu NF(X_j\mu)$$

- ▶ Idea: need to compute NF( $X_i m$ ) for all  $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



#### 3 cases:

1. 
$$X_i m \in B: \rightarrow NF(X_i m) = X_i m$$

2. 
$$X_i m = LT(g)$$
 for  $g \in G \rightarrow NF(X_i m) = X_i m - g$ 

3. Otherwise, write  $m = X_j m'$  with  $NF(X_i m') = \sum a_{\mu} \mu$ 

$$ightarrow NF(X_im) = NF(X_jX_im') = \sum a_\mu NF(X_j\mu)$$

### Why does it work?

- ▶ Usual case: NF(m) only involves monomials smaller than m
- ▶ Tate case: not true, but if not their coefficient is smaller than 1 (i.e. divisible by  $\pi$ )
- So we can recover the value mod  $\pi$ , and repeating k times, the value mod  $\pi^k$ :

$$\begin{array}{cccc} ? & ? & ? \\ \bullet & ? & \bullet \\ \circ & \bullet & \circ \\ a \cdot b = ab \end{array}$$

## Two improvements on the computation of the multiplication matrices

### Recursive computation:

- ▶ The previous algorithm relies on the order of the monomials
- lacktriangle Base complexity cubic in  $\delta$  but quadratic in the precision
- lacktriangle Alternative: recursive algorithm, computing the coefficients mod  $\pi^k$  as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- ► Fast arithmetic + relaxed algorithms → base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

## Two improvements on the computation of the multiplication matrices

### Recursive computation:

- ▶ The previous algorithm relies on the order of the monomials
- ightharpoonup Base complexity cubic in  $\delta$  but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod  $\pi^k$  as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- Fast arithmetic + relaxed algorithms → base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

#### Non-reduced bases:

- Usual case: need bases to be reduced to ensure structure of the order
- ▶ Here, we have to consider monomials which we have not yet seen in any case
- As long as the basis is reduced mod  $\pi$ , the hypotheses hold
- So FGLM (with same order and log-radii as input and output)
   gives an algorithm for interreduction with complexity quasi-linear in precision
- lacktriangle The complexity is not only bounded in terms of  $\delta$  anymore

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$



 $\triangleright$   $B_2 = \{1, y\}, \text{ degree } 2!$ 

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$



► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider  $x^4 \cdot x$ 

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

▶ 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2$$

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4$$

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y$$

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

► 
$$K{x,y}$$
: **u** = (0,0)

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3$$

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

► 
$$K\{x,y\}$$
: **u** = (0,0)

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

$$I = \langle v^2 - px^2, x - pv^3 \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

▶ 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

• 00

so 
$$x = p^5 x^5$$

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$
  
so  $x = p^5x^5 = p^{10}x^9$ 

## Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► 
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$I = \langle v^2 - px^2, x - pv^3 \rangle$$

► 
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$
  
so  $x = p^5x^5 = p^{10}x^9 = \cdots = 0$ 

## Example with $K = \mathbb{Q}_p$

ightharpoonup K[x,y]:  $\mathbf{r}=(\infty,\infty)$ 

 $K\{x,y\}: \mathbf{u} = (0,0)$ 

 $I = \langle px^2 - y^2, py^3 - x \rangle$ 

- $I = \langle v^2 px^2, x pv^3 \rangle$
- ▶ Why does *x* disappear from the staircase?

Consider 
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

- so  $x = p^5 x^5 = p^{10} x^9 = \cdots = 0$  or equivalently  $x(1 p^5 x^4) = 0 \implies x = 0$ .

Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

Characteristic polynomial:

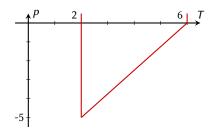
$$\chi_x = T^6 - p^{-5}T^2$$

Problem: how to detect this phenomenon in general?

## Consider the multiplication matrix by x:

## Characteristic polynomial:

$$\chi_x = T^6 - p^{-5}T^2$$



Problem: how to detect this phenomenon in general?

## Consider the multiplication matrix by x:

Consider the multiplication matrix by 
$$x$$
:

$$T_{x} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & p^{-1} & 0 & p^{-2} & 0 & p^{-3} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 1 & x & y & xy & y^{2} & xy^{2} \end{pmatrix}$$

Characteristic polynomial:
$$\chi_{x} = T^{6} - p^{-5}T^{2}$$

$$= T^{2} \cdot (T^{4} - p^{-5})$$

$$x$$

$$y$$

$$y^{2}$$

$$0 & p^{-1} & 0 & p^{-2} & 0 & p^{-3} \\ 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 1 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 & 0 & xy^{2} \\ 0 & 0 & 0 &$$

## Characteristic polynomial:

$$\chi_{x} = T^{6} - p^{-5}T^{2}$$

$$= T^{2} \cdot (T^{4} - p^{-5})$$
Slope:
$$0$$
Slope: 5/4

Problem: how to detect this phenomenon in general?

## Consider the multiplication matrix by x:

### Characteristic polynomial:

$$\chi_x = T^6 - p^{-5}T^2$$

$$= T^2 \cdot (T^4 - p^{-5})$$
Slope:
$$\infty$$
Slope: 5/4

### Slope factorization:

- ▶ ker $(T_x^4 p^{-5})$ : characteristic space with "eigenvalue" with valuation -5/4 < 0 $\rightarrow$  vectors sent to 0
- $\triangleright$  ker( $T_x^2$ ): characteristic space with "eigenvalue" with valuation  $\infty > 0$ → vectors in the staircase

### Characterization and construction of the new staircase

#### Construction

- ▶ Inclusion  $K\{\mathbf{X};\mathbf{r}\} \to K\{\mathbf{X};\mathbf{u}\} \leadsto \mathsf{map}\ \Phi: V = K\{\mathbf{X};\mathbf{r}\}/I \to K\{\mathbf{X};\mathbf{u}\}/(IK\{\mathbf{X};\mathbf{u}\})$
- Φ is surjective but not injective
- Vectors sent to 0:

$$N = \bigcap$$
 "Eigenspace" of  $T_i$  with valuation  $< u_i$ 

### Characterization and construction of the new staircase

#### Construction

- ▶ Inclusion  $K\{X; r\} \rightarrow K\{X; u\} \rightsquigarrow \text{map } \Phi : V = K\{X; r\}/I \rightarrow K\{X; u\}/(IK\{X; u\})$
- Φ is surjective but not injective
- Vectors sent to 0:

$$N = \bigcap$$
 "Eigenspace" of  $T_i$  with valuation  $< u_i$ 

New quotient:

$$K\{X; \mathbf{u}\}/(I+N) = \sum$$
 "Eigenspace" of  $T_i$  with valuation  $\geq u_i$ 

- Or simply compute a monomial basis of the quotient
- This linear algebra encodes a topological construction

# Full FGLM algorithm for Tate algebras

- In:  $G_1$  a reduced Gröbner basis in  $K\{X; r\}$  wrt an order  $<_1$   $<_2$  a monomial order
  - $\mathbf{u} \leq \mathbf{r}$  a system of log-radii
- Out:  $G_2$  a reduced Gröbner basis wrt  $<_2$  in  $K\{X; u\}$ 
  - 1. Compute the matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_{1,\mathbf{r}}$
  - 2. Convert them into matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_{1,\mathbf{u}}$  (slope factorization)
  - 3. Convert into the basis  $G_2$ 
    - 3.1 Use the usual algorithm modulo  $\pi$  (in  $\mathbb{F}$ ) to compute  $B_{2,\mathbf{u}}$  and  $\overline{G_2}$
    - 3.2 Lift the linear algebra operations to obtain  $G_2$

# Full FGLM algorithm for Tate algebras

- In:  $G_1$  a reduced Gröbner basis in  $K\{X; r\}$  wrt an order  $<_1$   $<_2$  a monomial order
  - $\mathbf{u} \leq \mathbf{r}$  a system of log-radii
- Out:  $G_2$  a reduced Gröbner basis wrt  $<_2$  in  $K\{X; u\}$ 
  - 1. Compute the matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_{1,\mathbf{r}}$
  - 2. Convert them into matrices of multiplication by  $X_1, \ldots, X_n$  in the basis  $B_{1,\mathbf{u}}$  (slope factorization)
  - 3. Convert into the basis  $G_2$ 
    - 3.1 Use the usual algorithm modulo  $\pi$  (in  $\mathbb{F}$ ) to compute  $B_{2,\mathbf{u}}$  and  $\overline{G_2}$
    - 3.2 Lift the linear algebra operations to obtain  $G_2$

## Complexity

- Step 1 has base complexity  $\tilde{O}(n\delta^3 \text{prec})$
- Each other step has arithmetic complexity  $\tilde{O}(n\delta^3)$
- Final base complexity:  $\tilde{O}(n\delta^3 \text{prec})$

## Conclusion

## Summary

- ► FGLM algorithm for Tate series
- ► Allows to perform interreduction and change of log-radii in dimension 0
- ► Complexity cubic in degree, quasi-linear in precision

#### Conclusion

## Summary

- FGLM algorithm for Tate series
- ► Allows to perform interreduction and change of log-radii in dimension 0
- Complexity cubic in degree, quasi-linear in precision

#### Future work

- Integrate FGLM in the tate\_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension

#### Conclusion

#### Summary

- ► FGLM algorithm for Tate series
- Allows to perform interreduction and change of log-radii in dimension 0
- Complexity cubic in degree, quasi-linear in precision

#### Future work

- Integrate FGLM in the tate\_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- ▶ Improve the complexity of reduction in positive dimension

# Thank you for your attention!

#### References

- Gröbner bases over Tate algebras, ISSAC 2019
- Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
- On FGLM algorithms with Tate algebras, preprint 2021