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Se�ing and definitions

Valued field, valuation ring

I Field with a valuation val : K → Z ∪∞ Qp k((X))

I Integer ring K◦ = {x : val(x) ≥ 0} Zp k[[X ]]

I Uniformizer π s.t. πK◦ = {x : val(x) ≥ 1} p X

a = a3π
3 + a4π

4 + · · ·

b = b−3π
−3 + · · ·

val(a) = 3

val(b) = −3Metric and topology
I “a is small” ⇐⇒ “val(a) is large”
I Non-archimedean metric: “small + small = small”
I Qp,Zp, k((X)), k[[X ]] are complete for that topology

Rigid geometry and Tate series
I “Algebraic geometry, analytic geometry” bridge for non-archimedean geometry
I Main object: Tate series
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Tate series

Definitions
I Tate algebra K{X1, . . . , Xn; r1, . . . , rn } = K{X; r}

I Set of series
∑
α∈Nn

aαXα1
1 · · ·X

αn
n with val(aα)−

∑
rjαj →∞

I “Convergent for substitutions with val(xi) ≥ −ri”
I smaller ri ⇐⇒ smaller convergence radius ⇐⇒ larger algebra
I Convention: ri =∞→ finitely many terms in Xi (polynomial)

r ∈ Qn: convergence (log)-radii

Examples:
I Polynomials are Tate series for all radii (finite sums)

I f =
∞∑

i,j=0

πiX i = 1 + πX + π2X 2 + π3X 3 + · · ·

I f ∈ K{X} = K{X ; 0}
I f /∈ K{X ; 1} : for all terms, val(πα)− α = 0 6→ ∞
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Gröbner bases over Tate algebras

Gröbner bases:
I Multi-purpose tool for ideal arithmetic in polynomial algebras
I Membership testing, elimination, intersection...
I Uses successive (terminating) reductions
I Requires the definition of an ordering on terms

Construction for Tate series
I Term order considering terms according to the valuation of their coe�icient
I First compare val(aα)−

∑
rjαj , break ties with a monomial order

· · · > 1 Xi1 > π Xi2 > π · 1 > π2 Xi3 > · · ·

I Convergent reductions (interrupted at the precision bound) instead of terminating ones
I Allows to use usual algorithms (Buchberger, F4) to compute Gröbner bases
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Complexity bo�leneck: reductions

Cost of reductions
I Not unusual with Gröbner bases
I Tate case: reductions are interrupted at the precision bound
I The cost grows badly with the precision
I �estion: can we compute reductions in time quasi-linear in the precision?

Ideas for possible improvement:
I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series
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In dim. 0: with FGLM [this work]
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Change of ordering and the FGLM algorithm

Change of ordering:
I Useful in the classical case for two-steps strategies
I For zero-dimensional ideals, can be done e�iciently with the FGLM algorithm

[Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:
I Change of monomial ordering
I But also change of term ordering and radius of convergence

Idea for overconvergence:

1. Compute a Gröbner basis in the smaller Tate algebra

2. Use change of ordering to restrict to the larger one
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Characteristics of the FGLM algorithm

0-dimensional ideals:
I Variety = finitely many points
I �otient K [X]/I has finite dimension as a vector space over K
I Given a Gröbner basis G, the staircase under G is

B = {m monomial not divisible by any LT of G}
I B is a K -basis of K [X]/I

Outline of the algorithm:

In: G1 a reduced Gröbner basis wrt an order <1

<2 a monomial order

Out: G2 a reduced Gröbner basis wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1 (computing B1)

2. Convert them into the Gröbner basis G2 (computing B2)

Complexity
I Degree δ of the ideal = size of B = number of solutions (with multiplicity)
I Complexity cubic (or subcubic) in δ
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FGLM algorithm for Tate ideals

0-dimensional Tate ideals
I Same definition as in the polynomial case: K{X}/I has finite dimension
I B is a K -basis of K{X}/I
I Any element of K{X}/I can be represented as a polynomial

Outline of the algorithm

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis in K{X; u} wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices in the basis B1,u (computing B1,u)

3. Convert them into the Gröbner basis G2

Complexity
I Complexity cubic in δ
I Base complexity quasi-linear in the precision
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Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

3 cases:

1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?
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Two improvements on the computation of the multiplication matrices

Recursive computation:
I The previous algorithm relies on the order of the monomials
I Base complexity cubic in δ but quadratic in the precision
I Alternative: recursive algorithm, computing the coe�icients mod πk as needed
I Gives an order-agnostic algorithm which also works with non-0 log-radii
I Fast arithmetic + relaxed algorithms→ base complexity quasi-linear in the precision

[van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:
I Usual case: need bases to be reduced to ensure structure of the order
I Here, we have to consider monomials which we have not yet seen in any case
I As long as the basis is reduced mod π, the hypotheses hold
I So FGLM (with same order and log-radii as input and output)

gives an algorithm for interreduction with complexity quasi-linear in precision
I The complexity is not only bounded in terms of δ anymore
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Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p

x3y2 =
1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.
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Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Characteristic polynomial:
χx = T 6 − p−5T 2

= T 2 · (T 4 − p−5)

p T2 6

-5

Slope factorization:
I ker(T 4

x − p−5) : characteristic space with “eigenvalue” with valuation −5/4 < 0
→ vectors sent to 0

I ker(T 2
x ) : characteristic space with “eigenvalue” with valuation ∞ ≥ 0

→ vectors in the staircase
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Characterization and construction of the new staircase

Construction
I Inclusion K{X; r} → K{X; u} map Φ : V = K{X; r}/I → K{X; u}/(I K{X; u})
I Φ is surjective but not injective
I Vectors sent to 0:

N =
⋂

“Eigenspace” of Ti with valuation < ui

I New quotient:

K{X; u}/(I + N) =
∑

“Eigenspace” of Ti with valuation ≥ ui

I Or simply compute a monomial basis of the quotient

I This linear algebra encodes a topological construction
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Full FGLM algorithm for Tate algebras

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis wrt <2 in K{X; u}

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices of multiplication by X1, . . . , Xn in the basis B1,u

(slope factorization)

3. Convert into the basis G2

3.1 Use the usual algorithm modulo π (in F) to compute B2,u and G2

3.2 Li� the linear algebra operations to obtain G2

Complexity
I Step 1 has base complexity Õ(nδ3prec)

I Each other step has arithmetic complexity Õ(nδ3)

I Final base complexity: Õ(nδ3prec)
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Conclusion

Summary
I FGLM algorithm for Tate series
I Allows to perform interreduction and change of log-radii in dimension 0
I Complexity cubic in degree, quasi-linear in precision

Future work
I Integrate FGLM in the tate_algebra package of SageMath
I Generalizations of the interreduction in the middle of GB calculations
I Improve the complexity of reduction in positive dimension

Thank you for your a�ention!
References
I Gröbner bases over Tate algebras, ISSAC 2019
I Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
I On FGLM algorithms with Tate algebras, preprint 2021
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