Two signature-based variants of Buchberger's algorithm for Gröbner bases over principal ideal domains

Maria Francis¹, Thibaut Verron²

- 1. Indian Institute of Technology Hyderabad, Hyderabad, India
- 2. Institute for Algebra, Johannes Kepler University, Linz, Austria

Séminaire "Calcul formel", Université de Limoges, 30 mars 2021

- ► Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (cryptography, number theory...)

Leading term, monomial, coefficient: R ring, $A = R[X_1, ..., X_n]$ with a monomial order <

$$f = \begin{array}{c} \operatorname{lt}(f) \\ f = \begin{array}{c} \mathbf{C} \cdot \mathbf{X}^{\mathbf{a}} + & \operatorname{smaller terms} \\ \operatorname{lc}(f) & \operatorname{Im}(f) \end{array}$$

Definition (Weak/strong Gröbner basis)

$$G \subset I = \langle f_1, \ldots, f_m \rangle$$

- ▶ G is a weak Gröbner basis $\iff \langle \mathsf{lt}(f) : f \in I \rangle = \langle \mathsf{lt}(g) : g \in G \rangle$
- G is a strong Gröbner basis \iff for all $f \in I$, f reduces to 0 modulo G

Strong \implies weak, and they are equivalent if R is a field

- 1. Selection: different strategies
- 2. Construction: S-polynomials: S-Pol $(g_i,g_j) = \frac{\operatorname{lcmlt}(g_i,g_j)}{\operatorname{lt}(g_i)}g_j \frac{\operatorname{lcmlt}(g_i,g_j)}{\operatorname{lt}(g_j)}g_j$
- 3. Reduction: if lt(f) = tlt(g), $f \rightarrow f tg$

Two questions:

- ► How to compute S-polynomials?
- How to compute reductions?

Buchberger (1965) Faugère: F4 (1999) Field Usual // Usual Usual // Usual (linear algebra)

Two questions:

- ► How to compute S-polynomials?
- How to compute reductions?

Usual // Usual Buchberger (1965) Usual // Usual (linear algebra) Faugère: F4 (1999) Field General (Noetherian) ring Möller weak (1988) Multiple // Multiple

Two questions:

- ► How to compute S-polynomials?
- How to compute reductions?

Two questions:

- ► How to compute S-polynomials?
- How to compute reductions?

```
Buchberger (1965)
                                                         Usual // Usual
                                                         Usual // Usual (linear algebra)
                    Faugère: F4 (1999)
Field
                                                         Usual and G-pols // Usual
                  Kandri-Rody, Kapur (1988)
Euclidean ring
                             Lichtblau (2012)
                                                         Usual or G-pols // Usual
                              Möller strong (1988)
                                                         Usual // Usual with G-pol
                        Kandri-Rody, Kapur (1988)
                                                         Usual and G-pols // Usual
Principal ideal domain
                                        Pan (1989)
                                                         Usual or G-pols // Usual
General (Noetherian) ring
                                   Möller weak (1988)
                                                         Multiple // Multiple
```

This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau

Problem: ∰: useless computations — → ❖

Simple example

$$p = p_1f_1 + p_2f_2 + \cdots + p_mf_m$$

$$q = q_1f_1 + q_2f_2 + \cdots + q_mf_m$$

p - q = 0?

Problem: 🕮: useless computations → 🗘

▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]

Simple example

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_m \mathbf{e}_m$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_m \mathbf{e}_m$$

$$p-q=0$$
?
 $\mathbf{p}-\mathbf{q}=(p_1\mathbf{e}_1+\cdots+p_m\mathbf{e}_m)-(q_1\mathbf{e}_1+\cdots+q_m\mathbf{e}_m)$

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- ▶ 2nd idea: we do not need the full representation, the largest term is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

Simple example

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_m \mathbf{e}_m$$

$$= \operatorname{lt}(p_k) \mathbf{e}_k + \operatorname{smaller terms}$$

$$q = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_m \mathbf{e}_m$$

$$= \operatorname{lt}(q_l) \mathbf{e}_l + \operatorname{smaller terms}$$

$$p-q=0$$
?
 $\mathbf{p}-\mathbf{q}=(p_1\mathbf{e}_1+\cdots+p_m\mathbf{e}_m)-(q_1\mathbf{e}_1+\cdots+q_m\mathbf{e}_m)$
 $=\operatorname{lt}(p_k)\mathbf{e}_k-\operatorname{lt}(q_l)\mathbf{e}_l+\operatorname{smaller terms}$

Problem: 🗐: useless computations →

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- ▶ 2nd idea: we do not need the full representation, the largest term is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

Simple example

$$p = p_1 f_1 + p_2 f_2 + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_m f_m$$

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_m \mathbf{e}_m$$

$$= \mathsf{lt}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$$

$$q = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_m \mathbf{e}_m$$

$$= \mathsf{lt}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$$

$$p - q = 0?$$

$$\mathbf{p} - \mathbf{q} = (p_1 \mathbf{e}_1 + \dots + p_m \mathbf{e}_m) - (q_1 \mathbf{e}_1 + \dots + q_m \mathbf{e}_m)$$

$$= \operatorname{lt}(p_k) \mathbf{e}_k - \operatorname{lt}(q_l) \mathbf{e}_l + \operatorname{smaller terms}$$

$$= \operatorname{lt}(p_k) \mathbf{e}_k + \operatorname{smaller terms} \quad \text{if } \operatorname{lt}(p_k) \mathbf{e}_k \geq \operatorname{lt}(q_l) \mathbf{e}_l$$

Problem: ⊞: useless computations → ❖

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- ▶ 2nd idea: we do not need the full representation, the largest term is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

 $q = q_1 f_1 + q_2 f_2 + \cdots + q_m f_m$

Simple example

 $p = p_1 f_1 + p_2 f_2 + \cdots + p_m f_m$

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_m \mathbf{e}_m$$

$$= |\mathsf{lt}(p_k)\mathbf{e}_k| + \text{smaller terms}$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_m \mathbf{e}_m$$

$$= |\mathsf{lt}(p_k)\mathbf{e}_k| + \text{smaller terms}$$

$$\mathbf{sig}(p) = \mathbf{signature of } p$$

$$p - q = 0?$$

$$\mathbf{p} - \mathbf{q} = (p_1 \mathbf{e}_1 + \dots + p_m \mathbf{e}_m) - (q_1 \mathbf{e}_1 + \dots + q_m \mathbf{e}_m)$$

$$= |\mathsf{lt}(p_k)\mathbf{e}_k| - |\mathsf{lt}(q_l)\mathbf{e}_l| + \text{smaller terms}$$

$$= |\mathsf{lt}(p_k)\mathbf{e}_k| + \text{smaller terms} \quad \text{if } |\mathsf{lt}(p_k)\mathbf{e}_k| \ge |\mathsf{lt}(q_l)\mathbf{e}_l| \quad \text{Regular addition}$$

.

First ingredient: module term ordering

- ▶ Ideal: $I = \langle f_1, \ldots, f_m \rangle = \{ f = p_1 f_1 + \cdots + p_m f_m \} \subset A$
- ▶ Module: $\mathcal{I} = \{\mathbf{f} = (p_1, \dots, p_m, f) : f = p_1 f_1 + \dots + p_m f_m\} \subset A^{m+1}$ Module part Polynomial part
- $ightharpoonup \mathcal{I}$ is free with basis $\{(\mathbf{e}_i, f_i) = (0, \dots, 1, \dots, 0, f_i) : i \in \{1 \dots m\}\}$

First ingredient: module term ordering

- ▶ Ideal: $I = \langle f_1, \ldots, f_m \rangle = \{ f = p_1 f_1 + \cdots + p_m f_m \} \subset A$
- Module: $\mathcal{I} = \{\mathbf{f} = (p_1, \dots, p_m, f) : f = p_1 f_1 + \dots + p_m f_m\} \subset A^{m+1}$ Module part Polynomial part
- ▶ \mathcal{I} is free with basis $\{(\mathbf{e}_i, f_i) = (0, \dots, 1, \dots, 0, f_i) : i \in \{1 \dots m\}\}$

Definition: signatures

- ► Signature ordering: monomial ordering < on $Mon(A^m) = \{\mu \mathbf{e}_i\}$
- ► Signature of **f**: largest term $t\mathbf{e}_i$ with t in the support of p_i

Examples:

First ingredient: module term ordering

- ▶ Ideal: $I = \langle f_1, \ldots, f_m \rangle = \{ f = p_1 f_1 + \cdots + p_m f_m \} \subset A$
- ► Module: $\mathcal{I} = \{\mathbf{f} = (p_1, \dots, p_m, f) : f = p_1 f_1 + \dots + p_m f_m\} \subset A^{m+1}$ Module part Polynomial part
- ▶ \mathcal{I} is free with basis $\{(\mathbf{e}_i, f_i) = (0, \dots, 1, \dots, 0, f_i) : i \in \{1 \dots m\}\}$

Definition: signatures

- ► Signature ordering: monomial ordering < on $Mon(A^m) = \{\mu \mathbf{e}_i\}$
- ► Signature of **f**: largest term $t\mathbf{e}_i$ with t in the support of p_i

Examples:

- ▶ $\mu \mathbf{e}_i \prec_{\mathsf{PoT}} \nu \mathbf{e}_j \iff i < j, \text{ or if equal, } \mu < \nu$ Position over Term
- $\mu \mathbf{e}_i \prec_{\mathsf{ToP}} \nu \mathbf{e}_j \iff \mu < \nu, \text{ or if equal, } i < j$ Term over Position

Warning: < is a partial order on terms

- $ightharpoonup s \simeq t \iff$ incomparable or equal, it is an equivalence relation
- ▶ $\mathbf{s} \leq \mathbf{t} \iff \mathbf{s} < \mathbf{t} \text{ or } \mathbf{s} \simeq \mathbf{t}$

Second ingredient: s-reductions

Notation: leading terms, monomials, coefficients of elements of $\mathcal I$ refer to the polynomial part

Definition: s-reductions

f s-reduces to **h** modulo **g** if:

- $\mathsf{tlt}(\mathsf{g}) = \mathsf{lt}(\mathsf{f})$
- h = f tg
- ▶ $tsig(g) \le sig(f)$

Properties

- ▶ lt(h) < lt(f)</p>
- $ightharpoonup \operatorname{sig}(h) \leq \operatorname{sig}(f)$

Definition: signature Gröbner basis

$$\mathcal{G} \subset \mathcal{I} \subset A^{m+1}$$

▶ \mathcal{G} is a signature (strong) Gröbner basis \iff for all $\mathbf{f} \in \mathcal{I}$, \mathbf{f} s-reduces to 0 modulo \mathcal{G} .

Third ingredient: regular operations

Definition: regular operations

- Consider the sum $\mathbf{h} = \mathbf{f} + \mathbf{g}$ with $sig(\mathbf{f}) \le sig(\mathbf{g})$.
 - ► Regular operation \iff sig(**f**) \leq sig(**g**) \longrightarrow sig(**h**) = sig(**g**) \checkmark
 - ► Singular operation \iff sig(f) = -sig(g) \longrightarrow sig(h) \nleq sig(g) (discarded elements)

Third ingredient: regular operations

Definition: regular operations

Consider the sum $\mathbf{h} = \mathbf{f} + \mathbf{g}$ with $sig(\mathbf{f}) \le sig(\mathbf{g})$.

- ▶ Regular operation \iff sig(f) \leq sig(g) \longrightarrow sig(h) = sig(g) \checkmark
- ► Singular operation \iff $sig(f) = -sig(g) \longrightarrow sig(h) \nleq sig(g)$ (discarded elements)

Idea of the signature-based algorithms:

- 1. Pick next elements with smallest signature
 - 2. Build new elements using regular S-polynomials
 - 3. Only perform regular s-reductions

Key properties

- Signatures do not decrease
- ▶ Loop invariant: at signature s, all elements with sig. $\leq s$ s-reduce to 0 mod \mathcal{G}
- ▶ Sig-poly pairs instead of elements of \mathcal{I} : pair (sig(f), f)

- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomials: S-Pol $(\mathbf{g}_i, \mathbf{g}_j) = \frac{\text{lcmlt}(\mathbf{g}_i, \mathbf{g}_j)}{\text{lt}(\mathbf{g}_i)} \mathbf{g}_j \frac{\text{lcmlt}(\mathbf{g}_i, \mathbf{g}_j)}{\text{lt}(\mathbf{g}_j)} \mathbf{g}_j$
- 3. Reduction: regular: if lt(f) = tlt(g) and $tsig(g) \leq sig(f)$, $f \rightarrow f tg$

Signature of syzygies

Definition: syzygy

- ▶ Syzygy of *I*: $z = (z_1, ..., z_m) \in A^m$ such that $z_1f_1 + \cdots + z_mf_m = 0$
- ▶ It corresponds to an element $\mathbf{z} = (z, 0) \in \mathcal{I}$.

We can compute those elements at the same time as a signature Gröbner basis!

Definition: reduction on the signatures

 $\mathbf{f} \in \mathcal{I}$ sig-reduces modulo $\mathbf{z} \in \mathsf{Syz}(\mathcal{I})$ if:

▶ there exists a term t such that sig(f) = tsig(z).

The result of the reduction has the same polynomial part as f but smaller signature.

Definition: signature basis of syzygies

 $\mathcal{G}_z \subset \operatorname{Syz}(\mathcal{I})$ such that every syzygy of \mathcal{I} is signature reducible modulo \mathcal{G}_z .

Computing signature bases of syzygies?

Reminder: signature Gröbner basis

 $\mathcal{G} \subset \mathcal{I}$ is a signature Gröbner basis (SGB) if for all $\mathbf{f} \in \mathcal{I}$, \mathbf{f} is s-reducible modulo \mathcal{G} .

Reminder: signature basis of syzygies

 $\mathcal{G}_z \subset \operatorname{Syz}(\mathcal{I})$ such that every syzygy of \mathcal{I} is signature reducible modulo \mathcal{G}_z .

Computing signature bases of syzygies?

Reminder: signature Gröbner basis

 $\mathcal{G}\subset\mathcal{I}$ is a signature Gröbner basis (SGB) if for all $\mathbf{f}\in\mathcal{I},\mathbf{f}$ is s-reducible modulo $\mathcal{G}.$

Reminder: signature basis of syzygies

 $\mathcal{G}_z \subset \operatorname{Syz}(\mathcal{I})$ such that every syzygy of \mathcal{I} is signature reducible modulo \mathcal{G}_z .

Fact

Signature Gröbner basis algorithms can compute both bases at the same time.

- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomials: S-Pol $(\mathbf{g}_i, \mathbf{g}_j) = \frac{\text{lcmlt}(\mathbf{g}_i, \mathbf{g}_j)}{\text{lt}(\mathbf{g}_i)} \mathbf{g}_j \frac{\text{lcmlt}(\mathbf{g}_i, \mathbf{g}_j)}{\text{lt}(\mathbf{g}_j)} \mathbf{g}_j$
- 3. Reduction: regular: if lt(f) = tlt(g) and $tsig(g) \leq sig(f)$, $f \rightarrow f tg$

Signature criteria

Singular criterion

Assume that:

- 1. Every $\mathbf{g} \in \mathcal{I}$ with signature $\leq \mathbf{T}$ is s-reducible modulo \mathcal{G}
- 2. **f** has signature **T** and there exists $\mathbf{g} \in \mathcal{G}$ such that $lt(\mathbf{f}) = tlt(\mathbf{g})$ and $sig(\mathbf{f}) = tsig(\mathbf{g})$

Then f s-reduces to 0 modulo \mathcal{G} .

Signature criteria

Singular criterion

Assume that:

- 1. Every $\mathbf{g} \in \mathcal{I}$ with signature $\leq \mathbf{T}$ is s-reducible modulo \mathcal{G}
- 2. **f** has signature **T** and there exists $\mathbf{g} \in \mathcal{G}$ such that $lt(\mathbf{f}) = tlt(\mathbf{g})$ and $sig(\mathbf{f}) = tsig(\mathbf{g})$

Then \mathbf{f} s-reduces to 0 modulo \mathcal{G} .

Syzygy criterion

Assume that:

- 1. Every $\mathbf{g} \in \mathcal{I}$ with signature $\lneq \mathbf{T}$ is s-reducible modulo \mathcal{G}
- 2. **f** has signature \simeq **T** and is sig-reducible by $\mathbf{z} \in \mathsf{Syz}(\mathcal{I})$

Then f is regular reducible modulo G.

Signature criteria

Singular criterion

Assume that:

- 1. Every $\mathbf{g} \in \mathcal{I}$ with signature $\leq \mathbf{T}$ is s-reducible modulo \mathcal{G}
- 2. f has signature T and there exists $g \in \mathcal{G}$ such that lt(f) = tlt(g) and sig(f) = tsig(g)

Then \mathbf{f} s-reduces to 0 modulo \mathcal{G} .

Syzygy criterion

Assume that:

- 1. Every $\mathbf{g} \in \mathcal{I}$ with signature $\lneq \mathbf{T}$ is s-reducible modulo \mathcal{G}
- 2. **f** has signature \simeq **T** and is sig-reducible by $\mathbf{z} \in \mathsf{Syz}(\mathcal{I})$

Then **f** is regular reducible modulo \mathcal{G} .

F5 criterion (PoT ordering)

If $\mathbf{g} \in \mathcal{I}$ has signature $\star \mathbf{e}_j$, then $lt(\mathbf{g})\mathbf{e}_i$ is the signature of a syzygy whenever i > j.

Why do we care about signature Gröbner bases?

First, they are Gröbner bases.

Theorem

If $\ensuremath{\mathcal{G}}$ is a signature Gröbner basis, the set of its polynomial parts forms a Gröbner basis.

Why do we care about signature Gröbner bases?

First, they are Gröbner bases.

Theorem

If $\mathcal G$ is a signature Gröbner basis, the set of its polynomial parts forms a Gröbner basis.

But better, they also give information on the module \mathcal{I} !

Theorem [Gao, Volny, Wang, 2015]

Let $G = \{(\mathbf{s}_i, g_i)\}$ be the sig-poly pairs of a SGB, and $G_z = \{(\mathbf{z}_i, 0)\}$ be the sig-poly pairs of a signature basis of syzygies. Then:

- \blacktriangleright one can reconstruct a corresponding SGB ${\cal G}$ and signature basis of syzygies ${\cal G}_z$
- $ightharpoonup \mathcal{G}$ is a "basis with coordinates" allowing to recover coefs in terms of the input polynomials
- $ightharpoonup \mathcal{G}_z$ is a Gröbner basis of the module of syzygies of I

Those are typically expensive computations.

Sketch of the construction

- In $ightharpoonup G = \{(\mathbf{s}_i, g_i)\}$ the sig-poly pairs of a SGB
 - $G_z = \{(\mathbf{z}_i, 0)\}$ the sig-poly pairs of a sig-basis of syzygies
- Out \blacktriangleright the corresponding SGB $\mathcal{G} = \{\mathbf{g}_1, \dots, \mathbf{g}_r\}$
 - ▶ the corresponding sig-basis of syzygies G_z
 - 1. $\mathcal{G} \leftarrow \{(\mathbf{e}_i, f_i) : i \in \{1, \dots, m\}\}$ (reducing if needed)
 - 2. For $(\mathbf{s}_i, g_i) \in G$ in increasing order of signatures, do
 - 2.1 Find $\mathbf{g}_j \in \mathcal{G}$ s.t. there exists a term t with $t \operatorname{sig}(\mathbf{g}_j) = \mathbf{s}_i$ and $t \operatorname{Im}(\mathbf{g}_j)$ minimal
 - 2.2 Perform regular reductions of $t\mathbf{g}_j$ by \mathcal{G} until not reducible
 - 2.3 Add the result to \mathcal{G}
 - 3. With \mathcal{G} known, reconstruct \mathcal{G}_z in the same way

Two questions:

- ► How to compute S-polynomials?
- ► How to compute reductions?

Buchberger (1965) Faugère: F4 (1999) Field :	Usual // Usual Usual // Usual (linear algebra)
Euclidean ring Kandri-Rody, Kapur (1988) Lichtblau (2012)	Usual and G-pols // Usual Usual or G-pols // Usual
Möller strong (1988) Principal ideal domain Kandri-Rody, Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring Möller weak (198	Multiple // Multiple

Two questions:

- ► How to compute S-polynomials?
- ► How to compute reductions?
- ► How to order signatures?

Case of fields: partial order is enough

Buchberger (1965) → B. with sig. Faugère: F4 (1999) → F5 (2002) Field :	Usual // Usual Usual // Usual (linear algebra)
Euclidean ring Kandri-Rody, Kapur (1988) Lichtblau (2012)	Usual and G-pols // Usual Usual or G-pols // Usual
Möller strong (1988) Principal ideal domain Kandri-Rody, Kapur (1988) Pan (1989)	Usual // Usual with G-pol Usual and G-pols // Usual Usual or G-pols // Usual
General (Noetherian) ring Möller weak (198	8) Multiple // Multiple

Three questions:

- ► How to compute S-polynomials?
- ► How to compute reductions?
- ► How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs

```
Usual // Usual
     Buchberger (1965) \rightarrow B. with sig.
                                                           Usual // Usual (linear algebra)
       Faugère: F4 (1999) \rightarrow F5 (2002)
Field
                   Kandri-Rody, Kapur (1988)
                                                           Usual and G-pols // Usual
Euclidean ring
                              Lichtblau (2012)
                                                           Usual or G-pols // Usual
                                Möller strong (1988)
                                                           Usual // Usual with G-pol
                         Kandri-Rody, Kapur (1988)
                                                           Usual and G-pols // Usual
Principal ideal domain
                                          Pan (1989)
                                                           Usual or G-pols // Usual
General (Noetherian) ring
                                    Möller weak (1988)
                                                           Multiple // Multiple
```

Three questions:

- ► How to compute S-polynomials?
- How to compute reductions?
- ► How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs [Francis, V. 2018]: partial order is enough

```
Usual // Usual
     Buchberger (1965) \rightarrow B. with sig.
                                                           Usual // Usual (linear algebra)
       Faugère: F4 (1999) \rightarrow F5 (2002)
Field
                   Kandri-Rody, Kapur (1988)
                                                           Usual and G-pols // Usual
Euclidean ring
                              Lichtblau (2012)
                                                           Usual or G-pols // Usual
                        Möller weak with sig (2018)
             Möller strong (1988) → with sig (2019)
                                                           Usual // Usual with G-pol
                         Kandri-Rody, Kapur (1988)
                                                           Usual and G-pols // Usual
Principal ideal domain
                                          Pan (1989)
                                                           Usual or G-pols // Usual
General (Noetherian) ring
                                    Möller weak (1988)
                                                           Multiple // Multiple
```

Three questions:

- ► How to compute S-polynomials?
- ► How to compute reductions?
- ► How to order signatures?

Case of fields: partial order is enough [Eder, Pfister, Popescu 2017]: cannot order coefs [Francis, V. 2018]: partial order is enough

```
Usual // Usual
     Buchberger (1965) \rightarrow B. with sig.
                                                           Usual // Usual (linear algebra)
       Faugère: F4 (1999) \rightarrow F5 (2002)
Field
                   Kandri-Rody, Kapur (1988)
                                                           Usual and G-pols // Usual
Euclidean ring
                                                           Usual or G-pols // Usual
                              Lichtblau (2012)
                        Möller weak with sig (2018)
             Möller strong (1988)→ with sig (2019)
                                                           Usual // Usual with G-pol
                         Kandri-Rody, Kapur (1988)
                                                           Usual and G-pols // Usual
Principal ideal domain
                                          Pan (1989)
                                                           Usual or G-pols // Usual
General (Noetherian) ring
                                    Möller weak (1988)
                                                           Multiple // Multiple
```

What are G-polynomials?

Example: f = 3x, g = 2y, $I = \langle f, g \rangle$

- ▶ Not a strong Gröbner basis: $xy = yf xg \in I$ is not reducible by f or g
- ▶ Adding S-Pol(f,g) = 0 does not help

What are G-polynomials?

Example:
$$f = 3x$$
, $g = 2y$, $I = \langle f, g \rangle$

- ▶ Not a strong Gröbner basis: $xy = yf xg \in I$ is not reducible by f or g
- Adding S-Pol(f,g) = 0 does not help
- ► G-Pol(f,g) = xy

Definition

$$\mathbf{f},\mathbf{g}\in\mathcal{I},\,u,v$$
 Bézout coefficients for $\mathrm{lc}(\mathbf{f}),\mathrm{lc}(\mathbf{g})$

► G-Pol(
$$\mathbf{f}, \mathbf{g}$$
) = $u \frac{\operatorname{lcmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{lm}(\mathbf{f})} \mathbf{f} + v \frac{\operatorname{lcmlm}(\mathbf{f}, \mathbf{g})}{\operatorname{lm}(\mathbf{g})} \mathbf{g}$

Main properties

- ▶ If $lt(\mathbf{f}) = t_1 lt(\mathbf{g}_1) + t_2 lt(\mathbf{g}_2)$, then \mathbf{f} is reducible by G-Pol($\mathbf{g}_1, \mathbf{g}_2$)
- ▶ One can always choose *u*, *v* such that

$$\mathsf{sig}(\mathsf{G}\text{-Pol}(\mathbf{f},\mathbf{g})) \simeq \mathsf{max}(\frac{\mathsf{lcmIm}(\mathbf{f},\mathbf{g})}{\mathsf{Im}(\mathbf{f})}\mathsf{sig}(\mathbf{f}),\frac{\mathsf{lcmIm}(\mathbf{f},\mathbf{g})}{\mathsf{Im}(\mathbf{g})}\mathsf{sig}(\mathbf{g}))$$

- 1. Selection: different strategies
- 2. Construction: S-polynomial

and G-polynomial if $lc(g_i)$ and $lc(g_j)$ do not divide each other

3. Reduction

G-polynomials for syzygies

Need a similar construction to capture all possible combinations of syzygy signatures.

Definition

 $\mathbf{z}_1, \mathbf{z}_2 \in \operatorname{Syz}(\mathcal{I})$ with $\operatorname{sig}(\mathbf{z}_i) = a_i m_i \mathbf{e}_j$; u, v Bézout coefficients for a_1, a_2

► G-Pol(
$$\mathbf{z}_1, \mathbf{z}_2$$
) = $u \frac{\text{lcm}(m_1, m_2)}{m_1} \mathbf{z}_1 + v \frac{\text{lcm}(m_1, m_2)}{m_2} \mathbf{z}_2$

Main properties

- ▶ If $sig(f) = t_1 sig(z_1) + t_2 sig(z_2)$, then f is sig-reducible by G-Pol(z_1, z_2)
- ▶ No need to be careful about the choice of *u*, *v*

- 1. Selection: non-decreasing signatures
- 2. Construction: regular S-polynomial and G-polynomial if $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_j)$ do not divide each other
- 3. Reduction: regular

- 1. Selection: different strategies
- 2. Construction: S-polynomial if one of $lc(g_i)$ and $lc(g_j)$ divides the other **or** G-polynomial if $lc(g_i)$ and $lc(g_j)$ do not divide each other
- 3. Reduction

Idea:

- ▶ Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, g)
- ► How to recover S-Pol $(f,g) = \frac{b}{d}\mu f \frac{a}{d}\nu g$?

Idea:

- ▶ Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, g)
- ► How to recover S-Pol $(f,g) = \frac{b}{d}\mu f \frac{a}{d}\nu g$?
- ► The algorithm computes $h = G\text{-Pol}(f, g) = u\mu f + v\nu g$, with lc(h) = d

Idea:

- ▶ Let f and g with a = lc(f) and b = lc(g) not dividing each other, let d = gcdlc(f, g)
- ► How to recover S-Pol $(f,g) = \frac{b}{d}\mu f \frac{a}{d}\nu g$?
- ▶ The algorithm computes $h = G\text{-Pol}(f, g) = u\mu f + v\nu g$, with lc(h) = d
- ▶ lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol
$$(f, h) = \mu f - \frac{a}{d}h = \left(1 - \frac{ua}{d}\right)\mu f - \frac{av}{d}\mu g$$

$$= \frac{vb}{d}\mu f - \frac{av}{d}\nu g = v$$
S-Pol (f, g)
S-Pol $(g, h) = u$ S-Pol (f, g)

- 1. Selection: non-decreasing signatures
- 2. Construction: non-singular S-polynomial if one of $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_j)$ divides the other or G-polynomial if $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_j)$ do not divide each other
- 3. Reduction: regular

Idea:

- ▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$
- ► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d} \mu \mathbf{f} \frac{a}{d} \nu \mathbf{g}$?
- ▶ The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $\text{lc}(\mathbf{h}) = d$
- ightharpoonup lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(
$$\mathbf{f}, \mathbf{h}$$
) = $\mu \mathbf{f} - \frac{a}{d} \mathbf{h} = \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$
= $\frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g} = v$ S-Pol(\mathbf{f}, \mathbf{g})
S-Pol(\mathbf{g}, \mathbf{h}) = u S-Pol(\mathbf{f}, \mathbf{g})

Idea:

 $\operatorname{sig} \mathbf{s} \quad \mathbf{t} \quad \operatorname{with} \mu \mathbf{s} \geq \nu \mathbf{t}$

- ▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$
- ► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d} \mu \mathbf{f} \frac{a}{d} \nu \mathbf{g}$?
- ullet The algorithm computes $oldsymbol{h}=$ G-Pol $(oldsymbol{f},oldsymbol{g})=u\muoldsymbol{f}+v
 uoldsymbol{g},$ with $\mathrm{lc}(oldsymbol{h})=d$
- ightharpoonup lc(\mathbf{h}) divides both lc(\mathbf{f}) and lc(\mathbf{g}), and the algorithm computes the S-polynomials:

S-Pol(
$$\mathbf{f}, \mathbf{h}$$
) = $\mu \mathbf{f} - \frac{a}{d} \mathbf{h} = \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$
= $\frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g} = v$ S-Pol(\mathbf{f}, \mathbf{g})
S-Pol(\mathbf{g}, \mathbf{h}) = u S-Pol(\mathbf{f}, \mathbf{g})

Idea:

 $\operatorname{sig} \mathbf{s} \quad \mathbf{t} \quad \text{with } \mu \mathbf{s} \geq \nu \mathbf{t}$

- ▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$
- ► How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d}\mu\mathbf{f} \frac{a}{d}\nu\mathbf{g}$? Regular, sig $\simeq \mu\mathbf{s}$
- ► The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $\text{lc}(\mathbf{h}) = d$
- ightharpoonup lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(
$$\mathbf{f}, \mathbf{h}$$
) = $\mu \mathbf{f} - \frac{a}{d} \mathbf{h} = \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$
= $\frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g} = v$ S-Pol(\mathbf{f}, \mathbf{g})
S-Pol(\mathbf{g}, \mathbf{h}) = u S-Pol(\mathbf{f}, \mathbf{g})

Idea:

 $\operatorname{sig} \mathbf{s} \quad \mathbf{t} \quad \operatorname{with} \mu \mathbf{s} \geq \nu \mathbf{t}$

- ▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$
- How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d} \mu \mathbf{f} \frac{a}{d} \nu \mathbf{g}$? Regular, sig $\simeq \mu \mathbf{s}$ sig $\simeq \mu \mathbf{s}$
- ► The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ightharpoonup lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

S-Pol(
$$\mathbf{f}, \mathbf{h}$$
) = $\mu \mathbf{f} - \frac{a}{d} \mathbf{h} = \left(1 - \frac{ua}{d}\right) \mu \mathbf{f} - \frac{av}{d} \mu \mathbf{g}$
= $\frac{vb}{d} \mu \mathbf{f} - \frac{av}{d} \nu \mathbf{g} = v$ S-Pol(\mathbf{f}, \mathbf{g})
S-Pol(\mathbf{g}, \mathbf{h}) = u S-Pol(\mathbf{f}, \mathbf{g})

Idea:

 $\operatorname{sig} \mathbf{s} \quad \mathbf{t} \quad \operatorname{with} \mu \mathbf{s} \geq \nu \mathbf{t}$

- ▶ Let **f** and **g** with $a = lc(\mathbf{f})$ and $b = lc(\mathbf{g})$ not dividing each other, let $d = gcdlc(\mathbf{f}, \mathbf{g})$
- How to recover S-Pol(\mathbf{f}, \mathbf{g}) = $\frac{b}{d} \mu \mathbf{f} \frac{a}{d} \nu \mathbf{g}$? Regular, sig $\simeq \mu \mathbf{s}$ sig $\simeq \mu \mathbf{s}$
- ► The algorithm computes $\mathbf{h} = \text{G-Pol}(\mathbf{f}, \mathbf{g}) = u\mu\mathbf{f} + v\nu\mathbf{g}$, with $lc(\mathbf{h}) = d$
- ightharpoonup lc(h) divides both lc(f) and lc(g), and the algorithm computes the S-polynomials:

- 1. Selection: non-decreasing signatures
- 2. Construction: non-singular S-polynomial if one of $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_j)$ divides the other or G-polynomial if $lc(\mathbf{g}_i)$ and $lc(\mathbf{g}_j)$ do not divide each other
- 3. Reduction: regular

Comparison of the algorithms

Theorem: general criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset \operatorname{Syz}(I)$ be such that:

- ▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$
- \blacktriangleright all regular S-pols of $\mathcal G$ s-reduce to 0 mod $\mathcal G$
- ightharpoonup if those reductions are regular, their result is sig-reducible mod \mathcal{G}_z
- \blacktriangleright all G-pols of $\mathcal G$ are s-reducible mod $\mathcal G$
- ▶ all G-pols of \mathcal{G}_z are sig-reducible mod \mathcal{G}_z

Then G is a SGB and G_z is a sig-basis of syzygies.

Kandri-Rody, Kapur	Pan/Lichtblau		
S-pol if regular	S-pol is non-singular and lc divides		
G-pol if lc does not divide	G-pol if lc does not divide		
Regular reductions	Regular reductions		

Comparison of the algorithms

Theorem: general criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset \operatorname{Syz}(I)$ be such that:

- ▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$
- ightharpoonup all regular S-pols of $\mathcal G$ s-reduce to 0 mod $\mathcal G$
- ightharpoonup if those reductions are regular, their result is sig-reducible mod \mathcal{G}_z
- \blacktriangleright all G-pols of $\mathcal G$ are s-reducible mod $\mathcal G$
- ▶ all G-pols of G_z are sig-reducible mod G_z

Then G is a SGB and G_z is a sig-basis of syzygies.

Kandri-Rody, Kapur	ur Pan/Lichtblau		
S-pol if regular	S-pol is non-singular and lc divides		
G-pol if lc does not divide	G-pol if lc does not divide		
Regular reductions	Regular reductions		
More criteria?	More criteria?		

Super-reducibility

Super-reducible criterion in the case of fields

- ▶ **f** is super reducible modulo **g** if $tsig(g) \simeq sig(f)$ and tlt(g) = lt(f)
- ▶ $\mathbf{h} = \mathbf{f} t\mathbf{g}$ is a singular s-reduction
- ▶ If **h** s-reduces to 0 mod \mathcal{G} , then **f** s-reduces to 0 mod \mathcal{G}
- ► Consequence: we can exclude super-reducible polynomials

Super-reducible criterion in the case of rings

- f is super reducible modulo g if tsig(g) = sig(f) and $tlt(g) \simeq lt(f)$
- ▶ $\mathbf{f}' = \mathbf{f} t\mathbf{g}$ is not a reduction!
- ▶ If \mathbf{f}' s-reduces to $0 \mod \mathcal{G}$ and \mathbf{G} -pols of \mathcal{G} s-reduce to 0, then \mathbf{f} s-reduces to $0 \mod \mathcal{G}$
- ► Consequence: we can exclude super-reducible S-polynomials

Cover property

Definition: cover property in the case of fields

The pair $(\mathbf{f}_1, \mathbf{f}_2)$ is covered by $\mathbf{g} \in \mathcal{G} \cup \mathcal{G}_z$ if:

- ▶ there exists a term t such that $sig(S-Pol(\mathbf{f}_1, \mathbf{f}_2)) = tsig(\mathbf{g})$
- $tlt(\mathbf{g}) < lcmlm(\mathbf{f}_1, \mathbf{f}_2)$ (with $lt(\mathbf{g}) = 0$ if syzygy)

Cover property

Definition: cover property in the case of fields

The pair $(\mathbf{f}_1, \mathbf{f}_2)$ is covered by $\mathbf{g} \in \mathcal{G} \cup \mathcal{G}_z$ if:

- ▶ there exists a term t such that $sig(S-Pol(\mathbf{f}_1, \mathbf{f}_2)) = tsig(\mathbf{g})$
- $tlt(\mathbf{g}) < lcmlm(\mathbf{f}_1, \mathbf{f}_2)$ (with $lt(\mathbf{g}) = 0$ if syzygy)

Definition: cover property in the case of rings

The pair $(\mathbf{f}_1, \mathbf{f}_2)$ is covered by $\mathbf{g} \in \mathcal{G}$ and $\mathbf{z} \in \mathcal{G}_z$ if:

- ▶ there exist terms t_g , t_z such that $sig(S-Pol(\mathbf{f}_1, \mathbf{f}_2) = t_g sig(\mathbf{g}) + t_z sig(\mathbf{z})$
- $t_g \mathsf{lt}(\mathbf{g}) < \mathsf{lcmIm}(\mathbf{f}_1, \mathbf{f}_2)$

Correctness criterion with the cover property

Reminder: general criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset \operatorname{Syz}(I)$ be such that:

- ▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$
- ightharpoonup all regular S-pols of $\mathcal G$ s-reduce to 0 mod $\mathcal G$
- ightharpoonup if those reductions are regular, their result is sig-reducible mod \mathcal{G}_z
- \blacktriangleright all G-pols of $\mathcal G$ are s-reducible mod $\mathcal G$
- ▶ all G-pols of G_z are sig-reducible mod G_z

Then G is a SGB and G_z is a sig-basis of syzygies.

Correctness criterion with the cover property

Theorem: cover criterion for correctness

Let $\mathcal{G} \subset \mathcal{I}$ and $\mathcal{G}_z \subset \operatorname{Syz}(I)$ be such that:

- ▶ for all *i*, there is an element with signature \mathbf{e}_i in $\mathcal{G} \cup \mathcal{G}_z$
- lacktriangle all regular S-pols of ${\cal G}$ are covered by a pair of ${\cal G},\,{\cal G}_z$
- \blacktriangleright all G-pols of $\mathcal G$ are s-reducible modulo $\mathcal G$
- ▶ all G-pols of G_z are sig-reducible mod G_z

Then G is a SGB and G_z is a sig-basis of syzygies.

This criterion is convenient...

- ▶ in practice, because it allows to eliminate many elements
- ▶ in theory, because it allows for a simpler proof of correctness

But it requires that all regular S-pols of $\mathcal G$ be covered, which Pan/Lichtblau a priori cannot enforce.

Quantitative comparison between the algorithms

System	Algorithm	thm Total pairs Reduced To zero		Time (s)	
Katsura-4	Kandri-Rody, Kapur	420	188	0	1.35
	Pan/Lichtblau	855	412	0	1.6
Katsura-5	Kandri-Rody, Kapur	248	723	0	32.40
	Pan/Lichtblau	7178	3983	0	79.87
Cyclic-5	Kandri-Rody, Kapur	221	63	0	0.37
	Pan/Lichtblau	347	158	0	0.71
Cyclic-6	Kandri-Rody, Kapur	3019	742	8	200.33
	Pan/Lichtblau	9672	5782	8	616.82

- ► Toy implementation of both algorithms in Magma
- ▶ Kandri-Rody and Kapur is almost always more efficient than Pan/Lichtblau
- ▶ It is not due to the lack of cover criterion

Indicative timings

System	S-GB (s)	Recons. (s)	Total (s)	GB (s)	GB + coefs (s)	Syz. basis (s)
Cyclic-5	0.4	0.1	0.5	0.01	954.6	954.8
Cyclic-6	200.3	10.6	210.9	2.08	>24h	>24h

- ► Signature algorithms: Kandri-Rody and Kapur, reconstruction
- ► Classical algorithm: Magma's built-in GroebnerBasis, IdealWithFixedBasis and SyzygyMatrix

Conclusion

This work

- ▶ Two signature-based algorithms for PID's following closely Buchberger's algorithm
- ▶ Compatible with powerful criteria such as super-reducibility and the cover criterion
- Additional criteria and optimizations are available (coprime criterion, Gebauer-Möller criteria, coefficient reductions...)
- ▶ Toy implementation in Magma

Future directions

- Linear algebra algorithms à la F4
- Improve implementation
- ► Extend use of signature bases

Conclusion

This work

- ▶ Two signature-based algorithms for PID's following closely Buchberger's algorithm
- ▶ Compatible with powerful criteria such as super-reducibility and the cover criterion
- Additional criteria and optimizations are available (coprime criterion, Gebauer-Möller criteria, coefficient reductions...)
- ▶ Toy implementation in Magma

Future directions

- Linear algebra algorithms à la F4
- Improve implementation
- ► Extend use of signature bases

Thanks for your attention!