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Grobner bases

X2 = XA X
» Valuable tool for many questions related to polynomial equations
(solving, elimination, dimension of the solutions...)
» Classically used for polynomials over fields

» Some applications with coefficients in general rings (cryptography, number theory...)

Leading term, monomial, coefficient: R ring, A = R[Xi, ..., Xa] with a monomial order <
1t(f)
f= ¢ X* + smallerterms

le(f)  Im(f)

Definition (Weak/strong Grobner basis)

GCl={f, -, fm)
» Gis a weak Grobner basis <= (It(f) : f € I) = (It(g) : g € G)
» G is a strong Grobner basis <= for all f € I, f reduces to 0 modulo G

Strong = weak, and they are equivalent if R is a field



Buchberger’s algorithm (Ris a field)

fisoesfo &
L} ) ' 7 T New polynomial
Grébner basis @ from pair @
&
#0
] —— ]
Reduction  (3)

1. Selection: different strategies

2. Construction: S-polynomials: S-Pol(g;, g/) = Icmlt(g,-,g,-)gj - lcmlltt((j),g,-)gj
J

It(g)
3. Reduction: if It(f) =tlt(g),f — f — tg




Summary of Grobner basis algorithms over rings

Two questions:
» How to compute S-polynomials?

» How to compute reductions?

Buchberger (1965) Usual // Usual
Faugeére: F4 (1999) Usual // Usual (linear algebra)
Field :
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Summary of Grobner basis algorithms over rings

Two questions:
» How to compute S-polynomials?

» How to compute reductions?

Buchberger (1965) Usual // Usual
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This work: signature variants of the algos of Kandri-Rody and Kapur, and of Pan/Lichtblau
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p=pifi+pfo -+ pufa 9= qfi + @fi + -+ qufun

p—q=0?
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Why signatures?

. o~y
Problem: Tl: useless computations —— €&

> 1% idea: keep track of the representation of the ideal elements
[Maller, Mora, Traverso 1992]

» 2" idea: we do not need the full representation, the largest term is enough
[Faugére 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

Simple example

p=pifi +pfot -+ pmfm g=qifi + @2+ + gnfm
p = pie1 + p:e2 + - + pmen q=qie1+ e+ -+ gmenm
= It(p«x)ex + smaller terms = It(qi)e; + smaller terms

sig(p) = signature of p
p—q=0?
P—a= (pei+ -+ pnem) — (q1e1 + - + gmen)
= It(px)ex — It(qi)e; + smaller terms
= It(px)ex + smaller terms  if [t(pi)ex > lt(q/)e; Regular addition



First ingredient: module term ordering

> Ideal: I={fi,....fm)={f=pifi+ - +Pnfu} CA

> Module: Z ={f = (p1,-.,pm, f) : f = pifi++ + Ppmfn} C A™
Module part  Polynomial part

» T is free with basis {(e;, f;) = (0,...,1,...,0,f;) : i€ {1...m}}
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Definition: signatures

» Signature ordering: monomial ordering < on Mon(A™) = {pue;}

» Signature of f: largest term te; with t in the support of p;

Examples:
> e <por ve; <= i< j,orifequal, u <v

Position  over  Term

> e <mp ve; <= p < v,orifequal, i <j
Term  over  Position



First ingredient: module term ordering

> Ideal: I={fi,....fm)={f=pifi+ - +Pnfu} CA

> Module: Z ={f = (p1,-.,pm, f) : f = pifi++ + Ppmfn} C A™
Module part  Polynomial part

» T is free with basis {(e;, f;) = (0,...,1,...,0,f;) : i€ {1...m}}

Definition: signatures

» Signature ordering: monomial ordering < on Mon(A™) = {pue;}

» Signature of f: largest term te; with t in the support of p;

Examples:
> e <por ve; <= i< j,orifequal, u <v

Position  over  Term

> e <mp ve; <= p < v,orifequal, i <j
Term  over  Position

Warning: < is a partial order on terms
» s~ t <= incomparable or equal, it is an equivalence relation

> s<Xt << s<torsx>t



Second ingredient: s-reductions

Notation: leading terms, monomials, coefficients of elements of Z refer to the polynomial part

Definition: s-reductions
f s-reduces to h modulo g if:
> tlt(g) = It(f)
» h=f—1tg
> tsig(g) < sig(f)

Properties

» It(h) < It(f)
» sig(h) < sig(f)

Definition: signature Grobner basis
GCZcA™

» G is a signature (strong) Grobner basis <= for all f € Z, f s-reduces to 0 modulo G.



Third ingredient: regular operations

Definition: regular operations
Consider the sum h = f + g with sig(f) < sig(g).
> Regular operation <= sig(f) < sig(g) ————> sig(h) = sig(g) v/
» Singular operation <= sig(f) = —sig(g) —— sig(h) < sig(g) (discarded elements)



Third ingredient: regular operations

Definition: regular operations
Consider the sum h = f + g with sig(f) < sig(g).
> Regular operation <= sig(f) < sig(g) ————> sig(h) = sig(g) v/
» Singular operation <= sig(f) = —sig(g) —— sig(h) < sig(g) (discarded elements)

Idea of the signature-based algorithms:
1. Pick next elements with smallest signature
2. Build new elements using regular S-polynomials

3. Only perform regular s-reductions

Key properties

» Signatures do not decrease
» Loop invariant: at signature s, all elements with sig. < s s-reduce to 0 mod G

» Sig-poly pairs instead of elements of Z: pair (sig(f), f)



Buchberger’s algorithm, with signatures (Ris a field)

(elvﬁ)v"'v(em’fm) (Sig(gf)7gi)

=7 T New polynomial
Kﬁ S-Grobner basis (1) S R @

from pair

(sig(8): &)
#0
W—s; |
Reduction (3)
1. Selection: non-decreasing signatures
lemlt(gi, g; lemlt(g;, g;
2. Construction: regular S-polynomials: S-Pol(g;, g;) = cmlt(g gj)gj— cmlt(gi. 8))

It(g:) It(g;)

3. Reduction: regular: if It(f) = tlt(g) and tsig(g) < sig(f) . f — f — tg



Signature of syzygies

Definition: syzygy

> Syzygy of I: z=(z1,...,zm) € A" such that zifi + - - - + znfm = 0

» It corresponds to an element z = (z,0) € Z.

We can compute those elements at the same time as a signature Grobner basis!

Definition: reduction on the signatures

f € Z sig-reduces modulo z € Syz(Z) if:
> there exists a term t such that sig(f) = tsig(z).

The result of the reduction has the same polynomial part as f but smaller signature.

Definition: signature basis of syzygies

G. C Syz(Z) such that every syzygy of T is signature reducible modulo ..



Computing signature bases of syzygies?

Reminder: signature Grobner basis

G C T is a signature Grébner basis (SGB) if for all f € Z, f is s-reducible modulo G.

Reminder: signature basis of syzygies

G, C Syz(Z) such that every syzygy of Z is signature reducible modulo G,.



Computing signature bases of syzygies?

Reminder: signature Grobner basis

G C T is a signature Grébner basis (SGB) if for all f € Z, f is s-reducible modulo G.

Reminder: signature basis of syzygies

G, C Syz(Z) such that every syzygy of Z is signature reducible modulo G,.

Fact

Signature Grobner basis algorithms can compute both bases at the same time.



Buchberger’s algorithm, with signatures (Ris a field)

(elvﬁ)v""(em’fm) (Sig(gf)7gi)

=7 T New polynomial
Kﬁ S-Grobner basis (1) S R @

from pair

(sig(8): &)
#0
Basis of syzygies
=0 Reduction (3)
1. Selection: non-decreasing signatures
lemlt(gi, g; lemlt(gi, g;
2. Construction: regular S-polynomials: S-Pol(g;, g;) = cmlt(g gj)gj— cmlt(gi. 8))

It(g:) It(g;)

3. Reduction: regular: if It(f) = tlt(g) and tsig(g) < sig(f) . f — f — tg



Signature criteria

Singular criterion
Assume that:
1. Every g € 7 with signature < T is s-reducible modulo G
2. f has signature T and there exists g € G such that It(f) = tlt(g) and sig(f) = tsig(g)

Then f s-reduces to 0 modulo G.
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Signature criteria

Singular criterion

Assume that:
1. Every g € 7 with signature < T is s-reducible modulo G
2. f has signature T and there exists g € G such that It(f) = tlt(g) and sig(f) = tsig(g)

Then f s-reduces to 0 modulo G.

Syzygy criterion

Assume that:
1. Every g € T with signature < T is s-reducible modulo G
2. f has signature ~ T and is sig-reducible by z € Syz(Z)

Then f is regular reducible modulo G.

F5 criterion (PoT ordering)

If g € 7 has signature *e;, then It(g)e; is the signature of a syzygy whenever i > j.



Why do we care about signature Grébner bases?

First, they are Grobner bases.

Theorem

If G is a signature Grobner basis, the set of its polynomial parts forms a Grébner basis.



Why do we care about signature Grobner bases?

First, they are Grobner bases.

Theorem

If G is a signature Grobner basis, the set of its polynomial parts forms a Grébner basis.

But better, they also give information on the module 7!

Theorem [Gao, Volny, Wang, 2015]
Let G = {(si, &)} be the sig-poly pairs of a SGB,
and G, = {(z;,0)} be the sig-poly pairs of a signature basis of syzygies. Then:
» one can reconstruct a corresponding SGB G and signature basis of syzygies G,

» G is a “basis with coordinates” allowing to recover coefs in terms of the input
polynomials

» G, is a Grobner basis of the module of syzygies of /

Those are typically expensive computations.



Sketch of the construction

In  » G={(si, )} the sig-poly pairs of a SGB
» G, = {(z,0)} the sig-poly pairs of a sig-basis of syzygies

Out  » the corresponding SGB G = {g1,..., 8-}

» the corresponding sig-basis of syzygies G,

1. G < {(ei, fi) : i € {1,..., m}} (reducing if needed)

2. For (s, &) € G in increasing order of signatures, do
2.1 Find g; € G s.t. there exists a term t with tsig(g;) = s; and tIm(g;) minimal
2.2 Perform regular reductions of tg; by G until not reducible

2.3 Add the result to G

3. With G known, reconstruct G, in the same way
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Summary of Grobner basis algorithms over rings with signatures

Two questions:
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Summary of Grobner basis algorithms over rings with signatures

Three questions:
» Howt te S-pol ials?
oW to compute stpolynomials Case of fields: partial order is enough

» How to compute reductions? [Eder, Pfister, Popescu 2017]: cannot order coefs
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What are G-polynomials?

Example: f = 3x,g =2y, I = (f, g)
» Not a strong Grobner basis: xy = yf — xg € ['is not reducible by f or g
» Adding S-Pol(f, g) = 0 does not help

» G-Pol(f, g) = xy



What are G-polynomials?

Example: f = 3x,g =2y, I = (f, g)
» Not a strong Grobner basis: xy = yf — xg € ['is not reducible by f or g
» Adding S-Pol(f, g) = 0 does not help

» G-Pol(f, g) = xy

Definition
f,g € Z, u, v Bézout coefficients for lc(f), lc(g)

lemim(f, g)f " Vlcmlm(f, g)

» G-Pol(f,g) = u Im(f) Im(g)

Main properties

> lc(G-Pol(f, g)) = gedlc(f, g)
> If It(f) = flt(g:1) + lt(g2), then f is reducible by G-Pol(g1, g2)

» One can always choose u, v such that

lcmlm(f, g) . lemlm(f, g)
8 i),

sig(G-Pol(f, g)) ~ max( Im(g)

sig(g))



Kandri-Rody and Kapur’s algorithm (Ris a PID)

fiooosSm &i

7 T New polynomial
L» Grobner basis O e\)\;rgomypnaci):nla ®

&

£0

W—;

Reduction (3)

1. Selection: different strategies
2. Construction: S-polynomial

and G-polynomial if Ic(g;) and Ic(g;) do not divide each other
3. Reduction



G-polynomials for syzygies

Need a similar construction to capture all possible combinations of syzygy signatures.
Definition

21,2, € Syz(Z) with sig(z;) = aimjej; u, v Bézout coefficients for a1, a,

ulcm(m1, my) g lcm(mq, my) 2

» G-Pol(z1,22) = +

my

Main properties

» sig(G-Pol(z1,2,)) = ged(air, a)lem(mi, my)e;
> If sig(f) = tisig(z1) + tsig(z2), then f is sig-reducible by G-Pol(z1, z2)

» No need to be careful about the choice of u, v



Kandri-Rody and Kapur’s algorithm, with signatures (Ris a PID)

(elvﬁ)v"'v(emvfm) (Sig(gi)vgi)

7T New polynomia
kﬁ S-Grébner basis (1) o LB ©)

v from pair

(sig(gi): &)

£0

Basis of syzygies

Reduction  (3)

1. Selection: non-decreasing signatures
2. Construction: regular S-polynomial

and G-polynomial if lc(g;) and Ic(g;) do not divide each other

3. Reduction: regular



Pan/Lichtblau’s algorithm (Ris a PID)

fiooosSm &i

7 T New polynomial
L» Grobner basis O e\)\;rgomypnaci):nla ®

&

£0

W—;

Reduction (3)

1. Selection: different strategies
2. Construction: S-polynomial if one of Ic(g;) and Ic(g;) divides the other

or G-polynomial if Ic(g;) and Ic(g;) do not divide each other
3. Reduction



Why does it work?

ldea:
> Let f and g with a = Ic(f) and b = Ic(g) not dividing each other, let d = gcdlc(f, g)

b
» How to recover S-Pol(f, g) = Euf — gug?
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Why does it work?

ldea:
> Let f and g with a = Ic(f) and b = Ic(g) not dividing each other, let d = gcdlc(f, g)

b
» How to recover S-Pol(f, g) = Euf — gug?

» The algorithm computes h = G-Pol(f, g) = upf + vvg, with Ic(h) = d
» lc(h) divides both Ic(f) and Ic(g), and the algorithm computes the S-polynomials:

a ua av
SPol(f, h) = uf — Sh= (1= 23) uf = L ug
vb av
= g — e =vs-Pol(f,g)
S-Pol(g, h) = uS-Pol(f, g)



Pan/Lichtblau’s algorithm, with signatures (Ris a PID)

(elvﬁ)v"'v(emvfm) (Sig(gi)vgi)

7T New polynomia
kﬁ S-Grébner basis (1) o LB ©)

v from pair

(sig(gi): &)

£0

Basis of syzygies

Reduction  (3)

1. Selection: non-decreasing signatures
2. Construction: non-singular S-polynomial if one of Ic(g;) and lc(g;) divides the other
or G-polynomial if lc(g;) and Ic(g;) do not divide each other

3. Reduction: regular



Why does it work?

ldea:
> Let f and g with a = Ic(f) and b = Ic(g) not dividing each other, let d = gedlc(f, g)

b
» How to recover S-Pol(f, g) = E,uf - gug?

» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with Ic(h) = d
» Ic(h) divides both Ic(f) and Ic(g), and the algorithm computes the S-polynomials:

a
S-Pol(f, h) = uf = Sh = (1 - d) f— 7ug

= Z)Hf* 4V8= vS-Pol(f, g)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

ldea: i
sigs t  with us > vt

> Let f and g with a = Ic(f) and b = Ic(g) not dividing each other, let d = gedlc(f, g)

b
» How to recover S-Pol(f, g) = Euf - Sug?

» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with Ic(h) = d
» Ic(h) divides both Ic(f) and Ic(g), and the algorithm computes the S-polynomials:

a
S-Pol(f, h) = uf = Sh = (1 - d) f— 7ug

= Z)Hf* 4V8= vS-Pol(f, g)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

Idea: i
sigs  t  with us > vt

> Let f and g with a = Ic(f) and b = Ic(g) not dividing each other, let d = gedlc(f, g)

b
» How to recover S-Pol(f, g) = E/Lf — Sug? Regular, sig ~ us

» The algorithm computes h = G-Pol(f, g) = uuf + vvg, with Ic(h) = d
» Ic(h) divides both Ic(f) and Ic(g), and the algorithm computes the S-polynomials:

a
S-Pol(f, h) = uf = Sh = (1 - d) f— 7ug

= Z)Hf* 4V8= vS-Pol(f, g)

S-Pol(g, h) = uS-Pol(f, g)



Why does it work?

Idea: i
sigs  t  with us > vt

> Let f and g with a = Ic(f) and b = Ic(g) not dividing each other, let d = gedlc(f, g)
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= Z)Hf* 4V8= vS-Pol(f, g)

S-Pol(g, h) = uS-Pol(f, g)



Pan/Lichtblau’s algorithm, with signatures (Ris a PID)

(elvﬁ)v"'v(emvfm) (Sig(gi)vgi)

7T New polynomia
kﬁ S-Grébner basis (1) o LB ©)

v from pair

(sig(gi): &)

£0

Basis of syzygies

Reduction  (3)

1. Selection: non-decreasing signatures
2. Construction: non-singular S-polynomial if one of Ic(g;) and lc(g;) divides the other
or G-polynomial if lc(g;) and Ic(g;) do not divide each other

3. Reduction: regular



Comparison of the algorithms

Theorem: general criterion for correctness

Let G C Z and G, C Syz(/) be such that:
» for all i, there is an element with signature e; in G U G,
all regular S-pols of G s-reduce to 0 mod G
if those reductions are regular, their result is sig-reducible mod G,

all G-pols of G are s-reducible mod G

vy vV VvV VY

all G-pols of G, are sig-reducible mod G,
Then G is a SGB and G, is a sig-basis of syzygies.

Kandri-Rody, Kapur Pan/Lichtblau
S-pol if regular S-pol is non-singular and Ic divides
G-pol if Ic does not divide G-pol if Ic does not divide

Regular reductions Regular reductions
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More criteria? More criteria?



Super-reducibility

Super-reducible criterion in the case of fields

» f is super reducible modulo g if tsig(g) ~ sig(f) and tlt(g) = It(f)
» h =f — tgis a singular s-reduction
» If h s-reduces to 0 mod G, thenf s-reduces to 0 mod G

» Consequence: we can exclude super-reducible polynomials

Super-reducible criterion in the case of rings

» f is super reducible modulo g if tsig(g) = sig(f) and ¢lt(g) ~ It(f)
» f' = f — tg is not a reduction!

> If f s-reduces to 0 mod G and G-pols of G s-reduce to 0, then f s-reduces to 0 mod G

» Consequence: we can exclude super-reducible S-polynomials



Cover property

Definition: cover property in the case of fields

The pair (f1, f,) is covered by g € G U G, if:
> there exists a term t such that sig(S-Pol(f1, f,)) = tsig(g)
> tlit(g) < lemlm(fy, f2) (with It(g) = 0 if syzygy)



Cover property

Definition: cover property in the case of fields

The pair (f1, f,) is covered by g € G U G, if:
> there exists a term t such that sig(S-Pol(f1, f,)) = tsig(g)
> tlit(g) < lemlm(fy, f2) (with It(g) = 0 if syzygy)

Definition: cover property in the case of rings

The pair (f1, f,) is covered by g € G and z € G, if:
> there exist terms i, t, such that sig(S-Pol(fi, f,) = tgsig(g) + tsig(z)
> tlt(g) < lemim(f;, )



Correctness criterion with the cover property

Reminder: general criterion for correctness

Let G C Z and G, C Syz(/) be such that:

>

>

| 2

| 2

>

for all i, there is an element with signature e; in G U G,

all regular S-pols of G s-reduce to 0 mod G

if those reductions are regular, their result is sig-reducible mod G,
all G-pols of G are s-reducible mod G

all G-pols of G, are sig-reducible mod G,

Then G is a SGB and G, is a sig-basis of syzygies.



Correctness criterion with the cover property

Theorem: cover criterion for correctness
Let G C Z and G, C Syz(/) be such that:
» for all i, there is an element with signature e; in G U G,
» all regular S-pols of G are covered by a pair of G, G,
» all G-pols of G are s-reducible modulo G
» all G-pols of G, are sig-reducible mod G,
Then G is a SGB and G, is a sig-basis of syzygies.

This criterion is convenient...
» in practice, because it allows to eliminate many elements
» in theory, because it allows for a simpler proof of correctness

But it requires that all regular S-pols of G be covered, which Pan/Lichtblau a priori cannot
enforce.



Quantitative comparison between the algorithms

System Algorithm Total pairs Reduced Tozero Time (s)
Katsura-4 | Kandri-Rody, Kapur 420 188 0 1.35
Pan/Lichtblau 855 412 0 1.6
Katsura-5 | Kandri-Rody, Kapur 248 723 0 32.40
Pan/Lichtblau 7178 3983 0 79.87
Cyclic-5 Kandri-Rody, Kapur 221 63 0 0.37
Pan/Lichtblau 347 158 0 0.71
Cyclic-6 Kandri-Rody, Kapur 3019 742 8 200.33
Pan/Lichtblau 9672 5782 8 616.82

» Toy implementation of both algorithms in Magma

» Kandri-Rody and Kapur is almost always more efficient than Pan/Lichtblau

» It is not due to the lack of cover criterion



Indicative timings

System S-GB (s) Recons.(s) Total(s) | GB(s) GB +coefs(s) Syz. basis (s)

Cyclic-5 0.4 0.1 0.5 0.01 954.6 954.8
Cyclic-6 200.3 10.6 210.9 2.08 >24h >24h

» Signature algorithms: Kandri-Rody and Kapur, reconstruction

» Classical algorithm: Magma’s built-in GroebnerBasis, IdealWithFixedBasis and
SyzygyMatrix



Conclusion

This work
» Two signature-based algorithms for PID’s following closely Buchberger’s algorithm
» Compatible with powerful criteria such as super-reducibility and the cover criterion

» Additional criteria and optimizations are available (coprime criterion, Gebauer-Méller
criteria, coefficient reductions...)

v

Toy implementation in Magma

Future directions
» Linear algebra algorithms a la F4
» Improve implementation

» Extend use of signature bases



Conclusion

This work
» Two signature-based algorithms for PID’s following closely Buchberger’s algorithm
» Compatible with powerful criteria such as super-reducibility and the cover criterion

» Additional criteria and optimizations are available (coprime criterion, Gebauer-Méller
criteria, coefficient reductions...)

v

Toy implementation in Magma

Future directions
» Linear algebra algorithms a la F4
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Thanks for your attention!
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