Gröbner bases for Tate algebras

Xavier Caruso¹

Tristan Vaccon² Thibaut Verron³

- 1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
- 2. Université de Limoges, CNRS, XLIM, Limoges, France
- 3. Johannes Kepler University, Institute for Algebra, Linz, Austria

CASC seminar, 25 February 2021

Algebraic geometry and analytic geometry

Analytic geometry	Analytic series
\bigcap GAGA (over \mathbb{C})	
Algebraic geometry	Polynomials

Algebraic geometry and analytic geometry \dots over p-adics?

Analytic geometry	Analytic series
Algebraic geometry	Polynomials
Non archimedean case: \mathbb{Q}_p	
???	???

Rigid geometry and Tate series

Analytic geometry	Analytic series
\bigcap GAGA (over \mathbb{C})	
Algebraic geometry	Polynomials
Tate's theory (over \mathbb{Q}_p)	
Rigid geometry	Tate series

Needed for algorithmic rigid geometry:

- ☐ Basic arithmetic for Tate series
- $\ \square$ Ideal operations for Tate series
- $\hfill\Box$ "Cut and patch" rigid varieties

Rigid geometry and Tate series

Analytic geometry	Analytic series
\bigcap GAGA (over \mathbb{C})	
Algebraic geometry	Polynomials
Tate's theory (over \mathbb{Q}_p)	
Rigid geometry	Tate series

Needed for algorithmic rigid geometry:

- ☐ Basic arithmetic for Tate series
- ☐ Ideal operations for Tate series
- $\ \square$ "Cut and patch" rigid varieties

Valued fields and valuation rings: summary of basic definitions

Valuation: function val :
$$k \to \mathbb{Z} \cup \{\infty\}$$
 with:

$$ightharpoonup \operatorname{val}(a+b) \geq \min(\operatorname{val}(a),\operatorname{val}(b))$$

$$\begin{array}{cccc}
\bullet & \bullet & \circ & \circ \\
\bullet & \circ & \circ & \circ \\
\bullet & \circ & \circ & \circ \\
a \cdot b & = ab
\end{array}$$

$$b = b_{-3}\pi^{-3} + b_{-2}\pi^{-2} + \dots$$

$$\begin{cases} val(b) = -3 \end{cases}$$

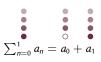
$$\begin{array}{lll} \text{Field} & \mathcal{K} = \operatorname{Frac}(\mathcal{K}^\circ) = \mathcal{K}^\circ[1/\pi] & \mathbb{Q}_p & k(\!(X)\!) \\ \text{Integer ring} & \mathcal{K}^\circ = \{x : \operatorname{val}(x) \geq 0\} & \mathbb{Z}_p & k[\![X]\!] \\ \text{Uniformizer} & \pi & p \operatorname{prime} & X \\ \text{Residue field} & \mathcal{K}^\circ/\langle \pi \rangle & \mathbb{F}_p & k \end{array}$$

$$\begin{array}{lll} \text{Field} & \mathcal{K} = \operatorname{Frac}(\mathcal{K}^\circ) = \mathcal{K}^\circ[1/\pi] & \mathbb{Q}_p & k(\!(X)\!) \\ \text{Integer ring} & \mathcal{K}^\circ = \{x : \operatorname{val}(x) \geq 0\} & \mathbb{Z}_p & k[\![X]\!] \\ \text{Uniformizer} & \pi & p \operatorname{prime} & X \\ \text{Residue field} & \mathcal{K}^\circ/\langle \pi \rangle & \mathbb{F}_p & k \end{array}$$

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0:

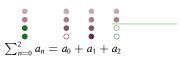
$$\begin{array}{lll} \text{Field} & \mathcal{K} = \operatorname{Frac}(\mathcal{K}^\circ) = \mathcal{K}^\circ[1/\pi] & \mathbb{Q}_p & k(\!(X)\!) \\ \text{Integer ring} & \mathcal{K}^\circ = \{x : \operatorname{val}(x) \geq 0\} & \mathbb{Z}_p & k[\![X]\!] \\ \text{Uniformizer} & \pi & p \operatorname{prime} & X \\ \text{Residue field} & \mathcal{K}^\circ/\langle \pi \rangle & \mathbb{F}_p & k \end{array}$$

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0:



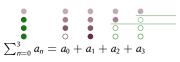
$$\begin{array}{lll} \text{Field} & \mathcal{K} = \operatorname{Frac}(\mathcal{K}^\circ) = \mathcal{K}^\circ[1/\pi] & \mathbb{Q}_p & k(\!(X)\!) \\ \text{Integer ring} & \mathcal{K}^\circ = \{x : \operatorname{val}(x) \geq 0\} & \mathbb{Z}_p & k[\![X]\!] \\ \text{Uniformizer} & \pi & p \operatorname{prime} & X \\ \text{Residue field} & \mathcal{K}^\circ/\langle \pi \rangle & \mathbb{F}_p & k \end{array}$$

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0:



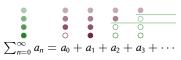
$$\begin{array}{lll} \text{Field} & \mathcal{K} = \operatorname{Frac}(\mathcal{K}^\circ) = \mathcal{K}^\circ[1/\pi] & \mathbb{Q}_p & k(\!(X)\!) \\ \text{Integer ring} & \mathcal{K}^\circ = \{x : \operatorname{val}(x) \geq 0\} & \mathbb{Z}_p & k[\![X]\!] \\ \text{Uniformizer} & \pi & p \operatorname{prime} & X \\ \text{Residue field} & \mathcal{K}^\circ/\langle \pi \rangle & \mathbb{F}_p & k \end{array}$$

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0:



$$\begin{array}{lll} \text{Field} & \mathcal{K} = \operatorname{Frac}(\mathcal{K}^\circ) = \mathcal{K}^\circ[1/\pi] & \mathbb{Q}_p & k(\!(X)\!) \\ \text{Integer ring} & \mathcal{K}^\circ = \{x : \operatorname{val}(x) \geq 0\} & \mathbb{Z}_p & k[\![X]\!] \\ \text{Uniformizer} & \pi & p \operatorname{prime} & X \\ \text{Residue field} & \mathcal{K}^\circ/\langle \pi \rangle & \mathbb{F}_p & k \end{array}$$

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- All those examples are complete for that topology
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:



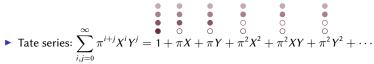
$$\mathbf{X}=X_1,\ldots,X_n$$

Definition

▶ $K\{X\}^{\circ}$ = ring of series in X with coefficients in K° converging for all $x \in K^{\circ}$ = ring of power series whose general coefficients tend to 0

Examples

Polynomials (finite sums are convergent)



- Not a Tate series: $\sum_{i=0}^{\infty} X^i = 1 + 1X + 1X^2 + 1X^3 + \cdots$
- ▶ $F \in \mathbb{C}[[Y]][[X]]$ is a Tate series $\iff F \in \mathbb{C}[X][[Y]]$

Outline of the talk

1. Introduction and definitions

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
- Impossibility of zero-test

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
 - ► A priori not a problem in a valuation ring
- Impossibility of zero-test
 - ► Consider larger coefficients first
- Non-terminating reductions

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

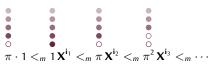
- Propagation of rounding errors
 - ► A priori not a problem in a valuation ring
- Impossibility of zero-test
 - Consider larger coefficients first
- Non-terminating reductions
 - ► Theory: replace terminating with convergent everywhere
 - ► Practice: we always work with bounded precision

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ► Starting from a usual monomial ordering $1 <_m \mathbf{X}^{\mathbf{i}_1} <_m \mathbf{X}^{\mathbf{i}_2} <_m \dots$
- ▶ We define a term ordering putting more weight on large coefficients

Usual term ordering:



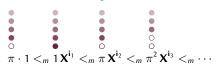
Term ordering for Tate series:

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ▶ Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:



Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

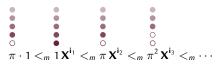
LT(f)
$$f = a_2XY + a_1X + a_0 \cdot 1 + a_3X^2Y^2 + \dots$$

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ▶ Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:



Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

compatible with the term order

Tate series always have a leading term
$$\mathsf{LT}(f)$$
 Isomorphism $K\{\mathbf{X}\}^\circ/\langle\pi\rangle \simeq \mathbb{F}[\mathbf{X}]$
$$f \mapsto \overline{f}$$

$$f = \overline{a_2}XY + \overline{a_1}X$$
 compatible with the term order
$$\mathsf{LT}(f)$$

Gröbner bases for Tate series

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations:
 - 1. G is a Gröbner basis of I
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G \exists sequence of reductions converging to 0

Gröbner bases for Tate series

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- ▶ Standard equivalent characterizations and a surprising one:
 - 1. *G* is a Gröbner basis of *I*
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G
- \exists sequence of reductions converging to 0

$$\pi f \in I \implies f \in I$$

4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[\mathbf{X}]$

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated

2. Separate $f = \overline{f} + f - \overline{f}$

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

$$\frac{\bullet}{f} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$$

 \overline{G} is a Gröbner basis of \overline{I}

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

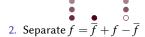
$$\frac{\bullet}{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$$

4. So we have a sequence of reductions

 \overline{G} is a Gröbner basis of \overline{I}

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated



3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

$$\frac{\bullet}{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$$

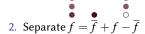
4. So we have a sequence of reductions

$$f - \sum_{i=1}^{r} q_i g_i = f - \sum_{i=1}^{r} q_i \overline{g_i} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i \right)$$

 \overline{G} is a Gröbner basis of \overline{I}

1. Start with $f \in I$, we can assume that f has valuation 0

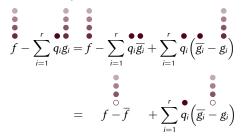
I is saturated



3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

$$\frac{\bullet}{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$$

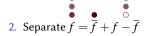
4. So we have a sequence of reductions



 \overline{G} is a Gröbner basis of \overline{I}

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated



3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 \overline{G} is a Gröbner basis of \overline{I}

$$\frac{\bullet}{f} - q_1 \frac{\bullet}{g_1} - q_2 \frac{\bullet}{g_2} - \dots - q_r \frac{\bullet}{g_r} = 0$$

4. So we have a sequence of reductions

$$f - \sum_{i=1}^{r} q_{i}g_{i} = f - \sum_{i=1}^{r} q_{i}\overline{g_{i}} + \sum_{i=1}^{r} q_{i}\left(\overline{g_{i}} - g_{i}\right)$$

$$= f - \overline{f} + \sum_{i=1}^{r} q_{i}\left(\overline{g_{i}} - g_{i}\right) = \blacksquare = \pi \cdot f_{1}$$

▶ 1. Start with $f \in I$, we can assume that f has valuation 0

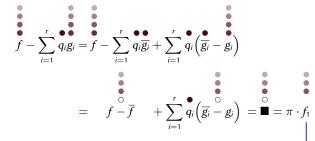
I is saturated

- 2. Separate $f = \overline{f} + f \overline{f}$
- 3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 \overline{G} is a Gröbner basis of \overline{I}

$$\frac{\bullet}{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$$

4. So we have a sequence of reductions



Gröbner bases for Tate series

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations and a surprising one:
 - 1. *G* is a Gröbner basis of *I*
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G \exists sequence of reductions converging to 0

If I is saturated:

$$\pi f \in I \implies f \in I$$

- 4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[X]$
- Every Tate ideal has a finite Gröbner basis
- ▶ It can be computed using the usual algorithms (reduction, Buchberger, F₄)
- In practice, the algorithms run with finite precision and without loss of precision

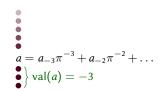
No division by π

What about valued fields?

Recall: K = fraction field of K°

$$\mathbb{Q}_p$$
 \mathbb{Z}_p $\mathbb{C}((X))$ $\mathbb{C}[[X]]$

- ▶ Elements are $\frac{b}{\pi^k}$ with $b \in K^{\circ}$, $k \in \mathbb{N}$
- ► The valuation can be negative but not infinite
- ▶ Same metric, same topology as K°



What about valued fields?

Recall: K = fraction field of K°

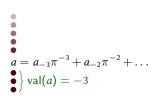
$$\mathbb{Q}_p$$
 $\mathbb{C}((X))$ $\mathbb{C}[[X]]$

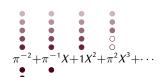
- ► Elements are $\frac{b}{\pi^k}$ with $b \in K^{\circ}$, $k \in \mathbb{N}$
- The valuation can be negative but not infinite
- Same metric, same topology as K°
- Tate series can be defined as in the integer case
- Same order, same definition of Gröbner bases
- Main difference: πX now divides X
- Another surprising equivalence
 - 1. G is a normalized GB of I

2.
$$G \subset K\{X\}^{\circ}$$
 is a GB of $I \cap K\{X\}^{\circ}$

2.
$$G \subset K\{X\}^{\circ}$$
 is a GB of $I \cap K\{X\}^{\circ}$

▶ In practice, we emulate computations in $K\{X\}^{\circ}$ in order to avoid losses of precision (and the ideal is saturated)





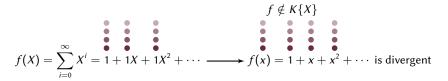
 $\forall g \in G$, val(LC(g)) = 0 (in part., $G \subset K\{X\}^{\circ}$)

Generalizing the convergence condition: log-radii in \mathbb{Z}^n

 $\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$

Definition

- ► $K\{X\}$ = ring of power series converging for all $x \in K^{\circ}$
 - = ring of power series whose general coefficients tend to 0
 - = ring of power series $\sum a_i \mathbf{X}^i$ with $\operatorname{val}(a_i) \xrightarrow[|\mathbf{i}| \to \infty]{} + \infty$

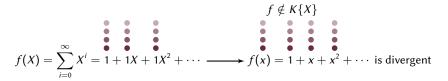


Generalizing the convergence condition: log-radii in \mathbb{Z}^n

 $\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$

Definition

- ► $K\{X\}$ = ring of power series converging for all x s.t. $val(x_k) \ge 0$ (k = 1, ..., n)
 - = ring of power series whose general coefficients tend to 0
 - = ring of power series $\sum a_i \mathbf{X}^i$ with val $(a_i) \xrightarrow[|i| \to \infty]{} +\infty$



Generalizing the convergence condition: log-radii in \mathbb{Z}^n

Definition

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- $K\{X; r\}$ = ring of power series converging for all x s.t. $val(x_k) \ge r_k$ (k = 1, ..., n)
 - = ring of power series whose general coefficients tend to 0
 - = ring of power series $\sum a_i \mathbf{X}^i$ with val $(a_i) \mathbf{r} \cdot \mathbf{i} \xrightarrow[|\mathbf{i}| \to \infty]{} + \infty$

$$f \notin K\{X\} (= K\{X; 0\})$$

$$f(X) = \sum_{i=0}^{\infty} X^{i} = 1 + 1X + 1X^{2} + \cdots \longrightarrow f(x) = 1 + x + x^{2} + \cdots \text{ is divergent}$$

$$f \in K\{X; 1\}$$

$$f(x) = 1 + x + x^{2} + \cdots \text{ is convergent}$$

Reduction to previous case by change of variables: $f(\pi X) = 1 + \pi X + \pi^2 X^2 + \cdots$

Generalizing the convergence condition: log-radii in \mathbb{Z}^n and beyond

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

Definition

- ► $K\{X; r\}$ = ring of power series converging for all x s.t. $val(x_k) \ge r_k$ (k = 1, ..., n) = ring of power series whose general coefficients tend to 0 = ring of power series $\sum a_i X^i$ with $val(a_i) - r \cdot i \xrightarrow[|i| \to \infty]{} +\infty$
- ► The term order is not the same:

$$a\mathbf{X}^{\mathbf{i}} < b\mathbf{X}^{\mathbf{j}} \iff \begin{cases} \operatorname{val}(a) - \mathbf{r} \cdot \mathbf{i} < \operatorname{val}(b) - \mathbf{r} \cdot \mathbf{j} \\ \cdots = \cdots \text{ and } \mathbf{X}^{\mathbf{i}} <_{m} \mathbf{X}^{\mathbf{j}} \end{cases}$$

- $\mathbf{r} \in \mathbb{Q}^n$: similar (with special care)
- $ightharpoonup
 m{r} = (\infty, \ldots, \infty)$: convergence everywhere, polynomial case

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
 - Avoid useless reductions to zero
 - Speed-up interreductions
 - Exploit overconvergence
 - ► End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- ► Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
 - ► Avoid useless reductions to zero: signature algorithms (ISSAC 2020)
 - Speed-up interreductions
 - Exploit overconvergence
 - ► End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- ► Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
 - ► Avoid useless reductions to zero: signature algorithms (ISSAC 2020)
 - Speed-up interreductions
 - Exploit overconvergence
 - ► End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Outline of the talk

1. Introduction and definition

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals

Change of ordering and the FGLM algorithm

Change of ordering:

- Useful in the classical case for two-steps strategies
- ► For zero-dimensional ideals, can be done efficiently with the FGLM algorithm [Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:

- Change of monomial ordering
- But also change of term ordering and radius of convergence

Idea for overconvergence:

- 1. Compute a Gröbner basis in the smaller Tate algebra
- 2. Use change of ordering to restrict to the larger one

Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- Quotient K[X]/I has finite dimension as a vector space over K
- Given a Gröbner basis G, the staircase under G is
 B = {m monomial not divisible by any LT of G}
- ▶ B is a K-basis of K[X]/I

Outline of the algorithm:

In: G_1 a reduced Gröbner basis wrt an order $<_1$

<2 a monomial order

Out: G_2 a reduced Gröbner basis wrt $<_2$

- 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis B_1 (computing B_1)
- 2. Convert them into the Gröbner basis G_2 (computing B_2)

Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- ▶ Quotient K[X]/I has finite dimension as a vector space over K
- Given a Gröbner basis G, the staircase under G is
 B = {m monomial not divisible by any LT of G}
- ▶ B is a K-basis of K[X]/I

Outline of the algorithm:

In: G_1 a reduced Gröbner basis wrt an order $<_1$

<2 a monomial order

Out: G_2 a reduced Gröbner basis wrt $<_2$

- 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis B_1 (computing B_1)
- 2. Convert them into the Gröbner basis G_2 (computing B_2)

Complexity

- ▶ Degree δ of the ideal = size of B = number of solutions (with multiplicity)
- Complexity cubic (or subcubic) in \(\delta \)

FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- ▶ Same definition as in the polynomial case: $K\{X\}/I$ has finite dimension
- ▶ B is a K-basis of $K\{X\}/I$
- ► Any element of $K\{X\}/I$ can be represented as a **polynomial**

FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- ▶ Same definition as in the polynomial case: $K\{X\}/I$ has finite dimension
- ▶ B is a K-basis of $K\{X\}/I$
- ▶ Any element of $K\{X\}/I$ can be represented as a **polynomial**

Outline of the algorithm

```
In: G_1 a reduced Gröbner basis in K\{X; r\} wrt an order <_1 <_2 a monomial order u \le r a system of log-radii
```

Out: G_2 a reduced Gröbner basis in $K\{X; u\}$ wrt $<_2$

- 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
- 2. Convert them into matrices in the basis $B_{1,\mathbf{u}}$ (computing $B_{1,\mathbf{u}}$)
- 3. Convert them into the Gröbner basis G_2

FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- ▶ Same definition as in the polynomial case: $K\{X\}/I$ has finite dimension
- ▶ B is a K-basis of $K\{X\}/I$
- ▶ Any element of $K\{X\}/I$ can be represented as a **polynomial**

Outline of the algorithm

```
In: G_1 a reduced Gröbner basis in K\{X; r\} wrt an order <_1 <_2 a monomial order u \le r a system of log-radii
```

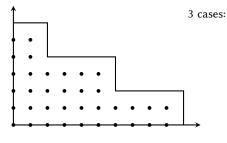
Out: G_2 a reduced Gröbner basis in $K\{X; u\}$ wrt $<_2$

- 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
- 2. Convert them into matrices in the basis $B_{1,\mathbf{u}}$ (computing $B_{1,\mathbf{u}}$)
- 3. Convert them into the Gröbner basis G_2

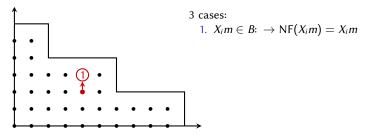
Complexity

- Complexity cubic in δ
- Base complexity quasi-linear in the precision

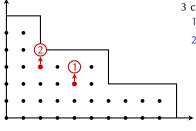
- ▶ Idea: need to compute NF($X_i m$) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



- ▶ Idea: need to compute NF($X_i m$) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



- ▶ Idea: need to compute NF($X_i m$) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations

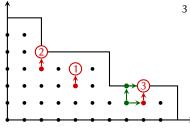


3 cases:

1.
$$X_i m \in B: \rightarrow NF(X_i m) = X_i m$$

2.
$$X_i m = \mathsf{LT}(g)$$
 for $g \in G \to \mathsf{NF}(X_i m) = X_i m - g$

- ▶ Idea: need to compute NF($X_i m$) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



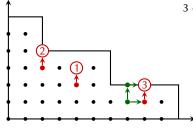
3 cases:

1.
$$X_i m \in B: \rightarrow NF(X_i m) = X_i m$$

2.
$$X_i m = \mathsf{LT}(g)$$
 for $g \in G \to \mathsf{NF}(X_i m) = X_i m - g$

3. Otherwise, write
$$m = X_j m'$$
 with $NF(X_i m') = \sum a_{\mu} \mu$
 $\rightarrow NF(X_i m) = NF(X_j X_i m') = \sum a_{\mu} NF(X_j \mu)$

- ▶ Idea: need to compute NF($X_i m$) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations



3 cases:

1.
$$X_i m \in B: \rightarrow NF(X_i m) = X_i m$$

2.
$$X_i m = \mathsf{LT}(g)$$
 for $g \in G \to \mathsf{NF}(X_i m) = X_i m - g$

3. Otherwise, write $m = X_j m'$ with $NF(X_i m') = \sum a_{\mu} \mu$ $\rightarrow NF(X_i m) = NF(X_j X_i m') = \sum a_{\mu} NF(X_j \mu)$

Why does it work?

- ▶ Usual case: NF(m) only involves monomials smaller than m
- ▶ Tate case: not true, but if not their coefficient is smaller than 1 (i.e. divisible by π)
- ▶ So we can recover the value mod π , and repeating k times, the value mod π^k :

$$\begin{array}{cccc}
? & ? & ? \\
\bullet & ? & \bullet \\
\circ & \bullet & \circ \\
a \cdot b = ab
\end{array}$$

Two improvements on the computation of the multiplication matrices

Recursive computation:

- ▶ The previous algorithm relies on the order of the monomials
- lacktriangle Base complexity cubic in δ but quadratic in the precision
- lacktriangle Alternative: recursive algorithm, computing the coefficients mod π^k as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- ► Fast arithmetic + relaxed algorithms → base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Two improvements on the computation of the multiplication matrices

Recursive computation:

- ▶ The previous algorithm relies on the order of the monomials
- lacktriangle Base complexity cubic in δ but quadratic in the precision
- lacktriangle Alternative: recursive algorithm, computing the coefficients mod π^k as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- ► Fast arithmetic + relaxed algorithms → base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:

- Usual case: need bases to be reduced to ensure structure of the order
- ▶ Here, we have to consider monomials which we have not yet seen in any case
- As long as the basis is reduced mod π , the hypotheses hold
- So FGLM (with same order and log-radii as input and output)
 gives an algorithm for interreduction with complexity quasi-linear in precision
- lacktriangle The complexity is not only bounded in terms of δ anymore

Example with $K = \mathbb{Q}_p$

$$\qquad \qquad \mathsf{K}[x,y] \colon \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$B_2 = \{1, y\}, \text{ degree 2!}$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

$$B_1 = \{1, x, y, y^2, xy, xy^2\}, \text{ degree } 6$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

 $B_2 = \{1, y\}, \text{ degree 2!}$

▶ Why does *x* disappear from the staircase?

Consider $x^4 \cdot x$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

$$B_2 = \{1, y\}, \text{ degree 2!}$$

▶ Why does *x* disappear from the staircase?

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - v^2, pv^3 - x \rangle$$

$$B_1 = \{1, x, y, y^2, xy, xy^2\}, \text{ degree } 6$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

►
$$B_2 = \{1, v\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$(\infty,\infty) \qquad \qquad \mathbf{K}\{x,y\}: \mathbf{u} = (0,0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

►
$$B_2 = \{1, v\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

►
$$B_2 = \{1, y\}$$
, degree 2!

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

►
$$K\{x,y\}$$
: **u** = (0,0)

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

►
$$B_2 = \{1, y\}$$
, degree 2!

▶ Why does *x* disappear from the staircase?

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

►
$$B_2 = \{1, y\}$$
, degree 2!

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

so
$$x = p^5 x^5$$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$K[x, y]: \mathbf{r} = (\infty, \infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

►
$$B_1 = \{1, x, y, y^2, xy, xy^2\}$$
, degree 6

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$\downarrow I = \langle v^2 - px^2, x - py^3 \rangle$$

▶
$$B_2 = \{1, y\}$$
, degree 2!

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

so $x = p^5x^5 = p^{10}x^9$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

$$\downarrow I = \langle v^2 - px^2, x - py^3 \rangle$$

►
$$B_2 = \{1, y\}$$
, degree 2

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

so $x = p^5x^5 = p^{10}x^9 = \cdots = 0$

Example with $K = \mathbb{Q}_p$

$$K[x,y]: \mathbf{r} = (\infty,\infty)$$

$$K\{x,y\}: \mathbf{u} = (0,0)$$

 $I = \langle px^2 - y^2, py^3 - x \rangle$

- $I = \langle v^2 px^2, x pv^3 \rangle$
- ▶ Why does *x* disappear from the staircase?

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

so $x = p^5 x^5 = p^{10} x^9 = \cdots = 0$ or equivalently $x(1 - p^5 x^4) = 0 \implies x = 0$.

Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

Characteristic polynomial:

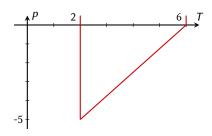
$$\chi_x = T^6 - p^{-5}T^2$$

Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

Characteristic polynomial:

$$\chi_x = T^6 - p^{-5}T^2$$



Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

Characteristic polynomial:

$$\chi_x = T^6 - p^{-5}T^2$$

$$= T^2 \cdot (T^4 - p^{-5})$$

$$Slope: \infty$$

$$Slope: 5/4$$

Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

Characteristic polynomial:

$$\chi_x = T^6 - p^{-5}T^2$$
= $T^2 \cdot (T^4 - p^{-5})$

Slope:

Slope: 0

Slope factorization:

- ▶ ker $(T_x^4 p^{-5})$: characteristic space with "eigenvalue" with valuation -5/4 < 0 \rightarrow vectors sent to 0
- ▶ ker (T_v^2) : characteristic space with "eigenvalue" with valuation $\infty \ge 0$ → vectors in the staircase

Characterization and construction of the new staircase

Construction

- ▶ Inclusion $K\{\mathbf{X};\mathbf{r}\} \to K\{\mathbf{X};\mathbf{u}\} \leadsto \mathsf{map}\ \Phi: V = K\{\mathbf{X};\mathbf{r}\}/I \to K\{\mathbf{X};\mathbf{u}\}/(IK\{\mathbf{X};\mathbf{u}\})$
- Φ is surjective but not injective
- Vectors sent to 0:

$$N = \bigcap$$
 "Eigenspace" of T_i with valuation $< u_i$

Characterization and construction of the new staircase

Construction

- ▶ Inclusion $K\{X; r\} \rightarrow K\{X; u\} \rightsquigarrow \text{map } \Phi : V = K\{X; r\}/I \rightarrow K\{X; u\}/(IK\{X; u\})$
- Φ is surjective but not injective
- Vectors sent to 0:

$$N = \bigcap$$
 "Eigenspace" of T_i with valuation $< u_i$

New quotient:

$$K\{X; \mathbf{u}\}/(I+N) = \sum$$
 "Eigenspace" of T_i with valuation $\geq u_i$

- Or simply compute a monomial basis of the quotient
- This linear algebra encodes a topological construction

Full FGLM algorithm for Tate algebras

- In: G_1 a reduced Gröbner basis in $K\{X; r\}$ wrt an order $<_1$ $<_2$ a monomial order $u \le r$ a system of log-radii
- Out: G_2 a reduced Gröbner basis wrt $<_2$ in $K\{X; u\}$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
 - 2. Convert them into matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{u}}$ (slope factorization)
 - 3. Convert into the basis G_2
 - 3.1 Use the usual algorithm modulo π (in \mathbb{F}) to compute $B_{2,\mathbf{u}}$ and $\overline{G_2}$
 - 3.2 Lift the linear algebra operations to obtain G_2

Full FGLM algorithm for Tate algebras

- In: G_1 a reduced Gröbner basis in $K\{X; r\}$ wrt an order $<_1$ $<_2$ a monomial order
 - $\mathbf{u} \leq \mathbf{r}$ a system of log-radii
- Out: G_2 a reduced Gröbner basis wrt $<_2$ in $K\{X; u\}$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
 - 2. Convert them into matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{u}}$ (slope factorization)
 - 3. Convert into the basis G_2
 - 3.1 Use the usual algorithm modulo π (in \mathbb{F}) to compute $B_{2,\mathbf{u}}$ and $\overline{G_2}$
 - 3.2 Lift the linear algebra operations to obtain G_2

Complexity

- Step 1 has base complexity $\tilde{O}(n\delta^3 \text{prec})$
- Each other step has arithmetic complexity $\tilde{O}(n\delta^3)$
- Final base complexity: $\tilde{O}(n\delta^3 \text{prec})$

Conclusion and future work

Summary

- ▶ Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- \blacktriangleright FGLM algorithm: for 0-dim ideals \rightarrow interreduction and change of convergence radii

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- ightharpoonup FGLM algorithm: for 0-dim ideals ightarrow interreduction and change of convergence radii

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension

Conclusion and future work

Summary

- ▶ Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- ightharpoonup FGLM algorithm: for 0-dim ideals ightarrow interreduction and change of convergence radii

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- ▶ Improve the complexity of reduction in positive dimension

Thank you for your attention!

References

- Gröbner bases over Tate algebras, ISSAC 2019
- Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
- On FGLM algorithms with Tate algebras, preprint 2021