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Valued fields and valuation rings: summary of basic definitions

Valuation: function val : k → Z ∪ {∞} with:

I val(a) =∞ ⇐⇒ a = 0

I val(ab) = val(a) + val(b)

I val(a + b) ≥ min(val(a), val(b))

0

a · b = ab

a + b = a + b a + b = a + b

?
?
?

Examples: 1 π a = a3π
3 + a4π

4 + . . . b = b−3π
−3 + b−2π

−2 + . . .

val(a) = 3

val(b) = −3
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Valued fields and valuation rings: main examples and topology

Field K = Frac(K◦) = K◦[1/π] Qp k((X))

Integer ring K◦ = {x : val(x) ≥ 0} Zp k[[X ]]

Uniformizer π p prime X

Residue field K◦/〈π〉 Fp k

I Metric and topology defined by “a is small” ⇐⇒ “val(a) is large”
I All those examples are complete for that topology

I In a complete valuation ring, a series is convergent i� its general term goes to 0:

∑
n=0 an = a0

+ a1 + a2 + a3 + · · ·
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Valued fields and valuation rings: main examples and topology

Field K = Frac(K◦) = K◦[1/π] Qp k((X))

Integer ring K◦ = {x : val(x) ≥ 0} Zp k[[X ]]
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I All those examples are complete for that topology

I In a complete valuation ring, a series is convergent i� its general term goes to 0:

∑∞
n=0 an = a0 + a1 + a2 + a3 + · · ·



5

Tate Series

X = X1, . . . , Xn

Definition
I K{X}◦ = ring of series in X with coe�icients in K◦ converging for all x ∈ K◦

= ring of power series whose general coe�icients tend to 0

Examples
I Polynomials (finite sums are convergent)

I Tate series:
∞∑

i,j=0

πi+jX iY j = 1 + πX + πY + π2X 2 + π2XY + π2Y 2 + · · ·

I Not a Tate series:
∞∑
i=0

X i = 1 + 1X + 1X 2 + 1X 3 + · · ·

I F ∈ C[[Y ]][[X]] is a Tate series ⇐⇒ F ∈ C[X][[Y ]]
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Outline of the talk

1. Introduction and definitions

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals
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Gröbner bases in finite precision

Gröbner bases:
I Multi-purpose tool for ideal arithmetic in polynomial algebras
I Membership testing, elimination, intersection...
I Uses successive (terminating) reductions

Main challenges with finite precision:
I Propagation of rounding errors

I A priori not a problem in a valuation ring

I Impossibility of zero-test

I Consider larger coe�icients first

I Non-terminating reductions

I Theory: replace terminating with convergent everywhere
I Practice: we always work with bounded precision
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Term ordering for Tate algebras

Xi = X i1
1 · · ·X in

n

I Starting from a usual monomial ordering 1 <m Xi1 <m Xi2 <m . . .

I We define a term ordering pu�ing more weight on large coe�icients

Usual term ordering:

π · 1 <m 1Xi1 <m π Xi2 <m π
2 Xi3 <m · · ·

Term ordering for Tate series:

· · · < π2 Xi3 < π· 1 < π Xi2 < 1Xi1 < · · ·
<m

I It has infinite descending chains, but they converge to zero

I Tate series always have a leading term

I Isomorphism K{X}◦/〈π〉 ' F[X]

f 7→ f

compatible with the term order

f = a2XY + a1X + a0 · 1 + a3X
2Y 2 + . . .

f = a2XY + a1X

LT(f )
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Gröbner bases for Tate series

I Standard definition once the term order is defined:

G is a Gröbner basis of I ⇐⇒ for all f ∈ I, there is g ∈ G s.t. LT(g) divides LT(f )

I Standard equivalent characterizations:

1. G is a Gröbner basis of I

2. for all f ∈ I, f is reducible modulo G

3. for all f ∈ I, f reduces to zero modulo G

If I is saturated:

4. G is a Gröbner basis of I in the sense of F[X]

πf ∈ I =⇒ f ∈ I

∃ sequence of reductions converging to 0

I Every Tate ideal has a finite Gröbner basis

I It can be computed using the usual algorithms (reduction, Buchberger, F4)

I In practice, the algorithms run with finite precision and without loss of precision

No division by π
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How does it work? (4 =⇒ 3)

1. Start with f ∈ I, we can assume that f has valuation 0 I is saturated

2. Separate f = f + f − f

3. f ∈ I so we have a sequence of reductions G is a Gröbner basis of I

f − q1g1 − q2g2 − · · · − qrgr = 0

4. So we have a sequence of reductions

f −
r∑

i=1

qigi = f −
r∑

i=1

qigi +
r∑

i=1

qi
(
gi − gi

)

= f − f +
r∑

i=1

qi
(
gi − gi

)
= � = π · f1
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Gröbner bases for Tate series
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What about valued fields?

I Recall: K = fraction field of K◦

Zp

C[[X ]]
Qp

C((X))

I Elements are
b
πk

with b ∈ K◦, k ∈ N
I The valuation can be negative but not infinite
I Same metric, same topology as K◦

I Tate series can be defined as in the integer case
I Same order, same definition of Gröbner bases
I Main di�erence: πX now divides X

I Another surprising equivalence

1. G is a normalized GB of I

2. G ⊂ K{X}◦ is a GB of I ∩ K{X}◦

I In practice, we emulate computations in K{X}◦ in order to avoid losses of precision
(and the ideal is saturated)

∀g ∈ G, val(LC(g)) = 0 (in part., G ⊂ K{X}◦)

a = a−3π
−3 + a−2π

−2 + . . .

val(a) = −3

π−2+π−1X+1X 2+π2X 3+· · ·
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Generalizing the convergence condition: log-radii in Zn

Xi = X i1
1 · · ·X in

n
Definition
I K{X} = ring of power series converging for all x ∈ K◦

= ring of power series whose general coe�icients tend to 0
= ring of power series

∑
aiXi with val(ai) −−−−→

|i|→∞
+∞

f (X) =
∞∑
i=0

X i = 1 + 1X + 1X 2 + · · ·

f /∈ K{X}

(= K{X ; 0})

f (x) = 1 + x + x2 + · · · is divergent

f ∈ K{X ; 1}

f (x) = 1 + x + x2 + · · · is convergentLog-radii in Qn are more complicated, but things still work.

I Reduction to previous case by change of variables: f (πX) = 1 + πX + π2X 2 + · · ·
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Generalizing the convergence condition: log-radii in Zn

Xi = X i1
1 · · ·X in

n
Definition
I K{X; r} = ring of power series converging for all x s.t. val(xk) ≥ rk (k = 1, . . . , n)

= ring of power series whose general coe�icients tend to 0
= ring of power series

∑
aiXi with val(ai)− r · i −−−−→

|i|→∞
+∞

f (X) =
∞∑
i=0

X i = 1 + 1X + 1X 2 + · · ·

f /∈ K{X}(= K{X ; 0})

f (x) = 1 + x + x2 + · · · is divergent
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Generalizing the convergence condition: log-radii in Zn and beyond

Xi = X i1
1 · · ·X in

n

Definition
I K{X; r} = ring of power series converging for all x s.t. val(xk) ≥ rk (k = 1, . . . , n)

= ring of power series whose general coe�icients tend to 0
= ring of power series

∑
aiXi with val(ai)− r · i −−−−→

|i|→∞
+∞

I The term order is not the same:

aXi < bXj ⇐⇒

val(a)− r · i < val(b)− r · j

· · · = · · · and Xi <m Xj

I r ∈ Qn: similar (with special care)
I r = (∞, . . . ,∞): convergence everywhere, polynomial case
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Summary and bo�lenecks

What we have seen so far: (ISSAC 2019)
I Definition of Gröbner bases for Tate ideals
I Characterizations à la Buchberger
I Algorithmes to compute them (Buchberger, F4)

Complexity bo�leneck: reductions
I Not unusual with Gröbner bases, but here the complexity grows badly with the precision
I Several areas of possible improvement:

I Avoid useless reductions to zero
I Speed-up interreductions
I Exploit overconvergence
I End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra
Ex: polynomials (log-radii∞) seen as Tate series
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Change of ordering and the FGLM algorithm

Change of ordering:
I Useful in the classical case for two-steps strategies
I For zero-dimensional ideals, can be done e�iciently with the FGLM algorithm

[Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:
I Change of monomial ordering
I But also change of term ordering and radius of convergence

Idea for overconvergence:

1. Compute a Gröbner basis in the smaller Tate algebra

2. Use change of ordering to restrict to the larger one
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Characteristics of the FGLM algorithm

0-dimensional ideals:
I Variety = finitely many points
I �otient K [X]/I has finite dimension as a vector space over K
I Given a Gröbner basis G, the staircase under G is

B = {m monomial not divisible by any LT of G}
I B is a K -basis of K [X]/I

Outline of the algorithm:

In: G1 a reduced Gröbner basis wrt an order <1

<2 a monomial order

Out: G2 a reduced Gröbner basis wrt <2

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1 (computing B1)

2. Convert them into the Gröbner basis G2 (computing B2)

Complexity
I Degree δ of the ideal = size of B = number of solutions (with multiplicity)
I Complexity cubic (or subcubic) in δ
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Iterative computation of the multiplication matrices

I Idea: need to compute NF(Xim) for all i ∈ {1, . . . , n},m ∈ B
I Proceed in increasing order and reuse the computations

3 cases:

1. Xim ∈ B: → NF(Xim) = Xim

2. Xim = LT(g) for g ∈ G → NF(Xim) = Xim− g

3. Otherwise, write m = Xjm′ with
NF(Xim′) =

∑
aµµ

→ NF(Xim) = NF(XjXim′) =
∑

aµNF(Xjµ)

Why does it work?
I Usual case: NF(m) only involves monomials smaller than m
I Tate case: not true, but if not their coe�icient is smaller than 1 (i.e. divisible by π)
I So we can recover the value mod π, and repeating k times, the value mod πk :

a · b = ab

?
?
? ?
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Two improvements on the computation of the multiplication matrices

Recursive computation:
I The previous algorithm relies on the order of the monomials
I Base complexity cubic in δ but quadratic in the precision
I Alternative: recursive algorithm, computing the coe�icients mod πk as needed
I Gives an order-agnostic algorithm which also works with non-0 log-radii
I Fast arithmetic + relaxed algorithms→ base complexity quasi-linear in the precision

[van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:
I Usual case: need bases to be reduced to ensure structure of the order
I Here, we have to consider monomials which we have not yet seen in any case
I As long as the basis is reduced mod π, the hypotheses hold
I So FGLM (with same order and log-radii as input and output)

gives an algorithm for interreduction with complexity quasi-linear in precision
I The complexity is not only bounded in terms of δ anymore
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Changing log-radii: what happens to the staircase?

Example with K = Qp

I K [x, y]: r = (∞,∞) I K{x, y}: u = (0, 0)

I I = 〈px2 − y2, py3 − x〉 I J = 〈y2 − px2, x − py3〉

I B1 = {1, x, y, y2, xy, xy2}, degree 6 I B2 = {1, y}, degree 2!

I Why does x disappear from the staircase?

Consider x4 · x =
1
p
x3y2 =

1
p2

xy4 =
1
p3

x2y =
1
p4

y3 =
1
p5

x

so x = p5x5 = p10x9= · · · = 0 or equivalently x(1− p5x4) = 0 =⇒ x = 0.
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Multiplication matrices and slope factorization

I Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Tx =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 p−1 0 p−2 0 p−3

0 0 0 0 1 0



1

x

y

xy

y2

xy2

1 x y xy y2 xy2

Characteristic polynomial:
χx = T 6 − p−5T 2

= T 2 · (T 4 − p−5)

p T2 6

-5

Slope factorization:
I ker(T 4

x − p−5) : characteristic space with “eigenvalue” with valuation −5/4 < 0
→ vectors sent to 0

I ker(T 2
x ) : characteristic space with “eigenvalue” with valuation ∞ ≥ 0

→ vectors in the staircase
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Characterization and construction of the new staircase

Construction
I Inclusion K{X; r} → K{X;u} map Φ : V = K{X; r}/I → K{X;u}/(I K{X;u})
I Φ is surjective but not injective
I Vectors sent to 0:

N =
⋂

“Eigenspace” of Ti with valuation < ui

I New quotient:

K{X;u}/(I + N) =
∑

“Eigenspace” of Ti with valuation ≥ ui

I Or simply compute a monomial basis of the quotient

I This linear algebra encodes a topological construction
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Full FGLM algorithm for Tate algebras

In: G1 a reduced Gröbner basis in K{X; r} wrt an order <1

<2 a monomial order
u ≤ r a system of log-radii

Out: G2 a reduced Gröbner basis wrt <2 in K{X;u}

1. Compute the matrices of multiplication by X1, . . . , Xn in the basis B1,r

2. Convert them into matrices of multiplication by X1, . . . , Xn in the basis B1,u

(slope factorization)

3. Convert into the basis G2

3.1 Use the usual algorithm modulo π (in F) to compute B2,u and G2

3.2 Li� the linear algebra operations to obtain G2

Complexity
I Step 1 has base complexity Õ(nδ3prec)

I Each other step has arithmetic complexity Õ(nδ3)

I Final base complexity: Õ(nδ3prec)
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Conclusion and future work

Summary
I Definition and computation of Gröbner bases for Tate ideals
I Standard algorithms (Buchberger, F4) and with signatures
I FGLM algorithm: for 0-dim ideals→ interreduction and change of convergence radii

Future work
I Integrate FGLM in the tate_algebra package of SageMath
I Generalizations of the interreduction in the middle of GB calculations
I Improve the complexity of reduction in positive dimension

Thank you for your a�ention!
References
I Gröbner bases over Tate algebras, ISSAC 2019
I Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
I On FGLM algorithms with Tate algebras, preprint 2021
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