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ABSTRACT
Introduced by Tate in [Ta71], Tate algebras play a major role in the
context of analytic geometry over the 𝑝-adics, where they act as a
counterpart to the use of polynomial algebras in classical algebraic
geometry. In [CVV19] the formalism of Gröbner bases over Tate
algebras has been introduced and effectively implemented. One
of the bottleneck in the algorithms was the time spent on reduc-
tion, which are significantly costlier than over polynomials. In the
present article, we introduce two signature-based Gröbner bases
algorithms for Tate algebras, in order to avoid many reductions.
They have been implemented in SageMath. We discuss their su-
periority based on numerical evidences.
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1 INTRODUCTION
For several decades, many computational questions arising from
geometry and arithmetics have received much attention, leading
to the development of more andmore efficient algorithms and soft-
wares. A typical example is the development of the theory of Gröb-
ner basis, which provides nowadays quite efficient tools for ma-
nipulating ideals in polynomial algebras and, eventually, algebraic
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varieties and schemes. At the intersection of geometry and num-
ber theory, one finds 𝑝-adic geometry and, more precisely, the no-
tion of 𝑝-adic analytic varieties first defined by Tate in 1971 [Ta71],
which plays quite an important role in many modern theories and
achievements (e.g. 𝑝-adic cohomologies, 𝑝-adic modular forms).

The main algebraic objects upon which Tate’s geometry is built
are Tate algebras and their ideals. In an earlier paper [CVV19],
the authors started to study computational aspects related to Tate
algebras: they introduce Gröbner bases in this context and design
two algorithms (adapted from Buchberger’s algorithm and the F4
algorithm, respectively) for computing them.

In the classical setting, the main complexity bottleneck in Gröb-
ner basis computations is the time spent reducing elementsmodulo
the basis. The most costly reductions are typically reductions to 0,
because they require successively eliminating all terms from the
polynomial; yet their output has little value for the rest of the al-
gorithm. Fortunately, it turns out that many such reductions can be
predicted in advance (for example those coming from the obvious
equality 𝑓 𝑔−𝑔𝑓 = 0) by keeping track of some information on the
module representation of elements of an ideal, called their signa-
ture. This idea was first presented in Algorithm F5 [Fa02] and led
to the development of many algorithms showing different ways to
define signatures, to use them or to compute them. The interested
reader can look at [EF17] for an extensive survey.

The Tate setting is not an exception to the wisdom that reduc-
tions are expensive. The situation is actually even worse since re-
ductions to 0 are theorically the result of an infinite sequence of re-
duction steps converging to 0. In practice, the process actually stops
because we are working at finite precision; however, the higher
the precision is, the more expensive the reductions to 0 are, for no
benefit. This observation motivates investigating the possibility of
adding signatures to Gröbner basis algorithms for Tate series.
Our contribution. In this paper, we present two signature-based al-
gorithms for the computation of Gröbner bases over Tate algebras.
They differ in that they use different orderings on the signatures.

Our first variant, called the PoTe (position over term) algorithm,
is directly adapted from the G2V algorithm [GGV10]. It adopts
an incremental point of view and uses the so-called cover crite-
rion [GVW16] to detect reductions to 0. A key difficulty in the Tate
setting is that the usual way to handle signatures assumes the con-
stant term 1 is the smallest one. However, the assumption fails in
the Tate setting.We solve this issue by importing ideas from [L+18]
in which the case of local algebras is addressed.

In the classical setting, incremental algorithms have the disad-
vantage of sometimes computing larger Gröbner bases for inter-
mediate ideals, only to discard them later on. In order to mitigate



this misfeature, the F5 algorithm uses a signature ordering tak-
ing into account the degree of the polynomials first, in order to
process lower-degree elements first. In the Tate setting, the de-
gree no longer makes sense and a better measure of progression
of the algorithms is the valuation. Nonetheless, similarly to the
classical setting, an incremental algorithm could perform interme-
diate computations to high valuation and just discard them later
on. The second algorithm we will present, called the VaPoTe (val-
uation over position over term) algorithm, uses an analogous idea
to that of F5 to mitigate this problem.
Organization of the article. In §2, we recall the basic definitions and
properties of Tate algebras and Gröbner basis over them, together
with the principles of the G2V algorithm. The two next sections are
devoted to the PoTe and the VaPoTe algorithms respectively: they
are presented and their correctness and termination are proved.
Finally, implementation, benchmarks and possible future improve-
ments, are discussed in §5.
Notations. Throughout this article, we fix a positive integer 𝑛 and
use the short notation X for (𝑋1, · · · , 𝑋𝑛). Given i = (𝑖1, . . . , 𝑖𝑛) ∈
N𝑛 , we shall write Xi for 𝑋 𝑖1

1 · · ·𝑋
𝑖𝑛
𝑛 .

2 INGREDIENTS
In this section, we present the two main ingredients we are go-
ing to mix together later on. They are, first, the G2V [GGV10] and
GVW [GVW16] signature-based algorithms, and, second, the Tate
algebras and the theory of Gröbner bases over them as developed
in [CVV19].

2.1 The G2V algorithm
In what follows, we present the G2V algorithm which was de-
signed by Gao, Guan and Volny IV in [GGV10] as an incremen-
tal variant of the classical F5 algorithm. Our presentation includes
the cover criterion which was formulated later on in [GVW16] by
Gao, Volny IV and Wang. The incremental point of view is needed
for the application we will discuss in §4. Moreover we believe that
it has two extra advantages: first, it leads to simplified notations
and, more importantly, it shows clearly where intermediate inter-
reductions are possible.

Let 𝑘 be a field and 𝑘 [X] denote the ring of polynomials over
𝑘 with indeterminates X. We endow 𝑘 [X] with a fixed monomial
order ≤𝜔 . Let 𝐼0 be an ideal in 𝑘 [X]. Let𝐺0 be a Gröbner basis of 𝐼0
with respect to ≤𝜔 . Let 𝑓 ∈ 𝑘 [X]. We aim at computing a GB of the
ideal 𝐼 = 𝐼0 + ⟨𝑓 ⟩ . Let 𝑀 ⊂ 𝑘 [X] × 𝑘 [X] be the 𝑘 [X]-sub-module
defined by the (𝑢, 𝑣) such that 𝑢𝑓 − 𝑣 ∈ 𝐼0. The leading monomial
of 𝑢 is the signature of (𝑢, 𝑣).

Definition 2.1 (Regular reduction). Let 𝑝1 = (𝑢1, 𝑣1) and 𝑝2 =

(𝑢2, 𝑣2) be in𝑀 . We say that 𝑝1 is top-reducible by 𝑝2 if
(1) either 𝑣2 = 0 and 𝐿𝑀 (𝑢2) divides 𝐿𝑀 (𝑢1),
(2) or 𝑣1𝑣2 ≠ 0, 𝐿𝑀 (𝑣2) divides 𝐿𝑀 (𝑣1) and:

𝐿𝑀 (𝑣1)
𝐿𝑀 (𝑣2)

· 𝐿𝑀 (𝑢2) ≤ 𝐿𝑀 (𝑢1).

The corresponding top-reduction is

𝑝 = 𝑝1 − 𝑡𝑝2 = (𝑢1 − 𝑡𝑢2, 𝑣1 − 𝑡𝑣2)

where 𝑡 =
𝐿𝑀 (𝑢1)
𝐿𝑀 (𝑢2) is the first case and 𝑡 =

𝐿𝑀 (𝑣1)
𝐿𝑀 (𝑣2) in the sec-

ond case. This top-reduction is called regular when 𝐿𝑀 (𝑢1) >

𝑡𝐿𝑀 (𝑢2), that is when the signature of the reduced pair 𝑝 agrees
with that of 𝑝1; it is called super otherwise.

Definition 2.2 (Strong Gröbner bases). A finite subset 𝐺 of 𝑀 is
called a strong Gröbner basis (SGB, for short) of 𝑀 if any nonzero
(𝑢, 𝑣) ∈ 𝑀 is top-reducible by some element of 𝐺 .

The G2V strategy derives the computation of a Gröbner basis
through the computation of an SGB. They are related through the
following proposition.

Proposition 2.3. Suppose that 𝐺 = {(𝑢1, 𝑣1), . . . , (𝑢𝑠 , 𝑣𝑠 )} is an
SGB of𝑀. Then:

(1) {𝑢 s.t. (𝑢, 0) ∈ 𝐺} is a Gröbner basis of (𝐼0:𝑓 ).
(2) {𝑣 s.t. (𝑢, 𝑣) ∈ 𝐺 for some 𝑢} is a Gröbner basis of 𝐼 .

To compute an SGB, we rely on J-pairs instead of S-polynomials.

Definition 2.4 (J-pair). Let 𝑝1 = (𝑢1, 𝑣1) and 𝑝2 = (𝑢2, 𝑣2) be two
elements in 𝑀 such that 𝑣1𝑣2 ≠ 0. Let 𝑡 = lcm(𝐿𝑀 (𝑣1), 𝐿𝑀 (𝑣2))
and set 𝑡𝑖 = 𝑡/𝐿𝑀 (𝑣𝑖 ) for 𝑖 ∈ {1, 2}. Then:
• if 𝐿𝑀 (𝑡1𝑢1) < 𝐿𝑀 (𝑡2𝑢2), the J-pair of (𝑝1, 𝑝2) is 𝑡2𝑝2,
• if 𝐿𝑀 (𝑡1𝑢1) > 𝐿𝑀 (𝑡2𝑢2), the J-pair of (𝑝1, 𝑝2) is 𝑡1𝑝1,
• if 𝐿𝑀 (𝑡1𝑢1) = 𝐿𝑀 (𝑡2𝑢2), the J-pair of (𝑝1, 𝑝2) is not defined.

Definition 2.5 (Cover). We say that 𝑝 = (𝑢, 𝑣) is covered by𝐺 ⊂ 𝑀
if there is a pair (𝑢𝑖 , 𝑣𝑖 ) ∈ 𝐺 such that 𝐿𝑀 (𝑢𝑖 ) divides 𝐿𝑀 (𝑢) and:

𝐿𝑀 (𝑢𝑖 )
𝐿𝑀 (𝑢) · 𝐿𝑀 (𝑣𝑖 ) < 𝐿𝑀 (𝑣) .

Theorem 2.6 (Cover Theorem). Let 𝐺 be a finite subset of 𝑀
such that:

• 𝐺 contains (1, 𝑓 );
• the set {𝑔 ∈ 𝑘 [X] : (0, 𝑔) ∈ 𝐺} forms a Gröbner basis of 𝐼0.

Then 𝐺 is an SGB of𝑀 iff every J-pair of 𝐺 is covered by 𝐺 .

This theorem leads naturally to the G2V algorithm (see [GGV10,
Fig. 1]) which is rephased hereafter in Algorithm 1 (page 4).We un-
derline that, in Algorithm 1, the SGB does not entirely appear. In-
deed, we remark that one can always work with pairs (𝐿𝑀 (𝑢), 𝑣)
in place of (𝑢, 𝑣), reducing then drastically the memory occupa-
tion and the complexity. The algorithm maintains two lists 𝐺 and
𝑆 which are related to the SGB in construction as follows:𝐺 ∪ (𝑆 ×
{0}) is equal to the set of all (𝐿𝑀 (𝑢), 𝑣) when (𝑢, 𝑣) runs over the
SGB. The criterion coming from the cover theorem is implemented
on lines 10 and 11: the first (resp. the second) statement checks if
(𝑢, 𝑣) is covered by an element of 𝐺 (resp. an element of 𝑆 × {0}).

Syzygies. The G2V algorithm does not give direct access to the
module of syzygies of the ideal. However, it does give access to
a GB of (𝐼0:𝑓 ) (see Proposition 2.3), from which one can recover
partial information about the syzygies, as shown below.

Definition 2.7. Given 𝑓1, . . . , 𝑓𝑚 ∈ 𝑘 [X], we define

𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚) =
{
(𝑎1, . . . , 𝑎𝑚) ∈ 𝑘 [X]𝑚 s.t.

𝑚∑
𝑖=1

𝑎𝑖 𝑓𝑖 = 0
}
.



Lemma 2.8. Let 𝑓1, . . . , 𝑓𝑚 generating 𝐼0 and let 𝑢1, . . . , 𝑢𝑠 gener-
ating (𝐼0:𝑓 ). For 𝑖 ∈ {1, . . . , 𝑠}, we write

−𝑢𝑖 𝑓 = 𝑎𝑖,1 𝑓1 + · · · + 𝑎𝑖,𝑚 𝑓𝑚 (𝑎𝑖, 𝑗 ∈ 𝑘 [X])

and define 𝑧𝑖 = (𝑎𝑖,1, . . . , 𝑎𝑖,𝑚, 𝑢𝑖 ) ∈ 𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚, 𝑓 ). Then

𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚, 𝑓 ) = (𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚) × {0}) + ⟨𝑧1, . . . , 𝑧𝑠 ⟩ .

Proof. Let (𝑎1, . . . , 𝑎𝑚, 𝑢) ∈ 𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚, 𝑓 ). Then 𝑢 ∈ (𝐼0:𝑓 )
and we can write 𝑢 =

∑𝑠
𝑖=1 𝑏𝑖𝑢𝑖 . Then the syzygy (𝑎1, . . . , 𝑎𝑚, 𝑢) −∑𝑠

𝑖=1 𝑏𝑖𝑧𝑖 has its last coordinate equal to 0 and thus belongs to
(𝑆𝑦𝑧 (𝑓1, . . . , 𝑓𝑚) × {0}), which is enough to conclude. □

2.2 Tate algebras
Definitions.We fix a field𝐾 equipped with a discrete valuation val :
𝐾 → Z ⊔ {+∞}, normalized by val(𝐾×) = Z. We assume that 𝐾 is
complete with respect to the distance defined by val. We let 𝐾◦ be
the subring of 𝐾 consisting of elements of nonnegative valuation
and 𝜋 be a uniformizer of 𝐾 , that is an element of valuation 1. We
set 𝑘 = 𝐾◦/𝜋𝐾◦. The Tate algebra 𝐾{X} is defined by:

𝐾{X} :=
{ ∑
i∈N𝑛

𝑎iXi s.t. 𝑎i ∈ 𝐾 and val(𝑎i) −−−−−−−→
|i |→+∞

+∞
}

Series in 𝐾{X} have a natural analytic interpretation: they are an-
alytic functions on the closed unit disc in 𝐾𝑛 . We recall that 𝐾{X}
is equipped with the so-called Gauss valuation defined by:

val
( ∑
i∈N𝑛

𝑎i𝑋
i
)
= min

i∈N𝑛
val(𝑎i) .

Series with nonnegative valuation form a subring 𝐾{X}◦ of 𝐾{X}.
The reduction modulo 𝜋 defines a surjective homomorphism of
rings 𝐾{X}◦ → 𝑘 [X].

Terms and monomials. By definition, an integral Tate term is an
expression of the form 𝑎Xi with 𝑎 ∈ 𝐾◦, 𝑎 ≠ 0 and i ∈ N𝑛 . Integral
Tate terms form a monoid, denoted by 𝑇 {X}◦, which is abstractly
isomorphic to (𝐾◦\{0}) ×N𝑛 . We say that two Tate terms 𝑎Xi and
𝑏Xj are equivalent when val(𝑎) = val(𝑏) and i = j. Tate terms
modulo equivalence define a quotient T{X}◦ of 𝑇 {X}◦, which is
isomorphic to N×N𝑛 . The image in T{X}◦ of a term 𝑡 ∈ 𝑇 {X}◦ is
called the monomial of 𝑡 and is denoted by mon(𝑡).

We fix a monomial order ≤𝜔 on N𝑛 and order T{X}◦ ≃ N ×
N𝑛 lexicographically by block with respect to the reverse natural
ordering on the first factorN and the order ≤𝜔 onN𝑛 . Pulling back
this order along themorphismmon, we obtain a preorder of𝑇 {X}◦
that we shall continue to denote by ≤. The leading term of a Tate
series 𝑓 =

∑
𝑎iXi ∈ 𝐾{X}◦ is defined by:

𝐿𝑇 (𝑓 ) = max
i∈N𝑛

𝑎i𝑋
i ∈ 𝑇 {X}◦ .

We observe that the 𝑎i𝑋 i’s are pairwise nonequivalent in 𝑇 {X}◦,
showing that there is no ambiguity in the definition of 𝐿𝑇 (𝑓 ). The
leading monomomial of 𝑓 is by definition 𝐿𝑀 (𝑓 ) = mon(𝐿𝑇 (𝑓 )).

Gröbner bases. The previous inputs allow us to define the notion of
Grobner basis for an ideal of 𝐾{X}◦.

Definition 2.9. Let 𝐼 be an ideal of𝐾{X}◦. A family (𝑔1, . . . , 𝑔𝑠 ) ∈
𝐼𝑠 is a Gröbner basis (in short, GB) of 𝐼 if, for all 𝑓 ∈ 𝐼 , there exists
𝑖 ∈ {1, . . . , 𝑠} such that 𝐿𝑀 (𝑔𝑖 ) divides 𝐿𝑀 (𝑓 ).

A classical argument shows that any GB of an ideal 𝐼 generates
𝐼 . The following theorem is proved in [CVV19, Theorem 2.19].

Theorem 2.10. Every ideal of 𝐾{X}◦ admits a GB.

The explicit computation of such a GB is of course a central
question. It was addressed in [CVV19], in which the authors de-
scribe a Buchberger algorithm and an F4 algorithm for this task.
The aim of the present article is to improve on these results by
introducing signatures in this framework and eventually design
F5-like algorithms for the computation of GB over Tate algebras.

Important remark. For the simplicity of exposition, we chose to
restrict ourselves to the Tate algebra 𝐾{X} and not consider the
variants 𝐾{X; r} allowing for more general radii of convergence.
However, using the techniques developed in [CVV19] (paragraph
General log-radii of §3.2), all the results wewill obtain in this article
can be more generally extended to 𝐾{X; r}.

3 POSITION OVER TERM
The goal of this section is to adapt the G2V algorithm to the set-
ting of Tate algebras. Although all definitions, statements and al-
gorithms are formally absolutely parallel to the classical setting,
proofs in the framework of Tate algebras are more subtle, due to
the fact the orderings on Tate terms are not well-founded but only
topologically well-founded. In order to accomodate this weaker
property, we import ideas from [L+18] where the case of local rings
is considered.

3.1 The PoTe algorithm
We fix a monomial order ≤𝜔 of N𝑛 and write ≤ for the term or-
der on 𝑇 {X}◦ it induces. We consider an ideal 𝐼0 in 𝐾{X}◦ along
with a GB 𝐺0 of 𝐼0. Let 𝑓 ∈ 𝐾{X}◦. We are interested in com-
puting a GB of 𝐼 = 𝐼0 + ⟨𝑓 ⟩. Mimicing what we have recalled in
§2.1, we introduce the 𝐾{X}◦-sub-module 𝑀 ⊂ 𝐾{X}◦ × 𝐾{X}◦
consisiting of pairs (𝑢, 𝑣) such that 𝑢𝑓 − 𝑣 ∈ 𝐼0. The definitions
of regular reduction (Definition 2.1), strong Gröbner bases (Defi-
nition 2.2), J-pair (Definition 2.4) and cover (Definition 2.5) extend
verbatim to the context of Tate algebras, with the precaution that
the leading monomial is now computed with respect to the order
≤ as explained in §2.2.

Proposition 3.1. Suppose that 𝐺 = {(𝑢1, 𝑣1), . . . , (𝑢𝑠 , 𝑣𝑠 )} is an
SGB of𝑀. Then:

(1) {𝑢 s.t. (𝑢, 0) ∈ 𝐺} is a Gröbner basis of (𝐼0 : 𝑓 ).
(2) {𝑣 s.t. (𝑢, 𝑣) ∈ 𝐺 for some 𝑢} is a Gröbner basis of 𝐼 .

Proof. Let 𝐺 be an SGB of M.
Let ℎ ∈ (𝐼0:𝑓 ). Then ℎ𝑓 ∈ 𝐼0 and (ℎ, 0) ∈ 𝑀 . By definition, since

𝐺 is an SGB of 𝑀 , there exists (𝑢, 0) ∈ 𝐺 such that 𝐿𝑀 (𝑢) divides
𝐿𝑀 (ℎ). This implies the first statement of the proposition.

Let now ℎ ∈ 𝐼 . If 𝐿𝑀 (ℎ) ∈ 𝐼0, there exists a pair (0, ℎ′) ∈ 𝑀
with 𝐿𝑀 (ℎ) = 𝐿𝑀 (ℎ′). This pair is divisible by some (0, 𝑣) ∈ 𝐺 ,
proving that 𝐿𝑀 (𝑣) divides 𝐿𝑀 (ℎ′) = 𝐿𝑀 (ℎ) in this case. We
now suppose that 𝐿𝑀 (ℎ) ∉ 𝐿𝑀 (𝐼0). This assumption implies that
any 𝑎 ∈ 𝐾{X}◦ with (𝑎, ℎ) ∈ 𝑀 (i.e. 𝑎𝑓 − ℎ ∈ 𝐼0) must satisfy
𝐿𝑀 (𝑎) ≥ 𝐿𝑀 (ℎ)/𝐿𝑀 (𝑓 ). We can then choose a series 𝑎 ∈ 𝐾{X}◦
such that (𝑎, ℎ) ∈ 𝑀 and 𝐿𝑀 (𝑎) is minimal for this property. More-
over, since 𝐺 is an SGB, the pair (𝑎, ℎ) has to be top-reducible by



Algorithm 1: G2V (resp. PoTe) algorithm
input : 𝑓1, . . . , 𝑓𝑚 in 𝑘 [X] (resp. 𝐾{X}◦)
output: a GB of the ideal generated by the 𝑓𝑖 ’s

1 𝑄 ← (𝑓1, . . . , 𝑓𝑚)
2 GBasis← ∅
3

4 for 𝑓 ∈ 𝑄 do
5 𝐺 ← {(0, 𝑔) : 𝑔 ∈ GBasis} ∪ {(1, 𝑓 )}
6 𝑆 ← {𝐿𝑀 (𝑔) : 𝑔 ∈ GBasis}
7 𝐵 ← {J-pair((1, 𝑓 ), (0, 𝑔)) : 𝑔 ∈ GBasis}
8 while 𝐵 ≠ ∅ do
9 pop (𝑢, 𝑣) from 𝐵, with smallest 𝑢

10 if (𝑢, 𝑣) is covered by 𝐺 then continue
11 if 𝑢 is divisible by some 𝑠 ∈ 𝑆 then continue
12 𝑣0 ← regular_reduce (𝑢, 𝑣,𝐺)
13 if 𝑣0 = 0 then
14 add 𝑢 to 𝑆
15 else
16 for (𝑠, 𝑔) ∈ 𝐺 do
17 if J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) is defined then
18 add J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) to 𝐵

19 add (𝑢, 𝑣0) to 𝐺

20 GBasis← {𝑣 : (𝑢, 𝑣) ∈ 𝐺}
21 return GBasis

some (𝑢, 𝑣) ∈ 𝐺 . If 𝑣 ≠ 0, we deduce that 𝐿𝑀 (𝑣) divides 𝐿𝑀 (ℎ).
Otherwise, letting 𝑡 = 𝐿𝑇 (𝑎)/𝐿𝑇 (𝑢), we obtain (𝑎 − 𝑡𝑢, ℎ) ∈ 𝑀
with 𝐿𝑀 (𝑎− 𝑡𝑢) < 𝐿𝑀 (𝑎), contradicting the minimality of 𝐿𝑀 (𝑎).
As a conclusion, we have proved that 𝐿𝑀 (𝑣) divides 𝐿𝑀 (ℎ) in all
cases, showing that the set {𝑣 s.t. (𝑢, 𝑣) ∈ 𝐺 for some 𝑢} is a GB of
𝐼 . □

Theorem 3.2 (Cover Theorem). Let 𝐺 be a finite subset of 𝑀
such that:
• 𝐺 contains (1, 𝑓 );
• the set {𝑔 ∈ 𝐾{X}◦ : (0, 𝑔) ∈ 𝐺} forms a Gröbner basis of 𝐼0.

Then 𝐺 is an SGB of𝑀 iff every J-pair of 𝐺 is covered by 𝐺 .

The proof of Theorem 3.2 is presented in §3.2 below. Before this,
let us observe that Theorem 3.2 readily shows that the G2V algo-
rithm (see Algorithm 1, page 4) extends verbatim to Tate algebras.
The resulting algorithm is called the PoTe1 algorithm. The correct-
ness of the PoTe algorithm is clear thanks to Theorem 3.2. Its termi-
nation is not a priori guaranteed because the call to regular_reduce
may enter an infinite loop (see [CVV19, §3.1]). However, if we as-
sume that all regular reductions terminate (which is guaranteed in
practice by working at finite precision), the PoTe algorithm termi-
nates as well thanks to the Noetherianity of 𝐾{X}◦.

3.2 Proof of the cover theorem
Throughout this subsection, we consider a finite set 𝐺 satisfying
the assumptions of Theorem 3.2.
1PoTe means “Position over Term”.

Algorithm 2: VaPoTe algorithm
input : 𝑓1, . . . , 𝑓𝑚 in 𝐾{X}◦
output: a GB of the ideal generated by the 𝑓𝑖 ’s

1 𝑄 ← (𝑓1, . . . , 𝑓𝑚)
2 GBasis← ∅
3 while 𝑄 ≠ ∅ do
4 pop 𝑓 from 𝑄 , with smallest valuation
5 𝐺 ← {(0, 𝑔) : 𝑔 ∈ GBasis} ∪ {(1, 𝑓 )}
6 𝑆 ← {𝐿𝑀 (𝑔) : 𝑔 ∈ GBasis}
7 𝐵 ← {J-pair((1, 𝑓 ), (0, 𝑔)) : 𝑔 ∈ GBasis}
8 while 𝐵 ≠ ∅ do
9 pop (𝑢, 𝑣) from 𝐵, with smallest 𝑢

10 if (𝑢, 𝑣) is covered by 𝐺 then continue
11 if 𝑢 is divisible by some 𝑠 ∈ 𝑆 then continue
12 𝑣0 ← regular_reduce (𝑢, 𝑣,𝐺)
13 if val(𝑣0) > val(𝑓 ) then
14 add 𝑢 to 𝑆 ; add 𝑣0 to 𝑄
15 else
16 for (𝑠, 𝑔) ∈ 𝐺 do
17 if J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) is defined then
18 add J-pair((𝑢, 𝑣0), (𝑠, 𝑔)) to 𝐵

19 add (𝑢, 𝑣0) to 𝐺

20 GBasis← {𝑣 : (𝑢, 𝑣) ∈ 𝐺}
21 return GBasis

We first assume that𝐺 is an SGB of𝑀 . Let 𝑝1, 𝑝2 ∈ 𝐺 and write
𝑝𝑖 = (𝑢𝑖 , 𝑣𝑖 ) for 𝑖 ∈ {1, 2}. We set 𝑡 = lcm(𝐿𝑀 (𝑣1), 𝐿𝑀 (𝑣2)) ∈
T{X}◦ and 𝑡𝑖 = 𝑡/𝐿𝑀 (𝑣𝑖 ). If 𝐿𝑀 (𝑡1𝑢1) = 𝐿𝑀 (𝑡2𝑢2), the 𝐽 -pair of
(𝑝1, 𝑝2) is not defined and there is nothing to prove. Otherwise, if 𝑖
(resp. 𝑗 ) is the index for which 𝐿𝑀 (𝑡𝑖𝑢𝑖 ) is maximal (resp. 𝐿𝑀 (𝑡 𝑗𝑢 𝑗 )
is minimal), the 𝐽 -pair of (𝑝1, 𝑝2) is 𝑡𝑖𝑝𝑖 , which is regularly top-
reducible by 𝑝 𝑗 . Continuing to apply regular top-reductions by el-
ements of𝐺 as long as possible, we reach a pair (𝑢0, 𝑣0) ∈ 𝑀 which
is no longer regularly top-reducible by any element of 𝐺 and for
which 𝐿𝑀 (𝑢0) = 𝐿𝑀 (𝑡𝑖𝑢𝑖 ) and 𝐿𝑀 (𝑣0) < 𝐿𝑀 (𝑡𝑖𝑣𝑖 ). Since 𝐺 is
an SGB of 𝑀 , (𝑢0, 𝑣0) must be super top-reducible by some pair
(𝑢, 𝑣) ∈ 𝐺 . By definition of super top-reducibility, 𝐿𝑀 (𝑢) divides
𝐿𝑀 (𝑢0) = 𝐿𝑀 (𝑡𝑖𝑢𝑖 ) and 𝐿𝑀 (𝑣) · 𝐿𝑀 (𝑢0) = 𝐿𝑀 (𝑣0) · 𝐿𝑀 (𝑢). This
shows that 𝐿𝑀 (𝑣) · 𝐿𝑀 (𝑢𝑖 ) < 𝐿𝑀 (𝑣𝑖 ) · 𝐿𝑀 (𝑢) and then that (𝑢, 𝑣)
covers 𝑡𝑖𝑝𝑖 .

We now focus on the converse and assume that each 𝐽 -pair of
𝐺 is covered by 𝐺 . We define:

𝑊 =
{
(𝑢, 𝑣) ∈ 𝑀, top-reducible by no pair of 𝐺

}
and assume by contradiction that𝑊 is not empty.

Lemma 3.3. The set𝑊 does not contain any pair of the form (𝑢, 𝑣)
with 𝑢 = 0 or 𝐿𝑀 (𝑣) ∈ 𝐿𝑀 (𝐼0).

Proof. By our assumptions, if 𝐿𝑀 (𝑣) ∈ 𝐿𝑀 (𝐼0), 𝑣 is reducible
by some 𝑔 with (0, 𝑔) ∈ 𝐺 . In particular, (𝑢, 𝑣) is top-reducible by
(0, 𝑔) and cannot be in𝑊 . If 𝑢 = 0, then 𝑣 ∈ 𝐼0 and we are reduced
to the previous case. □



Lemma 3.4. Let 𝑝0 = (𝑢0, 𝑣0) ∈ 𝑊 . Then there exists a pair
𝑝1 = (𝑢1, 𝑣1) ∈ 𝐺 such that 𝐿𝑇 (𝑢1) divides 𝐿𝑇 (𝑢0), say 𝐿𝑇 (𝑢0) =
𝑡1𝐿𝑇 (𝑢1) and 𝑡1𝐿𝑇 (𝑣1) is minimal for this property.

Furthermore, 𝑡1𝑝1 is not regularly top-reducible by 𝐺 .

Proof. We have already noticed that 𝑢0 ≠ 0. Since (1, 𝑓 ) ∈ 𝐺 ,
there exists a pair in 𝐺 satisfying the first condition. Since 𝐺 is
finite, there exists one that further satisfies the minimality condi-
tion.

We assume by contradiction that 𝑡1𝑝1 is regularly top-reducible
by 𝐺 . Consider 𝑝2 = (𝑢2, 𝑣2) ∈ 𝐺 be a regular reducer of 𝑡1𝑝1, in
particular there exists a term 𝑡2 such that 𝑡2𝐿𝑇 (𝑣2) = 𝑡1𝐿𝑇 (𝑣1),
and 𝑡2𝐿𝑇 (𝑢2) < 𝑡1𝐿𝑇 (𝑢1). The J-pair of 𝑝1 and 𝑝2 is then defined
and equals to 𝜏 · (𝑢1, 𝑣1) with 𝜏 dividing 𝑡1. Write 𝑡1 = 𝜏𝑡 ′1 for
some term 𝑡 ′1. By hypothesis, this J-pair is covered, so there exists
𝑃 = (𝑈 ,𝑉 ) ∈ 𝐺 and a term 𝜃 such that 𝜃 · 𝐿𝑇 (𝑈 ) = 𝜏 · 𝐿𝑇 (𝑢1) and
𝜃 · 𝐿𝑇 (𝑉 ) < 𝜏 · 𝐿𝑇 (𝑣1). As a consequence:

𝑡 ′1𝜃 · 𝐿𝑇 (𝑈 ) = 𝑡1 · 𝐿𝑇 (𝑢1) = 𝐿𝑇 (𝑢0)
𝑡 ′1𝜃 · 𝐿𝑇 (𝑉 ) < 𝑡 · 𝐿𝑇 (𝑣1) .

So 𝑡 ′1𝑃 contradicts the minimality of 𝑝1. □

Let 𝜈 be the minimal valuation of a series 𝑣 for which (𝑢, 𝑣) ∈𝑊 .
We make the following additional assumption: 𝜈 < +∞. In other
words, we assume that𝑊 contains at least one element of the form
(𝑢, 𝑣) with 𝑣 ≠ 0. We set:

𝑊1 =
{
(𝑢, 𝑣) ∈𝑊 s.t. val(𝐿𝑀 (𝑣)) = 𝜈

}
.

Lemma 3.5. The set 𝐿 = {𝐿𝑀 (𝑢) : (𝑢, 𝑣) ∈𝑊1} admits a minimal
element.

Proof. We assume by contradiction that 𝐿 does not have a min-
imal element. Thus, we can construct a sequence (𝑢𝑘 , 𝑣𝑘 )𝑘≥1 with
values in 𝑊1 such that 𝐿𝑀 (𝑢𝑘 ) is strictly decreasing. As a con-
sequence, in the Tate topology, 𝑢𝑘 𝑓 converges to 0. Hence, for 𝑘
large enough, val(𝑢𝑘 𝑓 ) > 𝜈 = val(𝑣𝑘 ). From 𝑊1 ⊂ 𝑀 , we get
𝑣𝑘−𝑢𝑘 𝑓 ∈ 𝐼0 and𝐿𝑀 (𝑣𝑘 ) = 𝐿𝑀 (𝑣𝑘−𝑢𝑘 𝑓 ) ∈ 𝐿𝑀 (𝐼0). By Lemma 3.3,
this is a contradiction. □

Let𝑊2 be the subset of𝑊1 consisting of pairs (𝑢, 𝑣) for which
𝐿𝑀 (𝑢) is minimal. Note that by Lemma 3.3, this minimal value is
nonzero.

Lemma 3.6. For any (𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈𝑊2, 𝐿𝑀 (𝑣1) = 𝐿𝑀 (𝑣2).

Proof. Let (𝑢1, 𝑣1) and (𝑢2, 𝑣2) in𝑊2, and assume that the lead-
ing terms are not equivalent, that is 𝐿𝑀 (𝑣1) ≠ 𝐿𝑀 (𝑣2). Without
loss of generality, we can assume that 𝐿𝑀 (𝑣1) > 𝐿𝑀 (𝑣2). By con-
struction of𝑊2, 𝐿𝑀 (𝑢1) = 𝐿𝑀 (𝑢2), that is 𝐿𝑇 (𝑢1) = 𝑎𝐿𝑇 (𝑢2) for
some 𝑎 ∈ 𝐾 , val(𝑎) = 0. Since 𝑢1 and 𝑢2 are nonzero, we can write
𝑢1 = 𝐿𝑇 (𝑢1) + 𝑟1 and 𝑢2 = 𝐿𝑇 (𝑢2) + 𝑟2. Eliminating the leading
terms, we obtain a new element (𝑢 ′, 𝑣 ′) = (𝑟1−𝑎𝑟2, 𝑣1−𝑎𝑣2). By as-
sumption, 𝐿𝑀 (𝑣 ′) = 𝐿𝑀 (𝑣1), and 𝐿𝑀 (𝑢 ′) < 𝐿𝑀 (𝑢1). Observe that
(𝑢 ′, 𝑣 ′) cannot be top-reduced by 𝐺 as otherwise, (𝑢1, 𝑣1) would
also be top-reducible by 𝐺 . Hence (𝑢 ′, 𝑣 ′) ∈𝑊1, contradicting the
minimality of 𝐿𝑀 (𝑢1). □

Let now 𝑝0 = (𝑢0, 𝑣0) ∈𝑊2 . From Lemma 3.4, there exists 𝑝1 =

(𝑢1, 𝑣1) ∈ 𝐺 and a term 𝑡 such that 𝐿𝑇 (𝑡𝑢1) = 𝐿𝑇 (𝑢0) and 𝑡𝑝1 is
not regular top-reducible by 𝐺 . We define

𝑝∗ = (𝑢∗, 𝑣∗) = 𝑝0 − 𝑡𝑝1 = (𝑢0, 𝑣0) − 𝑡 (𝑢1, 𝑣1) .

We remark that 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0). Moreover 𝐿𝑀 (𝑣0) ≠ 𝐿𝑀 (𝑡𝑣1)
since otherwise 𝑝0 would be top-reducible by 𝑝1, contradicting the
fact that 𝑝0 ∈𝑊 .

We first examine the case where 𝐿𝑀 (𝑣0) < 𝐿𝑀 (𝑡𝑣1). It im-
plies that 𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑡𝑣1) > 𝐿𝑀 (𝑣0). Let us prove first that
𝑝∗ ∉ 𝑊 . We argue by contradiction. From 𝑝∗ ∈ 𝑊 , we would
derive val(𝑣∗) ≥ 𝜈 = val(𝑣0) and then val(𝑣∗) = val(𝑣0) since
the inequality in the other direction holds by assumption. We con-
clude by noticing that 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0) contradicts the mini-
mality of 𝐿𝑀 (𝑢0). So 𝑝∗ ∉ 𝑊 , i.e. 𝑝∗ is top-reducible by 𝐺 . Let
𝑝2 = (𝑢2, 𝑣2) ∈ 𝐺 top-reducing 𝑝∗. If 𝑣2 = 0, then 𝐿𝑀 (𝑢2) divides
𝐿𝑀 (𝑢∗). Besides, the pair:

𝑝 ′∗ = (𝑢 ′∗, 𝑣∗) =
(
𝑢∗ − 𝐿𝑇 (𝑢∗)

𝐿𝑇 (𝑢2)𝑢2, 𝑣∗
)

satisfies 𝐿𝑀 (𝑢 ′∗) < 𝐿𝑀 (𝑢∗) and thus cannot be in𝑊 either. We
iterate this process until we can only find a reductor 𝑞 = (𝑈 ,𝑉 ) ∈
𝐺 with 𝑉 ≠ 0. Let 𝑡2 = 𝐿𝑀 (𝑣∗)/𝐿𝑀 (𝑉 ). Then:

𝑡2𝐿𝑀 (𝑉 ) = 𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑡𝑣1),
𝑡2𝐿𝑀 (𝑈 ) ≤ 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑡𝑢1) if𝑈 ≠ 0

Thus 𝑞 regularly top-reduces 𝑡𝑝1, which contradicts Lemma 3.4.
Let us now move to the case where 𝐿𝑀 (𝑣0) > 𝐿𝑀 (𝑡𝑣1). Then

𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑣0). Combining this with 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0), we
deduce 𝑝∗ ∉ 𝑊 , i.e. 𝑝∗ is top-reducible by 𝐺 . As in the previous
case, we construct 𝑞 = (𝑈 ,𝑉 ) ∈ 𝐺 with 𝑉 ≠ 0 and a term 𝑡2 such
that:

𝑡2𝐿𝑀 (𝑉 ) = 𝐿𝑀 (𝑣∗) = 𝐿𝑀 (𝑣0),
𝑡2𝐿𝑀 (𝑈 ) ≤ 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0) if𝑈 ≠ 0.

Thus 𝑞 regularly top-reduces 𝑝0, which contradicts 𝑝0 ∈𝑊 .
As a conclusion, in both cases, we have reached a contradiction.

This ensures that 𝜈 = +∞. In particulier,𝑊 contains an element 𝑝0
of the form (𝑢0, 0). Let 𝑝1 = (𝑢1, 𝑣1) ∈ 𝐺 be given by Lemma 3.4.
If 𝑣1 = 0, this pair would be a reducer of (𝑢0, 0) ∈ 𝑊 , which is a
contradiction. So 𝑣1 ≠ 0. Set 𝑡 = 𝐿𝑇 (𝑢)

𝐿𝑇 (𝑢1) . Let:

𝑝∗ = (𝑢∗, 𝑣∗) = (𝑢0, 0) − 𝑡 (𝑢1, 𝑣1) = (𝑢0 − 𝑡𝑢1,−𝑣1)

Then 𝐿𝑀 (𝑢∗) < 𝐿𝑀 (𝑢0) and 𝐿𝑀 (𝑣∗) = 𝑡𝐿𝑀 (𝑣1). From 𝑣1 ≠ 0,
we deduce 𝑝∗ ∉ 𝑊 . So 𝑝∗ is top-reducible by 𝑝2 = (𝑢2, 𝑣2) ∈ 𝐺 ,
meaning that there exists a term 𝑡1 such that 𝑡1𝐿𝑀 (𝑣2) = 𝐿𝑀 (𝑣∗) =
𝑡𝐿𝑀 (𝑣1) and 𝑡1𝐿𝑀 (𝑢2) ≤ 𝐿𝑀 (𝑢∗) < 𝑡𝐿𝑀 (𝑢1). So 𝑝2 is a regular
top-reducer of 𝑡𝑝1, which contradicts Lemma 3.4.

Finally, we conclude that𝑊 is empty. By construction, 𝐺 is an
SGB of𝑀 .

4 VALUATION OVER POSITION OVER TERM
In this section, we design a variant of the PoTe algorithm in which,
roughly speaking, signatures are first ordered by increasing valu-
ations.



4.1 The VaPoTe algorithm
The VaPoTe2 algorithm is Algorithm 2. It is striking to observe
that it looks formally very similar to the PoTe Algorithm (Algo-
rithm 1) as they only differ on lines 3–4 and, more importantly,
on lines 13–14. However, these slight changes may have signifi-
cant consequences on the order in which the inputs are processed,
implying possibly important differences in the behaviour of the
algorithms.

The VaPoTe algorithm has a couple of interesting features. First,
if we stop the execution of the algorithm at the moment when
we first reach a series 𝑓 of valuation greater than 𝑁 on line 4,
the value of GBasis is a GB of the image of 𝐼 = ⟨𝑓1, . . . , 𝑓𝑚⟩ in
𝐾{X}◦/𝜋𝑁𝐾{X}◦. In other words, the VaPoTe algorithm can be
used to compute GB of ideals of 𝐾{X}◦/𝜋𝑁𝐾{X}◦ (for our modi-
fied order) as well.

Secondly, Algorithm 2 remains correct if the reduction on line 12
is interrupted as soon as the valuation rises. The property allows
for delaying some reductions, which might be expensive at one
time but cheaper later (because more reductors are available). It
also has a theoretical interest because the reduction process may
a priori hang forever (if we are working at infinite precision); in-
terrupting it prematurely removes this defect and leads to more
satisfying termination results.

4.2 Proof of correctness and termination
We introduce some notations. For a series 𝑓 ∈ 𝐾{X}◦, we write
𝜈 (𝑓 ) = 𝜋− val(𝑓 ) 𝑓 (which has valuation 0 by construction) and de-
fine 𝜌 (𝑓 ) as the image of 𝜈 (𝑓 ) in 𝐾{X}◦/𝜋𝐾{X}◦ ≃ 𝑘 [X]. More
generally if 𝐴 is a subset of 𝐾{X}◦, we define 𝜈 (𝐴) and 𝜌 (𝐴) ac-
cordingly.

We consider 𝑓1, . . . , 𝑓𝑚 ∈ 𝐾{X}◦ and write 𝐼 for the ideal gener-
ated by 𝑓1, . . . , 𝑓𝑚 . For any integer 𝑁 , we set 𝐼𝑁 = 𝐼 ∩ (𝜋𝑁𝐾{X}◦).
Clearly 𝐼𝑁+1 ⊂ 𝐼𝑁 for all𝑁 . Let 𝐼𝑁 be the image of 𝜋−𝑁 𝐼𝑁 in 𝑘 [X];
we have a canonical isomorphism 𝐼𝑁 ≃ 𝐼𝑁 /𝐼𝑁+1. Besides, the mor-
phism 𝐼𝑁 → 𝐼𝑁+1, 𝑓 ↦→ 𝜋 𝑓 induces an inclusion 𝐼𝑁 → 𝐼𝑁+1.
Hence, the 𝐼𝑁 ’s form a nondecreasing sequence of ideals of 𝑘 [X].

We define𝑄all as the set of all series that are popped from𝑄 on
line 13 during the execution of Algorithm 2. Since the algorithm
terminates when𝑄 is empty,𝑄all is also the set of all series that has
been in 𝑄 at some moment. For an integer 𝑁 , we further define:

𝑄𝑁 =
{
𝑓 ∈ 𝑄all s.t. val(𝑓 ) = 𝑁

}
,

𝑄≤𝑁 =
{
𝑓 ∈ 𝑄all s.t. val(𝑓 ) ≤ 𝑁

}
,

𝑄>𝑁 =
{
𝑓 ∈ 𝑄all s.t. val(𝑓 ) > 𝑁

}
.

Let also 𝜏𝑁 be the first time we enter in the while loop on line 3
with 𝑄 ⊂ 𝜋𝑁𝐾{X}◦. If this event never occurs, 𝜏𝑁 is defined as
the time the algorithm exits the main while loop. We finally let
GBasis𝑁 be the value of the variable GBasis at the checkpoint 𝜏𝑁 .

Lemma 4.1. Between the checkpoints 𝜏𝑁 and 𝜏𝑁+1:
(1) the elements popped from 𝑄 are exactly those of 𝑄𝑁 , and
(2) the “reduction modulo 𝜋𝑁+1” of the VaPoTe algorithm behaves
like the G2V algorithm, with input polynomials 𝜌 (𝑄𝑁 ) and initial
value of GBasis set to 𝜌 (GBasis𝑁 ).

2VaPoTe means “Valuation over Position over Term”

Proof. We observe that, after the time 𝜏𝑁 , only elements with
valuation at least 𝑁+1 are added to𝑄 . The first statement then fol-
lows from the fact that the elements of𝑄 has popped by increasing
valuation. The second statement is a consequence of (1) together
with the fact that all 𝑓 and 𝑣 manipulated by Algorithm 2 between
the times 𝜏𝑁 and 𝜏𝑁+1 have valuation 𝑁 . □

Since the G2V algorithm terminates for polynomials over a field,
Lemma 4.1 ensures that each checkpoint 𝜏𝑁 is reached in finite
time if the call to regular_reduce does not hang forever. This latter
property holds when we are working at finite precision and is also
guaranteed if we interrupt the reduction as soon as the valuation
raises.

We are now going to relate the ideals 𝐼𝑁 with the sets𝑄𝑁 ,𝑄≤𝑁
and𝑄>𝑁 . For this, we introduce the syzygies between the elements
of 𝜌 (𝑄≤𝑁 ). More precisely, we set:

𝑆𝑁 =

{
(𝑎𝑓 )𝑓 ∈𝑄≤𝑁 s.t.

∑
𝑓 ∈𝑄≤𝑁

𝑎𝑓 𝜈 (𝑓 ) ≡ 0 (mod 𝜋)
}
.

and let 𝑆𝑁 be the image of 𝑆𝑁 under the projection𝐾{X}◦→𝑘 [X];
in other words, 𝑆𝑁 is the module of syzygies of the set 𝜌 (𝑄≤𝑁 ),
i.e. 𝑆𝑛 = 𝑆𝑦𝑧 (𝜌 (𝑄≤𝑁 )) with the notation of Definition 2.7. We also
define the linear mapping:

𝜑𝑁 : (𝐾{X}◦)𝑄≤𝑁 → 𝐾{X}◦

(𝑎𝑓 )𝑓 ∈𝑄≤𝑁 ↦→
∑

𝑓 ∈𝑄≤𝑁
𝑎𝑓 𝜈 (𝑓 ) .

By definition,𝜑𝑁 takes its values in the ideal generated by 𝜈 (𝑄≤𝑁 )
and 𝜑𝑁 (𝑆𝑁 ) ⊂ 𝜋𝐾{X}◦.

Proposition 4.2. For any integer 𝑁 , the following holds:
(a) The family 𝜌 (GBasis𝑁+1) is a GB of 𝐼𝑁 .

(b) 𝜑𝑁 (𝑆𝑁 ) ⊂
〈
𝜋 ·𝜈 (𝑄≤𝑁 ), 𝜋−𝑁𝑄>𝑁

〉
.

(c) 𝐼𝑁+1 =
〈
𝜋𝑁+1·𝜈 (𝑄≤𝑁+1), 𝑄>𝑁+1

〉
.

(d) 𝐼𝑁+1 =
〈
𝜌 (𝑄≤𝑁+1)

〉
.

Proof. When 𝑁 < 0, we have 𝑆𝑁 = 0, 𝐼𝑁+1 = 𝐼 and 𝐼𝑁 = 0,
so that the proposition is obvious. We now consider a nonnegative
integer 𝑁 and assume that the proposition holds for 𝑁−1. By the
induction hypothesis, we know that 𝜌 (GBasis𝑁 ) is a GB of 𝐼𝑁−1.
It then follows from Lemma 4.1 that 𝜌 (GBasis𝑁+1) is a GB of the
ideal generated by 𝐼𝑁−1 and 𝜌 (𝑄𝑁 ), which is equal to 𝐼𝑁 by the
induction hypothesis. The assertion (a) is then proved.

Between the checkpoints 𝜏𝑁 and 𝜏𝑁+1, each signature 𝑢 added
to 𝑆 on line 14 corresponds to a family (𝑎𝑓 )𝑓 ∈𝑄≤𝑁 for which the
sum

∑
𝑓 𝑎𝑓 𝑓 equals the element 𝑣0 added to 𝑄 on the same line.

Rescaling the 𝑎𝑓 ’s, we cook up an element 𝑧 ∈ 𝑆𝑁 with the prop-
erty that 𝜑𝑁 (𝑧) = 𝜋−𝑁 𝑣0. Let 𝑍 ⊂ 𝑆𝑁 be the set of those ele-
ments. From Proposition 2.3 and Lemma 2.8, we derive that 𝑆𝑁 is
generated by 𝑆𝑁−1 (viewed as a submodule of 𝑆𝑁 by filling new
coordinates with zeroes) and 𝑍 . Thus:

𝜑𝑁 (𝑆𝑁 ) = 𝜑𝑁−1 (𝑆𝑁−1) +
〈
𝜑𝑁 (𝑍 ), 𝜋 ·𝜈 (𝑄≤𝑁 )

〉
⊂ 𝜑𝑁−1 (𝑆𝑁−1) +

〈
𝜋−𝑁𝑄>𝑁 , 𝜋 ·𝜈 (𝑄≤𝑁 )

〉
.

The assertion (b) now follows from the induction hypothesis, once
we have observed that 𝑄>𝑁−1 = 𝜋𝑁 𝜈 (𝑄𝑁 ) ∪𝑄>𝑁 .



Let us now prove (c). Let ℎ ∈ 𝐼𝑁+1. Then ℎ ∈ 𝐼𝑁 and we can use
the induction hypothesis to write:

ℎ = 𝜋𝑁
∑

𝑓 ∈𝑄≤𝑁
𝑎𝑓 𝜈 (𝑓 ) +

∑
𝑔∈𝑄>𝑁

𝑏𝑔𝑔

for some 𝑎𝑓 , 𝑏𝑔 ∈ 𝐾{X}◦. Reducing modulo 𝜋𝑁+1, we find that the
family (𝑎𝑓 )𝑓 ∈𝑄≤𝑁 belongs to 𝑆𝑁 . From (b), we deduce that:∑

𝑓 ∈𝑄≤𝑁
𝑎𝑓 𝜈 (𝑓 ) ∈

〈
𝜋 ·𝜈 (𝑄≤𝑁 ), 𝜋−𝑁𝑄>𝑁

〉
.

Henceℎ ∈
〈
𝜋𝑁+1𝜈 (𝑄≤𝑁 ), 𝑄>𝑁

〉
andwe conclude by noticing that

𝑄>𝑁 = 𝜋𝑁+1𝜈 (𝑄𝑁+1) ∪𝑄>𝑁+1.
Finally, (d) follows from (c) by dividing by 𝜋𝑁+1 and reducing

modulo 𝜋 . □

Termination. Since 𝑘 [X] is noetherian, the sequence of ideals (𝐼𝑁 )
is eventually constant. This implies thatGBasis cannot grow indef-
initely; in other words, the final value of GBasis is reached in finite
time. However, the reader should be careful that this does notmean
that Algorithm 2 terminates. Indeed, once the final value of GBasis
has been computed, one still has to check that the remaining se-
ries in 𝑄 reduce to zero; this is achieved by performing divisions
and can hang forever if we are working at infinite precision. Nev-
ertheless, this misfeature seems very difficult to avoid since, when
working at infinite precision, the input series contain themselves
an infinite number of coefficients and any modification on one of
them could have a strong influence on the final result.

Correctness. Let𝐺 be the output of Algorithm 2, that is the limit of
the ultimately constant sequence (GBasis𝑁 ). For a positive integer
𝑁 , we define:

𝐺≤𝑁 =
{
𝑓 ∈ 𝐺 s.t. val(𝑓 ) ≤ 𝑁

}
.

Since only elements of valuation at least 𝑁+1 are added to GBasis
after the checkpoint 𝜏𝑁+1, we deduce that 𝐺≤𝑁 = GBasis𝑁+1.
Hence, by Proposition 4.2, 𝜌 (𝐺≤𝑁 ) is a GB of 𝐼𝑁 for all 𝑁 ≥ 0.
We are going to show that this sole property implies that 𝐺 is in-
deed a GB of 𝐼 . For this, we consider 𝑓 ∈ 𝐼 . We write 𝑁 = val(𝑓 ), so
that 𝜌 (𝑓 ) is the image in 𝑘 [X] of 𝜋−𝑁 𝑓 . Moreover, we know that
𝐿𝑀 (𝜌 (𝑓 )) is divisible by 𝐿𝑀 (𝜌 (𝑔)) for some 𝑔 ∈ 𝐺≤𝑁 , i.e. there
exists i ∈ N𝑛 such that 𝐿𝑀 (𝜌 (𝑓 )) = Xi·𝐿𝑀 (𝜌 (𝑔)). This readily
implies that:

𝐿𝑀 (𝑓 ) = 𝜋𝑁−val(𝑔) · Xi · 𝐿𝑀 (𝑔)
showing that 𝐿𝑀 (𝑔) divides 𝐿𝑀 (𝑓 ) in T{X}◦ given that val(𝑔) ≤
𝑁 . We have then proved that the leading monomial of any element
of 𝐼 is divisible by some 𝐿𝑀 (𝑔) with 𝑔 ∈ 𝐺 , i.e. that 𝐺 is a GB of 𝐼 .

5 IMPLEMENTATION
We have implemented both the PoTe and VaPoTe algorithms in
SageMath3. Our implementation includes the following optimiza-
tion: at the end of the loop (i.e. after line 20), we minimize and
reduce the current GB in construction. This operation is allowed
since all signatures are discarded after each iteration of the loop.
Similarly, we reduce each new series 𝑓 popped from 𝑄 on line 4
before proceeding it. These ideas were explored in the algorithm
3https://trac.sagemath.org/ticket/28777

Parameters Buchberger PoTe VaPoTe

𝑝 = 5, ℓ = 5, prec = 12 87.9 72.2 19.2
𝑝 = 11, ℓ = 5, prec = 12 321 30.5 28.9
𝑝 = 57637, ℓ = 5, prec = 12 83.2 13.3 13.3
𝑝 = 7, ℓ = 7, prec = 9 62.3 45.3 27.7
𝑝 = 11, ℓ = 7, prec = 9 168 36.0 28.5

Table 1: Timings for the computation of GBs related to the
torsion of points of Tate curves (all times in seconds)

F5-C [EP10] and, as mentionned before, were one of the main mo-
tivations for adopting an incremental point of view.

Our implementation is also able to compute GB of ideals in
𝐾{X}. For this, we simply use a reduction (for no extra cost) to
the case of 𝐾{X}◦ (see [CVV19, Proposition 2.23]). We also make
monic the signatures in 𝑆 after each iteration of the main loop;
in the PoTe algorithm, this renormalization gives a stronger cover
criterion and thus improves the performances.

Asmentionned in Section 4.1, Algorithm 2 remains correct if the
reductions are interrupted as soon as the valuation rises. This can
be done in the reduction step before processing the next 𝑓 , before
adding elements to the SGB, as well as in the inter-reduction step.
Delaying reductions could be interesting, for instance, if the input
ideal is saturated: indeed, in this case, the algorithm never con-
siders elements with positive valuation and delayed reductions do
not need to be done afterwards. On the other hand, performing
more reductions earlier leads to shorter reducers and potentially
faster reductions later. In practice, in our current implementation,
we have observed all possible scenarios: interrupting the reduc-
tions can make the computation faster, slower, or not make any
significant difference.

5.1 Some timings
Numerous experimentations on various random inputs show that
the VaPoTe algorithm performs slightly better than the PoTe algo-
rithm on average. Besides, both PoTe and VaPoTe algorithms usu-
ally performmuch better than Buchberger algorithm, although we
observed important variations depending on the input system.

As mentionned in the introduction, Tate algebras are the build-
ing blocks of 𝑝-adic geometry. One can then cook up interesting
systems associated to meaningful geometrical situations. As a ba-
sic example, let us look at torsion points on elliptic curves.

We recall briefly that (a certain class of) elliptic curves over 𝐾 =

Q𝑝 are uniformized by the Tate curve (see [Ta95]), which can be
seen as the curve defined over 𝐾{𝑞} by the explicit equation 𝑦2 +
𝑥𝑦 = 𝑥3 + 𝑎4𝑥 + 𝑎6 with:

𝑎4 = 5
∞∑
𝑛=0

𝑛3 (𝑝𝑞)𝑛
1 − (𝑝𝑞)𝑛 , 𝑎6 =

∞∑
𝑛=0

7𝑛5 + 5𝑛3

12
(𝑝𝑞)𝑛

1 − (𝑝𝑞)𝑛 .

Given an auxiliary prime number ℓ , we consider the ℓ-th divi-
sion polynomialΦℓ (𝑥, 𝑞) ∈ 𝐾{𝑞}◦ [𝑥] associated to theWeierstrass
form of the above equation. By definition, its roots are the abscis-
sas of ℓ-torsion points of the Tate curve. We now fix 𝑝 and ℓ and
consider the system in 3 variables Φℓ (𝑥, 𝑞1) = Φℓ (𝑥, 𝑞2) = 0. Its so-
lutions parametrize the pairs of elliptic curves sharing a common



ℓ-torsion point. Computing a GB of it then provides information
about torsion points on 𝑝-adic elliptic curves.

Table 1 shows the timings obtained for computing a GB of the
above systems for different values of 𝑝 , ℓ and different precisions.
We clearly see on these examples than both PoTe and VaPoTe over-
perform the Buchberger algorithm.

5.2 Towards further improvements
Faster reductions. Observing how our algorithms behave, one im-
mediately notices that reductions are very slow. It is not that sur-
prising since our reduction algorithm is currently very naive. For
this reason, we believe that several structural improvements are
quite possible. An idea in this direction would be to store a well-
chosen representative sample of reductions and reuse them later
on. Typically, we could cache the reductions of all terms of the form
𝑥2𝑒1

1 · · · 𝑥2𝑒𝑛
𝑛 (with respect to the current GB in construction) and

use them to emulate a fast exponentation algorithm in the quotient
ring 𝐾{X}◦/⟨𝐺𝐵⟩.

Another attractive idea for accelerating reduction is to incor-
porate Mora’s reduction algorithm [Mo82, MRW17] in our frame-
work. Let us recall that Mora’s algorithm is a special method for
reducing terms with respect to local or mixed orders (i.e. orders
for which there exist terms 𝑡 < 1), avoiding infinite loops in the
reduction process. In our framework, infinite loops of reductions
cannot arise since the computations are truncated at a given pre-
cision. Nevertheless, we believe that Mora’s algorithm can still be
used to short-circuit some reductions.

The situation for Tate terms is actually significantly simpler
than that of general local orders. Indeed, Mora’s reduction algo-
rithm roughly amounts to add 𝜋𝑟 to our list of reductors each
time we encounter a remainder 𝑟 (including 𝑓 itself) in the re-
duction process. We believe that this optimization, if it is care-
fully implemented, could already have some impact on the perfor-
mances. Besides, observing that the equality 𝑓 = 𝑟 +𝜋𝑞𝑓 also reads
𝑓 = (1 + 𝜋𝑞)−1𝑟 , we realize that Mora reduction of a Tate series
are somehow related to its Weierstrass decomposition. Moreover,
at least in the univariate case, it is well known that Weierstrass
decompositions can be efficiently computed using a well-suited
Newton iteration. It could be interesting to figure out whether this
strategy extends to multivariate series and, more generally, to the
computation of arbitrary Mora reductions.

Using overconvergence properties. In a different direction, we would
like to underline that the orderings we are working with are by
design block orders (comparing first the valuation). However, in
the classical setting, we all know that graded orders often lead to
much more efficient algorithms. Unfortunately, in the setting of
this article, the very first definition of a Tate series already forces
us to give the priority to the valuation in the comparison of terms;
otherwise, the leading term would not be defined in general.

Nonetheless, we emphasize that if graded orders does not exist
over 𝐾{X}, they do exist over some subrings. Precisely, recall that,
given a tuple r = (𝑟1, . . . , 𝑟𝑛), we have defined4:

𝐾{X; r} :=
{ ∑
i∈N𝑛

𝑎iXi s.t. 𝑎i ∈ 𝐾 and val(𝑎i) − r·i −−−−−−−→
|i |→+∞

+∞
}

4We refer to [CVV19] for more details

where r·i denotes the scalar product of the vectors r and i. When
the 𝑟𝑖 ’s are all nonnegative, 𝐾{X; r} embeds naturally into 𝐾{X};
precisely, elements in 𝐾{X; r} are those series that overconverges
over the polydisk of polyradius ( |𝜋 |−𝑟1 , . . . , |𝜋 |−𝑟𝑛 ). Moreover, the
algebra 𝐾{X; r} is equipped with the valuation valr defined by:

val𝑟
( ∑
i∈N𝑛

𝑎iXi
)
= min

i∈N𝑛
val(𝑎i) − r·i.

This valuation defines a new term ordering ≤r. We observe that,
from the point of view of 𝐾{X}, it really looks like a graded or-
der: the quantity val𝑟 (𝑓 ) plays the role of (the opposite of) a “total
degree” which mixes the contribution of the valuation and that of
the classical degree.

In light of the above remarks, we formulate the following ques-
tion. Suppose that we are given an ideal 𝐼 ⊂ 𝐾{X}◦ (say, of dimen-
sion 0) generated by some series 𝑓1, . . . , 𝑓𝑚 . If we have the promise
that the 𝑓𝑖 ’s all overconverge, i.e. all lie in 𝐾{X; r} for a given r,
can we imagine an algorithm that computes a GB of 𝐼 taking ad-
vantage of the term ordering ≤r? As an extreme case, if we have
the promise that all the 𝑓𝑖 ’s are polynomials (that is 𝑟𝑖 = +∞ for all
𝑖), can one use this assumption to accelerate the computation of a
GB of 𝐼?
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