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ABSTRACT
In an earlier paper, the notion of integrality known for algebraic

number fields and fields of algebraic functions has been extended

to D-finite functions. The aim of the present paper is to extend the

notion to the case of P-recursive sequences. In order to do so, we

formulate a general algorithm for finding all integral elements for

valued vector spaces and then show that this algorithm includes

not only the algebraic and the D-finite cases but also covers the

case of P-recursive sequences.
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1 INTRODUCTION
Singularities play an essential role in algorithms for analyzing re-

currence or differential equations, and for symbolic summation and

integration. The “local” behaviour at a singularity typically gives

rise to severe restrictions of the possible “global” shape of a solution,

and such restrictions are exploited in the design of algorithms for

finding such solutions. It is therefore important to have access to

information about what is going on at the singularities. Integral

bases provide such access.

For algebraic number fields and algebraic function fields, this is

a classical notion. Let k = C(x) be the field of rational functions in

x over a field C and K = k(α) be an algebraic extension of k . Every
element of K has a minimal polynomialm ∈ C[x][y]. An element
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of K is called integral if all its series expansions only involve terms

with nonnegative exponents. The integral elements of K form a

C[x]-submodule of K , which somehow plays the role in K that Z
plays in Q. An integral basis of K is a k-vector space basis of K
which at the same time is a C[x]-module basis of the module of

integral elements.

Trager [2–4, 17] used integral bases in his integration algorithm

for algebraic functions. This was one of the motivations for intro-

ducing the notion of integral D-finite functions [14], which were

then used not only for integration [5] but also for solving differen-

tial equations in terms of hypergeometric series [11, 12]. Also for

D-finite functions, integrality is defined in terms of the exponents

appearing in the series expansions. The goal of the present paper is

to introduce a notion of integrality for the recurrence case. Our hope

is that this work will subsequently be useful for the development

of new summation algorithms.

A major difference between the differential case and the shift

case is the fact that singularities are no longer isolated points α ∈ C .
Instead, as pointed out for instance in [19], singularities should be

viewed as orbits α + Z ∈ C/Z consisting of some α ∈ C together

with all elements of C that have integer distance to α . Instead of

certain kinds of series solutions at α of differential operators or

algebraic equations, we have to consider certain kinds of sequence

solutions α + Z → C of a recurrence operator. This makes the

matter considerably more technical.

We proceed in two stages. In the first stage (Sections 2 and 3), we

give a general formulation of the algorithm proposed by van Hoeij

for algebraic function fields [18] and adapted to D-finite functions

by Kauers and Koutschan [14]. The general formulation applies to

arbitrary valued vector spaces, and we identify the computational

assumptions on which the correctness and termination arguments

of the algorithms are based. In Section 4, we show how it indeed

generalizes the previous algorithms. In the second stage (Section 5),

we show how the general setting developed in Sections 2 and 3 can

be applied to the shift case.

2 VALUE FUNCTIONS AND INTEGRAL
ELEMENTS

In this section, we recall basic terminologies about valuations on

fields and vector spaces from [10, 16, 20]. Let k be a field of char-

acteristic zero and Γ be a totally ordered abelian group, written

additively, and let Γ∞ = Γ ∪ {∞} in which α +∞ = ∞ + α = ∞ for

all α ∈ Γ∞ and β < ∞ for all β ∈ Γ. A mapping ν : k → Γ∞ is called

a valuation on k if for all a,b ∈ k ,

(i) ν (a) = ∞ if and only if a = 0;
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(ii) ν (ab) = ν (a) + ν (b);
(iii) ν (a + b) ≥ min{ν (a),ν (b)}.

The pair (k,ν ) is called a valued field and ν (k \ {0}) ⊆ Γ is called

the value group of ν . The set O(k ,ν ) := {a ∈ k | ν (a) ≥ 0} forms a

subring of k that is called the valuation ring of ν .

Example 1. A typical example of a valued field is the field of
rational functions. Let C be a field of characteristic 0 and Γ = Z. For
any irreducible p ∈ C[x] and f ∈ C(x) \ {0}, we can always write
f = pma/b for somem ∈ Z and a,b ∈ C[x] with gcd(a,b) = 1 and
p ∤ ab. The valuation νp (f ) of f at p is defined as the integerm. Set
νp (0) = ∞. Then (C(x),νp ) is a valued field with O(C(x ),νp ) = { f ∈

C(x) | νp (f ) ≥ 0} being a local ring with its maximal ideal generated
by p. The valuation ν∞ defined by ν∞(f ) = degx (b) − degx (a) for
any f = a/b ∈ C(x) is called the valuation at ∞. Any valuation ν
on the field C(x) is either ν∞ or νp for some irreducible p ∈ C[x]
(see [6, Chapter 1, § 3] in the language of places). When p = x − z
with z ∈ C , we will write νz instead of νp . For z ∈ C , the field of
formal Laurent series C((x − z)) admits a valuation ν(z), defined as
ν(z)

(∑
i≥n ci (x − z)i

)
= n, where cn , 0. Any r ∈ C(x) admits a

representation rL in C((x − z)) with νz (r ) = ν(z)(rL).

Definition 2. LetV be a vector space over a valued field (k,ν ). A
map val : V → Γ∞ is called a value function on V if for all x,y ∈ V
and a ∈ k ,

(i) val(x) = ∞ if and only if x = 0;
(ii) val(ax) = ν (a) + val(x);
(iii) val(x + y) ≥ min{val(x), val(y)}.

The pair (V , val) is called a valued vector space over k . An element
x ∈ V is said to be integral if val(x) ≥ 0.

Remark 3. LetU be any subspace of a valued vector space (V , val).
Then the restriction of val onU is also a value function onU , which
makes (U , val) a valued vector space.

Proposition 4. Let (k,ν ) be a valued field and (V , val) be a valued
vector space over k . The set O(V ,val) ⊆ V of all integral elements in
V forms an O(k ,ν )-module.

Proof. For any a,b ∈ O(k ,ν ) and x,y ∈ O(V ,val), we have

val(ax + by) ≥ min{val(ax), val(by)}

= min{ν (a) + val(x),ν (b) + val(y)}.

Since ν (a),ν (b) ≥ 0 and val(x), val(y) ≥ 0, we have val(ax+by) ≥ 0.

So ax + by ∈ O(V ,val).

A k-vector space basis of a valued vector space (V , val) which is

at the same time an O(k ,ν )-module basis of O(V ,val) is called a (local)
integral basis with respect to val. Assume that the module O(V ,val)

has a local integral basis {x1, . . . , xr } and x = a1x1+ · · ·+arxr ∈ V .

Then val(x) ≥ 0 if and only if ν (ai ) ≥ 0 for all i = 1, . . . , r . When

does a local integral basis exist and how to construct such a basis

are the main problems we study in this paper. Value functions and

integral bases for algebraic function fields have been extensively

studied both theoretically [6, 9, 16] and algorithmically [17–19] and

have also been extended to the D-finite case [14].

Example 5. (See [16, Example 3.3]) Any finite dimensional k-
vector space can be equipped with a valuation. More precisely, let

V be a vector space over a valued field (k,ν ) of dimension r . Let
{B1, . . . ,Br } be a basis of V . Take values γ1, . . . ,γr in Γ and define
val : V → Γ ∪ {∞} by for all a1, . . . ,ar ∈ k ,

val

( r∑
i=1

aiBi

)
= min{γ1 + ν (a1), . . . ,γr + ν (ar )}.

It is easy to check that val is a value function on V .

Example 6. Let C be an algebraically closed field of characteristic
0, k = C(x) and νz be the valuation of k at z ∈ C as in Example 1.
Then (k,νz ) is a valued field. LetK = k(β)with β being algebraic over
C(x). Let β1, . . . , βr be all conjugates of β over k and each conjugate
βℓ can be expanded as a Puiseux series around z. We extend the
valuation νz on k to a nonzero Puiseux series

P =
∑
i≥0

ci (x − z)ri ,

defined as νz (P) = r0, where ci ∈ C with c0 , 0 and ri ∈ Q with
r0 < r1 < · · · . Any element B ∈ K can be uniquely written as B =
f (β) with f = f0 + f1y + . . . + fr−1y

r−1 ∈ k[y]. The value function
valz : K → Q∪{∞} is then defined by valz (B) = min

r
ℓ=1

{νz (f (βℓ))}.
In this setting, O(K ,valz ) is a free C[x]-module.

Example 7. Let C be an algebraically closed field of characteristic
0 and consider a linear differential operator L = ℓ0 + · · · + ℓrD

r ∈

C(x)[D] with ℓr , 0. The quotient module V = C(x)[D]/⟨L⟩ is a
C(x)-vector space with 1,D, . . . ,Dr−1 as a basis. Its element 1 is a
solution of L. If z ∈ C is a so-called regular singular point of L [13],
then there are r linearly independent solutions in the C-vector space
generated by

C[[[x − z]]] :=
⋃
ν ∈C

(x − z)νC[[x − z]][log(x − z)].

Following [14], we construct a value function valz on V as follows.
First choose a function ι : C/Z × N→ C with ι(ν + Z, j) ∈ ν + Z for
every ν ∈ C and j ∈ N, with

ι(ν1 + Z, j1) + ι(ν2 + Z, j2) − ι(ν1 + ν2 + Z, j1 + j2) ≥ 0

for every ν1,ν2 ∈ C and j1, j2 ∈ N, and with ι(Z, 0) = 0. This function
picks from each Z-equivalence class in C a canonical representative.

Using this auxiliary function, the valuation valz (t) of a term t :=

(x −z)ν+i log(x −z)j is the integer ν + i − ι(ν + i, j), and the valuation
valz (f ) of a series f ∈ C[[[x−z]]] is the minimum of the valuations of
all the terms appearing in it (with nonzero coefficients). The valuation
of 0 is defined as∞.

The value function valz (·) : V → Z ∪ {∞} is then defined as the
smallest valuation of a series B · f , when f runs through all solutions
of L. We now check that the function valz is indeed a value function.

(i) Let B ∈ V . Clearly if B = 0, valα (B) = ∞ for all α ∈ C .
Conversely, assume that valα (B) = ∞, then by definition
valα (B · f ) = ∞ and so B · f = 0 for all f ∈ Solα (L), which
implies that the dimension of the solution space of B is at least
r . But the order of B is less than r , and the dimension of the
solution space of a nonzero operator cannot exceed its order, so
it follows that B = 0.

(ii) For any a ∈ C(x) ⊆ C[[[x−α]]] and f ∈ C[[[x−α]]], the valu-
ation of af is the sum of the valuations of a and f by definition.
Then for any B ∈ V , valα (aB) = minf ∈Solα (L){valα (aB · f )},
which is then equal to να (a) + valα (B).
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(iii) By valα ((B1 +B2) · f )) ≥ min{valα (B1 · f ), valα (B1 · f )} for
all f ∈ Solα (L), we have for any B1,B2 ∈ V ,

valα (B1 + B2) ≥ min{valα (B1), valα (B2)}.

When Γ = Z, the valued field (k,ν ) can be endowed with a topol-

ogy. We summarize here the relevant constructions, more details

can be found in [15, Chapter 2]. For a ∈ k , let |a | = e
−ν (a)

. The

properties of the valuation ensure that | · | is an absolute value, called

the ν-adic absolute value. This absolute value defines a topology
on k , in which elements are “small” if their valuation is “large”.

Recall that a sequence of elements (cn ) ∈ kN is said to be Cauchy

if for each ϵ > 0, there exists N ∈ N such that for everym,n > N ,

|cm −cn | < ϵ , or, equivalently, if for eachM ∈ Z, there exists N ∈ N
such that for everym,n > N , ν (cm − cn ) > M . The field k is said to

be complete if every Cauchy sequence is convergent.

The completion of k is a minimal field extension kν which is

complete. It can be constructed as follows. As a set, let kν be the

set of all Cauchy sequences in k , modulo the equivalence relation

(cn ) ≡ (dn ) ⇔ (cn − dn ) converges to 0 at infinity. The field k is

contained in kν via the constant sequences. Ring operations on k
extend to kν component-wise, and make kν a field. The valuation

on k extends to kν by taking the limit of the valuations of the terms

of the sequences, we use the same letter ν for that valuation.

An important feature of the topology on k and kν is that the ν-
adic absolute value is ultrametric: it satisfies the stronger triangular

condition |a + b | ≤ max(|a |, |b |). In particular, any series

∑∞
n=0

an
with an ∈ kν and |an | → 0 is convergent in kν .

Example 8. The completion ofC(x)w.r.t. the valuation νz isC((x−
z)), and its completion w.r.t. ν∞ is C((1/x)).

These definitions extend naturally to a valuedk-vector space. Just
like in the case of fields, the hypotheses (i) and (iii) of Definition 2

ensure that we can define a norm on V by setting | |v | | = e
− val(v)

.

This turns V into a topological vector space: addition and scalar

multiplication are continuous.

Part (ii) of Definition 2 further ensures that | |cv | | = |c | · | |v | | for
c ∈ k , v ∈ V . In particular, if a sequence (an )n∈N in k converges

to 0, then (anv)n∈N converges to 0 in V .

More generally, if B1, . . . ,Br ∈ V and (a
(1)
n ), . . . , (a

(r )
n ) are se-

quences in k converging to a
(1)
∞ , . . . ,a

(r )
∞ , respectively, then the se-

quence (a
(1)
n B1+ · · ·+a

(r )
n Br ) inV converges to a

(1)
∞ B1+ · · ·+a

(r )
∞ Br .

Let Vν be the kν -vector space obtained from scalar extension

of V . If V is finite dimensional and B1, . . . ,Br is a basis, Vν can be

seen as the kν -vector space generated by B1, . . . ,Br , identifying
its elements with elements of V whenever possible, and it is the

completion of V with respect to the above topology.

Remark 9. The inequality dimkν Vν ≤ dimk V always holds, but
it may happen that the inequality is strict. For example, consider
C((x)) as a C(x)-vector space, with valuation ν = ν0, and let V be
a r -dimensional sub-vector space of C((x)). Then Vν = C((x)) has
dimension 1 over C((x)).

3 COMPUTING INTEGRAL BASES
In this section, we present a general algorithm for computing local

and global integral bases of valued vector spaces and conditions on

the termination of this algorithm.

3.1 The local case
Given a valued field (k,ν ), a basis of a k-vector space V of dimen-

sion r , and a value function val onV , our goal is to compute a local

integral basis of V if it exists. The algorithm described below is

based on the algorithm given by van Hoeij [18] for computing inte-

gral bases of algebraic function fields. It also covers the adaption

by Kauers and Koutschan to D-finite functions [14]. For simplicity,

we restrict to the case Γ = Z.
For the algorithm to apply in the general setting, we need to

make the following assumptions.

(A) Arithmetic in k and V is constructive, and ν and val are

computable.

(B) We know an element x ∈ k with ν (x) = 1.

(C) For any given B1, . . . ,Bd ∈ V , we can find α1, . . . ,αd−1
in k

such that

val(α1B1 + · · · + αd−1
Bd−1

+ Bd ) > 0

or prove that no such αi ’s exist.
(D) The completion Vν of V has dimension r .

Algorithm 10. INPUT: a k-vector space basis B1, . . . ,Br of V
OUTPUT: a local integral basis of V w.r.t. val

1 for d = 1, . . . , r , do:
2 replace Bd by x− val(Bd )Bd .
3 while there exist α1, . . . ,αd−1

∈ k such that

val(α1B1 + · · · + αd−1
Bd−1

+ Bd ) > 0,

4 choose such α1, . . . ,αd−1
.

5 replace Bd by x−1(α1B1 + · · · + αd−1
Bd−1

+ Bd ).
6 return B1, . . . ,Br .

Theorem 11. Alg. 10 is correct.

Proof. We show by induction on d that for every d = 1, . . . , r ,
the output elements B1, . . . ,Bd form a local integral basis for the

subspace ofV generated by the input elements B1, . . . ,Bd . From the

updates in lines 2 and 5, it is clear that the output elements generate

the same subspace, so the only claim to be proven is that they are

also module generators for the module of integral elements.

For d = 1, line 2 ensures that val(B1) = 0, and no further change

is going to happen in the while loop. When val(B1) = 0, then the

integral elements of the subspace generated by B1 are precisely the

elements uB1 for u ∈ k with ν (u) ≥ 0, so B1 is an integral basis.

Now assume that d is such that B1, . . . ,Bd−1
is an integral basis,

and let Bd ∈ V . After executing line 2, we may assume val(Bd ) ≥ 0.

After termination of the while loop, we know that there are no

α1, . . . ,αd−1
∈ k such that val(α1B1 + · · · + αd−1

Bd−1
+ Bd ) > 0.

Let α1, . . . ,αd ∈ k be such thatA = α1B1+ · · ·+αdBd is an integral

element. We have to show that ν (αi ) ≥ 0 for i = 1, . . . ,d .
We cannot have ν (αd ) < 0, otherwise, val(α−1

d A) > 0, which

would contradict the termination condition of the while loop. Thus

ν (αd ) ≥ 0. But then, val(αdBd ) ≥ 0, so A − αdBd is also integral.

Since A−αdBd is in the k-subspace generated by B1, . . . ,Bd−1
and

the latter is an integral basis by induction hypothesis, it follows

that ν (αi ) ≥ 0 for i = 1, . . . ,d − 1.

We prove that under the assumptions (A), (B), (C), the termi-

nation of Alg. 10 is equivalent to assumption (D). It is moreover
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equivalent to the the existence of a discriminant function, which

is defined as follows and generalizes the corresponding notion for

fields of algebraic numbers or functions. With such a function at

hand, we can also bound the number of iterations of the main loop.

Definition 12. Let (V , val) be a valued vector space of finite
dimension r over a valued field (k,ν ) with the value group Z. Let
x ∈ k be such that ν (x) = 1 and BV denote the set of all bases of V .
A map Disc : BV → Z is called a discriminant function on V if for
every basis B1, . . . ,Br of V , we have

(i) γ := Disc({B1, . . . ,Br }) ≥ 0 if all the Bi ’s are integral in V
(ii) for all α1, . . . ,αd−1

∈ k with d ≤ r ,

Disc(B1, . . . ,Bd−1
,α1B1 + · · · + αd−1

Bd−1
+ Bd ,Bd+1

, . . . ,Br ) = γ

(iii) Disc(B1, . . . ,Bd−1
, x−1Bd ,Bd+1

, . . . ,Br ) < γ .

Theorem 13. Let (V , val) be a valued vector space of finite di-
mension r over a valued field (k,ν ) with the value group Z. Then the
following four statements are equivalent under the hypotheses (A),
(B), (C):

(a) There is a local integral basis of V w.r.t. val.
(b) There is a discriminant function Disc : BV → Z.
(c) Alg. 10 terminates.
(d) The topological assumption (D) on V is satisfied.

Proof. (c) ⇒ (a) follows from Theorem 11.

(a) ⇒ (b): Given a local integral basis {C1, . . . ,Cr } and a basis

B = {B1, . . . ,Br } of V with Bi =
∑r
j=1

bi , jCj for some bi , j ∈ k , the

discriminant function can be defined as

Disc(B) := ν (det((bi , j )
r
i , j=1

)).

(b) ⇒ (c): By assumption (B), there exists x ∈ k such that

ν (x) = 1. Let {B1, . . . ,Br } be any basis ofV over k . We may always

assume that val(Bi ) = 0 by replacing Bi by x− val(Bi )Bi for all i .
It suffices to show that Alg. 10 terminates on {B1, . . . ,Br }. Let
γ = Disc({B1, . . . ,Br }) ∈ N. At any intermediate step of Alg. 10,

B1, . . . ,Br are always integral and form a basis ofV . If αi ’s exist in
the while loop, γ decreases strictly. So there can be at most γ basis

updates, which implies that Alg. 10 terminates.

(d) ⇒ (c): Assume that for some d ∈ {1, . . . , r }, the inner loop
does not terminate. Let Bd ,i be the value of Bd before entering the

ith iteration, and let B̃d ,i = x iBd ,i . The operation for computing

Bd ,i from Bd ,i−1
(step 5) ensures that for all i , val(Bd ,i ) ≥ 0 and

val(B̃d ,i ) ≥ i . For all i ∈ N, there exists aj ,i ∈ k for j ∈ {0, . . . ,d−1}

such that

B̃d ,i = x i ·
1

x

©«Bd ,i−1
+

d−1∑
j=0

aj ,iBj
ª®¬ = B̃d ,i−1

+ x i−1

d−1∑
j=0

aj ,iBj

and Bd ,i has valuation 0. We can unroll the sum as

B̃d ,i = Bd ,0 +
d−1∑
j=0

(i−1∑
ℓ=0

xℓaj ,ℓ

)
Bj .

Viewing this equality in Vν and taking the limit as i → ∞ yields

B̃d ,∞ := lim

i→∞
B̃d ,i = Bd ,0 +

d−1∑
j=0

(
∞∑
ℓ=0

xℓaj ,ℓ

)
Bj .

Furthermore, B̃d ,∞ has valuation∞, so it is zero and

Bd ,0 = −

d−1∑
j=0

(
∞∑
ℓ=0

xℓaj ,ℓ

)
Bj in Vν .

But by hypothesis (D), Vν has dimension r , so B1, . . . ,Br must

be linearly independent over kν too, a contradiction. So the loop

terminates.

(c) ⇒ (d): Let B1, . . . ,Br be the output of Alg. 10. If the di-

mension falls, then there exist some ai ∈ kν and d ≤ r such that

Bd =
∑d−1

i=1
aiBi . For each i , let ai , j be a sequence in k converging

to ai . Let B̃d , j = Bd −
∑d−1

i=1
ai , jBi . By assumption, B̃d , j goes to 0

when j goes to infinity, so its valuation goes to infinity. We can

assume val(B̃d , j ) ≥ j . Then Bd , j := x−j B̃d , j is an infinite sequence

such that Alg. 10 does not terminate, a contradiction.

3.2 The global case
In a next step, we seek integral bases with respect to several val-

uations simultaneously. Instead of a single valuation val : V →

Z∪ {∞}, we have a set of valuations νz : k → Z∪ {∞} (z ∈ Z ) and
a set of value functions valz : V → Z∪{∞} (z ∈ Z ) and want to find
a vector space basis B1, . . . ,Br of V that is also an O(k ,νz )-module

basis of O(V ,valz ) for every z ∈ Z . The idea is to apply Alg. 10

repeatedly. In order to make this work, we impose the following

additional assumptions:

(B
′
) For every z ∈ Z we know an element xz ∈ k with νz (xz ) = 1

and νζ (xz ) = 0 for all ζ ∈ Z \ {z}.
(C

′
) For every z ∈ Z and any given B1, . . . ,Bd ∈ V , we can

compute α1, . . . ,αd−1
∈ k with νζ (αi ) ≥ 0 for all i and all

ζ ∈ Z \ {z} such that

valz (α1B1 + · · · + αd−1
Bd−1

+ Bd ) > 0,

or prove that no such αi ’s exist.
(D

′
) For every z ∈ Z , the completion Vνz of V has dimension r .

(E) We know a finite set Z0 ⊆ Z and a basis B1, . . . ,Br ofV that

is an integral basis for all z ∈ Z \ Z0.

Under these circumstances, we can proceed as follows.

Algorithm 14. INPUT: a k-vector space basis B1, . . . ,Br of V
which is an integral basis for all z ∈ Z \ Z0

OUTPUT: an integral basis for all z ∈ Z

1 for all z ∈ Z0, do:
2 apply Alg. 10 to B1, . . . ,Br , using νz , valz and xz in place of

ν, val, and x , and ensuring in step 3 that νζ (αi ) ≥ 0 for all i and
all ζ ∈ Z .

3 replace B1, . . . ,Br by the output of Alg. 10.
4 return B1, . . . ,Br .

Theorem 15. Alg. 14 is correct.

Proof. We only have to show that one application of Alg. 10

does not destroy the integrality properties arranged in earlier calls.

To see that this is the case, consider the effects of steps 2 and 5

with respect to a value function other than valz . If valζ is such

a function, then by (B
′
), we have νζ (xz ) = 0, so B1, . . . ,Bd−1

,Bd
and B1, . . . ,Bd−1

, xezBd generate the same O(k ,νζ )-module, for any

e ∈ Z. Hence this step is safe. Likewise, by the choice of the αi



Integral Bases for P-Recursive Sequences ISSAC ’20, July 20–23, 2020, Kalamata, Greece

in step 5, {B1, . . . ,Bd−1
,Bd } and {B1, . . . ,Bd−1

,Bd +
∑d−1

i=1
αiBi }

generate the same O(k ,νζ )-module. So this step is safe too.

3.3 Avoiding constant field extensions
We shall discuss one more refinement, which also appears already

in earlier versions of the algorithm [11, 14, 18]. In applications, we

typically have k = C̄(x) where C is a field and C̄ is an algebraic

closure of C , with the usual valuation νz for z ∈ C̄ (see Example 1).

For this valuation, xz = x − z is a canonical choice.
For theoretical purposes it is advantageous to work with vector

spaces over k , but computationally it would be preferable to work

with coefficients inC(x) rather than C̄(x). It is therefore desirable to
ensure that the basis elements returned by Alg. 14 have coefficients

in C(x) with respect to the input basis.

Note that in this setting, we have the following properties:

Lemma 16. (1) For every automorphism σ : C̄ → C̄ leaving C
fixed, for every z ∈ Z , and for everyu ∈ C̄(x), we have νz (u) =
νσ (z)(σ (u)), where σ (u) is the element of C̄(x) obtained by
applying σ to the coefficients of u.

(2) For every u ∈ C̄(x) \ {0}, and for every z ∈ Z , u admits a
unique Laurent series expansion

u = cz (x − z)νz (u) + (x − z)νz (u)+1r

with cz ∈ C̄ \ {0} and νz (r ) ≥ 0.

The constant cz in item 2 is called the leading coefficient of u.
The second property of the lemma ensures that the coefficients

α1, . . . ,αd−1
∈ C̄(x) from (C) and (C

′
) can be chosen in C̄ . Indeed,

we can replace αi by its leading coefficient if νz (αi ) = 0 and by zero

otherwise, because whenever α1, . . . ,αd−1
∈ C̄(x) is a solution and

β1, . . . , βd−1
∈ C̄(x) are arbitrary with νz (βi ) ≥ 1 for all i , then also

α1 + β1, . . . ,αd−1
+ βd−1

is a solution.

If we restrict α1, . . . ,αd−1
to C̄ , then there can be at most one

solution whenever we seek a solution in step 3 of Alg. 10, because

the difference of any two distinct solutions would be a nontrivial

C̄-linear combination of B1, . . . ,Bd−1
, and by the invariant of the

outer loop, B1, . . . ,Bd−1
already form an integral basis of the k-

subspace they generate.

We shall adopt the following last assumption, stating that we

can apply σ on V :

(F) We know a basis B1, . . . ,Br as in (E) such that for every

automorphism σ : C̄ → C̄ fixingC , and for all α1, . . . ,αr ∈ k ,
we have valz (α1B1 + · · · + αrBr ) = valσ (z)(σ (α1)B1 + · · · +

σ (αr )Br ).

Using this assumption, it can further be shown that the unique

elements α1, . . . ,αd−1
∈ C̄ from (C

′
) must in fact belong to C(z)

(if they exist at all). This is because if some αi were in C̄ \ C(z),
then there would be some automorphism σ : C̄ → C̄ fixing C(z)
but moving αi , and (F) would imply that σ (α1), . . . ,σ (αd ) would
be another solution to (C

′
), in contradiction to the uniqueness.

In order to ensure that the output elements of Alg. 14 are C(x)-
linear combinations of the input elements, we adjust Alg. 10 as

follows. LetG be the Galois group of C(z) over C . In step 2, instead

of replacing Bd by x
− valz (Bd )
z , we replace Bd by( ∏
σ ∈G

σ (xz )
− valz (Bd )

)
Bd .

Note that

∏
σ ∈G σ (xz ) =

∏
σ ∈G σ (x−z) is the minimal polynomial

of z in C[x].
In step 5 of Alg. 10, we choose α1, . . . ,αd−1

∈ C(z) (if there are
any), and instead of replacing Bd by x−1

z (α1B1 + · · · + αd−1
Bd−1

+

αdBd ) (with αd = 1), we replace Bd by

A :=

d∑
i=1

( ∑
σ ∈G

σ

(
αi
xz

))
Bi .

Proposition 17. When the steps 2 and 5 of Alg. 10 are adjusted
as indicated, Alg. 14 returns an integral basis of V whose elements
are C(x)-linear combinations of the input elements.

Proof. By Galois theory,

∏
σ ∈G σ (xz ) =

∏
σ ∈G σ (x −z) ∈ C(x)

and α̃i :=
∑
σ ∈G σ (αi/(x − z)) ∈ C(x) for every i . Therefore, all

updates in the modified Alg. 10 replace certain basis elements by

C(x)-linear combinations of basis elements.

It remains to show that the output is an integral basis for all z ∈ Z .
To see this, we have to check the effect of Alg. 10 concerning valz
and concerning valζ for ζ ∈ Z \ {z}. For the latter, we distinguish
the case when ζ is conjugate to z and when it is not.

By part 1 of Lemma 16, for all ζ ∈ Z that are not conjugate

to z we have νζ (α̃i ) ≥ 0 for i = 1, . . . ,d − 1 and νζ (α̃d ) = 0.

Therefore, B1, . . . ,Bd−1
and A generate the same O(k ,νζ )-module

as B1, . . . ,Bd−1
and Bd , for every ζ ∈ Z that is not conjugate to z.

This settles the case when ζ is not conjugate to z.
Next, observe that valz (x

−1

z (α1B1 + · · · + αdBd )) ≥ 0 by the

assumptions on xz ,α1, . . . ,αd . Moreover, by part 1 of Lemma 16,

νz (σ (x − z)) = νσ −1(z)(x − z) = 0 for every σ ∈ G \ {id}, and

νz (σ (αi )) = νσ −1(z)(αi ) ≥ 0 because νζ (αi ) ≥ 0 for all ζ . Therefore

valz (σ (x
−1

z )(σ (α1)B1 + · · · + σ (αd )Bd ) ≥ 0 for every σ ∈ G \ {id}.

It follows that

valz (A) ≥ max

σ ∈G
valz

( d∑
i=1

σ
( αi
x − z

)
Bi

)
≥ 0.

Moreover, since αd = 1 and valσ (z)(xz ) = 0 for all σ , id, we

have that B1, . . . ,Bd−1
and A generate the same O(k ,νz )-module as

B1, . . . ,Bd−1
and x−1

z (α1B1 + · · · + αdBd ). This settles the concern
about valz .

Finally, if ζ is conjugate to z, say ζ = σ (z) for some automor-

phism σ ∈ G , then valζ (A) = valζ (σ (A)) = valz (A) ≥ 0 by assump-

tion (F), becauseA is aC(x)-linear combination of the original basis

elements. So A belongs to the O(k ,νζ )-module of all integral ele-

ments (w.r.t. valζ ) of the subspace generated by B1, . . . ,Bd inV , so

we are not making the module larger than we should. Conversely,

the oldBd belongs to theO(k ,νζ )-module generated byB1, . . . ,Bd−1

and A, so by updating Bd to A, the module generated by B1, . . . ,Bd
does not become smaller.

Informally, what happens by taking the sums over the Galois

group is that the algorithm working locally at z simultaneously

works at all its conjugates. If for a certain z, the set Z0 contains

z as well as its conjugates, it is fair (and advisable) to discard all

the conjugates from Z0 and only keep z. More precisely, the whole

process requires only knowing the minimal polynomial of z inC[x],
so for applications where the set Z0 is computed as the set of roots

of some polynomial p ∈ C[x], the algorithms can proceed with the

factors of p instead of all its roots.
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4 THE ALGEBRAIC AND D-FINITE CASES
We will see below how the algorithms in [14, 18] for computing

integral bases are special cases of the general formulation in Sec-

tion 3. Let C be a computable subfield of C and k = C̄(x) with a

valuation νz for z ∈ C̄ . The value function valz on V = k(β) with

β ∈ C(x) is defined in Example 6 and on V = C̄(x)[D]/⟨L⟩ with
L ∈ C[x][D] and all local exponents ν of solutions contained in C
is defined in Example 7. We show that the assumptions imposed

on value functions in Section 3 are fulfilled in the algebraic and

D-finite settings. Note that (B), (C), (D) are subsumed in (B
′
), (C

′
),

(D
′
), respectively.

(A) It is assumed that C is a computable field, so it is clear that

arithmetic in C̄(x) andV are computable, and that νz on C̄(x)
is also computable. The value functions valz for algebraic and

D-finite functions are computable since we can determine

first few terms of Puiseux or generalized series solutions by

algorithms in [8, 13].

(B
′
) For every z ∈ Z , we can take xz = x −z such that νz (xz ) = 1

and νζ (xz ) = 0 for all ζ ∈ Z \ {z}.
(C

′
) Done in [14, Section 4].

(D
′
) Clear.

(E) In the algebraic case, we can choose as Z0 the set of singular-

ities of β ∈ C(x) which is clearly a finite set. In the D-finite

case, we can choose as Z0 the set of zeros of ℓr which are

the only possible singularities by [14, Lemma 9].

(F) If α and ᾱ are conjugates, let σ be an element of the Galois

group of C̄/C such that ᾱ = σ (α). In particular σ (L) = L
and σ (B) = B. For all i ∈ {1, . . . , r }, σ (fα ,i ) ∈ C̄[[[x − ᾱ]]]
is a solution of σ (L) = L. Since σ is an automorphism, the

σ (fα ,i ) form a fundamental system of L in C̄[[[x − ᾱ]]]. For
all i ∈ {1, . . . , r }, B ·σ (fα ,i ) = σ (B)·σ (fα ,i ) = σ (B · fα ,i ), and
the equality of the valuations follows. In the algebraic case,

this equality follows from the property of Duval’s rational

Puiseux series (see the remarks on [8, page 120]).

The termination of the general algorithm 10 in the algebraic and

D-finite cases have been shown in [14, 18] by using classical discrim-

inants and generalized Wronskians. The discriminant functions in

these cases can be taken as the compositions of the valuation νz and
these functions. More precisely, for a basis B1, . . . ,Br of V = k(β),
the discriminant function Disc in the algebraic setting is defined as

Disc({B1, . . . ,Br }) = νz (det(Tr(BiBj ))),

where Tr is the trace map from V to C̄(x). If B1, . . . ,Br are inte-

gral, det(Tr(BiBj )) ∈ C̄[x] and then Disc({B1, . . . ,Br }) ∈ N. Let
α1, . . . ,αd−1

∈ k , replacing Bd by α1B1 + · · · + αd−1
Bd−1

+ Bd is

equivalent to multiplying the matrix (Tr(BiBj )) left and right by

elementary transformation matrices with determinant 1, so the de-

terminant (and its valuation) are constant. Similarly, replacing Bd
by (x − z)−1Bd is equivalent to multiplying the matrix (Tr(BiBj ))

left and right by a matrix with determinant (x − z)−1
, so the dis-

criminant decreases by 2. So Disc is indeed a discriminant function

on k(β).
In the case of D-finite functions, for any basis B = {B1, . . . ,Br }

of V = C̄(x)[D]/⟨L⟩ and fundamental series solutions b1, . . . ,br ∈

C̄[[[x − z]]] of L , the generalized Wronskian is defined as

wrL,z (B) := det(((Bi · bj ))
r
i , j=1

) ∈ C̄[[[x − z]]].

The discriminant function Disc can be defined as the valuation of

wrL,z (B) at z. By the proof of Theorem 18 in [14], Disc is indeed a

discriminant function on C̄(x)[D]/⟨L⟩.

5 THE P-RECURSIVE CASE
5.1 Solution Spaces
For the case of recurrence operators, we use a setting that has

already been used for instance in [1, 7, 19] in the context of finding

hypergeometric solutions. The relevant parts of the construction

are summarized in this section. We consider the Ore algebraC(x)[S]
with the commutation rule Sx = (x + 1)S . We fix an operator L =
ℓ0 + ℓ1S + · · ·+ ℓrS

r ∈ C(x)[S] with ℓ0, ℓr , 0, and we consider the

vector space V = C̄(x)[S]/⟨L⟩, where ⟨L⟩ = C̄(x)[S]L. The operator
L acts on a sequence f : α +Z→ C̄ through (L · f )(z) := ℓ0(z)f (z)+
· · · + ℓr (z)f (z + r ) for all z ∈ α + Z. This action turns C̄α+Z

into a

(left) C[x][S]-module, but not to a (left) C(x)[S]-module, because

a sequence f : α + Z → C̄ cannot meaningfully be divided by a

polynomial which has a root in α + Z. In order to obtain a C(x)[S]-
module, consider the space C̄((q))α+Z of all sequences f : α + Z→

C̄((q)) whose terms are Laurent series in a new indeterminate q,
and define the action of L = ℓ0+ · · ·+ℓrS

r ∈ C(x)[S] on a sequence

f : α +Z→ C̄((q)) through (L · f )(z) := ℓ0(z +q)f (z)+ · · ·+ ℓr (z +
q)f (z + r ) for all z ∈ α + Z. Note that no ℓi ∈ C(x) can have a pole

at z + q for any z ∈ α + Z when α ∈ C̄ and q < C̄ .
For a fixed operator L = ℓ0+ · · ·+ ℓrS

r ∈ C[x][S]with ℓ0, ℓr , 0,

the set Sol(L) := { f : α + Z → C̄((q)) : L · f = 0 } is a C̄((q))-
vector space of dimension r . Indeed, a basis b1, . . . ,br is given by

specifying the initial values bi (α + j) = δi , j for i, j = 1, . . . , r and
observing that the operator L uniquely extends any choice of initial

values indefinitely to the left as well as to the right. The reason is

again that q < C̄ implies ℓ0(z +q), ℓr (z +q) , 0 for every z ∈ α +Z,
so there is no danger that computing a certain sequence term bi (z)
from bi (z + 1), . . . ,bi (z + r ) or from bi (z − 1), . . . ,bi (z − r ) could
produce a division by zero. Instead of a division by zero, we can

only observe a division by q.
The valuation νq (a) of a nonzero Laurent series a ∈ C̄((q)) is

the smallest n ∈ Z such that the coefficient [qn ]a of qn in a is

nonzero. We further define νq (0) = +∞. For a nonzero solution

f : α +Z→ C̄((q)) of an operator L ∈ C[x][S], we will be interested
in how the valuation changes as z ranges through α + Z. As we
have noticed, there can be occasional divisions by q as we extend

f towards the left or the right, so νq (f (z)) can go up and down as

z moves through α + Z. In fact, it can go up and down arbitrarily

often, as the solution f : Z → C̄((q)), f (z) = 1 + q + (−1)z of the

operator L = S2 − 1 shows. However, only when z is a root of ℓ0
we can have

νq (f (z)) < min{νq (f (z + 1)), . . . ,νq (f (z + r ))},

and only when z is a root of ℓr (x − r ) we can have

νq (f (z)) < min{νq (f (z − 1)), . . . ,νq (f (z − r ))}.

Since the nonzero polynomials ℓ0, ℓr have at most finitely many

roots in α + Z, we can conclude that both

lim inf

n→−∞
νq (f (α + n)) and lim inf

n→+∞
νq (f (α + n))
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are well-defined for every solution f : α + Z→ C̄((q)) of L. Their
difference

vg f := lim inf

n→+∞
νq (f (α + n)) − lim inf

n→−∞
νq (f (α + n))

is called the valuation growth of f .

5.2 A Valuation Function
In our context, solutions with negative valuation growth are trou-

blesome, because we want to define the valuation of a residue

class B ∈ C̄(x)[S]/⟨L⟩ at z in terms of the valuations of the se-

quence terms (B · b)(z) ∈ C̄((q)), where b runs through Sol(L).
When b ∈ Sol(L) has negative valuation growth, then we can have

νq ((B · b)(z)) < 0 for infinitely many z, which makes it hard to meet

assumption (E). Moreover, if all solutions have positive valuation

growth, we haveνq ((B·b)(z)) > 0 for infinitelymany z, which is also
in conflict with assumption (E). In order to circumvent this problem,

we let Z ⊆ C̄ be such that for each orbit α +Z with Z ∩ (α +Z) , ∅

and for which L has a solution in C̄((q))α+Z with nonzero valuation

growth, the set Z ∩ (α + Z) has a (computable) right-most element.

We then define the value function valz : V → Z ∪ {∞} by

valz (B) := min

b ∈Sol(L)

(
νq ((B · b)(z)) − lim inf

n→∞
νq (b(z − n))

)
.

We use the convention∞−∞ = ∞.

Proposition 18. valz is a value function for every z ∈ Z .

Proof. We check the conditions of Def. 2.

(i) If B = 0, then B · b is the zero sequence for every b ∈ Sol(L),
so νq ((B · b)(z)) = ∞ for all n ∈ Z.

Conversely, let B ∈ C̄(x)[S] be such that valz ([B]) = ∞.

We may assume that the order of B is less than r , so that

[B] = 0 is equivalent to B = 0. By valz ([B]) = ∞ we have

νq ((B · b)(z)) = ∞ for all b ∈ Sol(L), i.e., (B · b)(z) = 0 for all

b ∈ Sol(L).
If b1, . . . ,br is a basis of Sol(L), then the matrix

M = ((bj (z + i − 1)))ri , j=1
∈ C̄((q))r×r

is regular. Now if B were nonzero and βkS
k
is a nonzero

term appearing in B, then multiplying the kth row of M
by βk and adding suitable multiples of other rows to the

kth row, we obtain a matrix whose kth row is 0, because

(B · b1)(z) = · · · = (B · br )(z) = 0. On the other hand, the

determinant of this matrix is equal to βk det(M) , 0, so B
cannot be nonzero.

(ii) Clear by νq ((u f )(z)) = νq (u) + νq (f (z)) for all u ∈ C̄((q))

and f ∈ C̄((q))z+Z.
(iii) Clear by νq (((B1 +B2) ·u)(z)) = νq ((B1 ·u)(z)+ (B2 ·u)(z)) ≥

min(νq ((B1 ·u)(z)),νq ((B2 ·u)(z))) for all u ∈ C̄((q))z+Z.

Next, we show that we can meet the computability assumptions

of Section 3. Note again that (B), (C), (D) are subsumed in (B
′
), (C

′
),

(D
′
), respectively.

(A) It is assumed that C is a computable field, so it is clear that

arithmetic in C̄(x) andV are computable, and that νz is com-

putable. We show that valz is computable as well.

Let ζ ∈ z + Z be such that all roots of ℓ0ℓr contained in

z+Z are to the right of ζ , and consider the basis b1, . . . ,br of

Sol(L) in C̄((q))z+Z defined by the initial valuesbj (ζ +i−1) =

δi , j (i, j = 1, . . . , r ). We shall prove that for all η ∈ z + Z,

valη (B) =
r

min

j=1

νq ((B · bj )(η)).

Since we can compute (B · bj )(η) for any j = 1, . . . , r and

η ∈ z + Z, this implies that valη is computable. In particular,

valz is then computable.

We have min
r
i=1

νq (bj (ζ + i − 1)) = 0 for j = 1, . . . , r by

construction, and in fact lim infn→+∞ νq (bj (ζ − n)) = 0 for

j = 1, . . . , r , because at no position ζ − n the valuation can

be smaller than the minimum valuation of its r neighbors to
the right or than the minimum valuation of its r neighbors
to the left, due to the lack of roots of ℓ0ℓr in the range under

consideration.

Let now b = c1b1 + · · · + crbr for coefficients c1, . . . , cr ∈

C̄((q)). Let v := min
r
j=1

νq (c j ). Assume that v = 0, and let j0
be such that νq (c j0 ) = 0. Then for all η ∈ z + Z,

νq (b(η)) ≥
r

min

j=1

νq (bj (η))

and νq ((B · b)(η)) ≥ min
r
j=1

νq ((B · bj )(η)).

Furthermore, by construction of the basis of bj ’s, for all
i ∈ {1, . . . , r }, b(ζ + i −1) = ci , so min

r
i=1

νq (b(ζ + i −1)) = 0.

Again, for lack of roots of ℓ0ℓr left of ζ , it implies that

lim inf

n→+∞
νq (b(ζ − n)) = 0.

It follows from the above that

νq ((B · b)(η)) − lim inf

n→+∞
νq (b(η − n)) ≥

r
min

j=1

νq ((B · bj )(η)).

Assume now that v , 0. In that case, consider q−vb =
q−vc1b1 + · · · + q−vcrbr , with min

r
j=1

νq (q
−vc j ) = 0. From

the above,

νq ((B · q−vb)(η)) − lim inf

n→+∞
νq (q

−vb(η − n))

≥
r

min

j=1

νq ((B · bj )(η)).

Since for all η ∈ z + Z we have νq (q
−vb(η)) = νq (b(η)) − v

and

νq ((B · q−vb)(η)) = νq ((q
−vB · b)(η)) = νq ((B · b)(η)) −v,

it still holds that

νq ((B · b)(η)) − lim inf

n→+∞
νq (b(η − n)) ≥

r
min

j=1

νq ((B · bj )(η)),

so that indeed valη (B) = min
r
j=1

νq ((B · bj )(η)).

(B
′
) We can take xz = x − z.

(C
′
) Let B1, . . . ,Bd ∈ C̄(x)[S]/⟨L⟩ be given. We can then com-

pute v := min
d
i=1

valz (Bi ) and we can find the required

α1, . . . ,αd−1
∈ C̄ by equating the coefficients of qn for n ≤ v

in the linear combination α1(B1 · bj )(z) + · · · + αd−1
(Bd−1

·

bj )(z) + (Bd · bj )(z) to zero and solving the resulting inho-

mogeneous linear system for α1, . . . ,αd−1
.

(D
′
) Clear.

(E) First we shall prove that if α + Z does not contain a root

of ℓ0ℓr , then B = {1, S, . . . , Sr−1} is an integral basis for all

z ∈ Z ∩ α + Z. For such z, consider the basis b1, . . . ,br of

Sol(L) ⊆ C̄((q))α+Z with bj (z + i − 1) = δi , j (i, j = 1, . . . , r ).
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By the discussion of (A), for any operator A ∈ V , we have

valz (A) =
r

min

j=1

νq ((A · bj )(z)).

LetA = p0+· · ·+pr−1S
r−1

be an operator inV = C̄(x)[S]/⟨L⟩.
By the construction of the basis bj ’s, for all j = {1, . . . , r },
(A · bj )(z) = pj−1(x + q − z). It imples that

r
min

j=1

νq ((A · bj )(z)) =
r−1

min

j=0

νz (pj ).

So A is integral if and only if νz (pj ) ≥ 0 for all j and B is an

integral basis at z. Since ℓ0ℓr can only have at finitely many

roots, we can restrict Z0 to finitely many orbits α + Z. In
each of these orbits, there is a natural bound for Z0 to the left

after lack of roots of ℓ0ℓr by the similar argument as above.

If L has a solution with nonzero valuation growth, then the

bound to the right is given by the choice of Z . Now suppose

all solutions of L in C̄((q))α+Z have zero valuation growth.

Let ζ ∈ α + Z be such that all roots of ℓ0ℓr are contained to

the left. For each z = ζ + n with n ≥ 0, choosing the basis

bj (z + i − 1) = δi , j (i, j = 1, . . . , r ), we get

lim inf

n→+∞
νq (bj (z + n)) =

r
min

i=1

νq (bj (z + i − 1)) = 0

for all j = 1, . . . , r . Then lim infn→+∞ νq (bj (z − n)) = 0.

For any operator A ∈ V , it again follows that valz (A) =
min

r
j=1

νq ((A · bj )(z)) and hence B is an integral basis at

such a point z for the same reason.

(F) We can take any basis of V = C̄(x)[S]/⟨L⟩ whose basis ele-
ments belong to C(x)[S]/⟨L⟩, for example 1, S, . . . , Sr−1

.

If z, z̃ ∈ C̄ are conjugates, let σ be an element of the Galois

group of C̄ over C that maps z to z̃. Then for every solution

f ∈ C̄((q))z+Z of L also σ (f ) ∈ C̄((q))z̃+Z is a solution of L,
because L has coefficients in C , so σ (L) = L.
Since we have

σ ((α0 + · · · + αr−1S
r−1)(f ))

= (σ (α0) + · · · + σ (αr−1)S
r−1)(σ (f ))

for any α0, . . . ,αr−1 ∈ C̄(x), it follows that
valz (α0+ · · ·+αr−1S

r−1) ≥ valz̃ (σ (α0)+ · · ·+σ (αr−1)S
r−1).

Equality follows by exchanging z and z̃.

We now define the discriminant function in the shift setting. For

each α ∈ Z , by the item (A), we can choose a basis b1, . . . ,br of

Sol(L) such that valα (B) = min
r
j=1

νq ((B · bj )(α)). For any k-vector

space basis B = {B1, . . . ,Br } of V = C̄(x)[S]/⟨L⟩, we can take

Discα (B) := νq (det(((Bi · bj )(α))
r
i , j=1

)) ∈ Z.

It is well-defined since thematrix ((Bi ·bj )(α)) = (pi ,ℓ)·(bj (α+ℓ−1))

is regular, where Bi =
∑r
j=1

pi ,ℓS
ℓ−1

with pi ,ℓ ∈ C̄(x). If Bi ’s are

integral for α , then νq ((Bi · bj )(α)) ≥ 0 for all i, j = 1, . . . , r . It
follows that Discα (B) ≥ 0.

Let α1, . . . ,αd−1
∈ k , replacing Bd by α1B1 + · · · + αd−1

Bd−1
+

Bd (resp. by (x − α)−1Bd ) is equivalent to multiplying the matrix

((Bi ·bj )(α)) by a matrix with determinant 1 (resp. with determinant

(x − α)−1
) and it follows that the valuation of the determinant is

constant (resp. is strictly decreasing).

Example 19. Let L = (x + 2)2 + xS2 + (x + 2)S3. For every α < Z,
we have that {1, S, S2} is a local integral basis forV = C(x)[S]/⟨L⟩ at
α + Z. For the orbit Z, choosing bj (−2 + i − 1) = δi , j for i, j = 1, 2, 3,
we obtain a basis of the solution space in C((q))Z:

n · · · −2 −1 0 1 2 · · ·

b1(n) · · · 1 0 0 −q
q(q−1)

q+1
· · ·

b2(n) · · · 0 1 0 0 −q − 1 · · ·

b3(n) · · · 0 0 1
−q+2

q
q2−3q+2

q(q+1)
· · ·

Then valα (B) = min
3

j=1
νq ((B · bj )(α)) for any operator B ∈ V and

α ∈ Z. Since the solution b3 has negative valuation growth, for a
global integral basis the set Z has to be bounded on the right in the
orbit Z. TakeZ = C \{1, 2, . . .}. At α = 0, we have 1 is locally integral,
but S, S2 are not since val0(S) = val0(S

2) = −1. However, xS, xS2 are
locally integral. By Alg. 10, we can find a local integral basis at 0:{

1, x−2

x 2
+ 1

x S,
−2

x + S
2

}
.

Using such a basis as an input, continue to find all locally integral
elements at α = −1. Similarly replace B3 =

−2

x + S
2 by (x + 1)B3

since val1(B3) = −1. This operation does change the local integrality
at Z \ {−1}, because x + 1 is invertible in the localization of C[x]
at any z , −1. So the output local integral basis at α = −1 is also a
global integral basis for Z :{

1, x−2

x 2
+ 1

x S,
−x+2

x 2
+ −3x−1

x (x+1)2
S + 1

x+1
S2

}
.
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