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Algebraic curves and parametrization

{(x, y) ∈ R2 : x2 + y2 = 1}
Implicit representation

{(
2t

t2 + 1
,

t2 − 1
t2 + 1

)
: t ∈ R

}
Parametric representation

Parametrization
Implicitization
(elimination))

Parametrization algorithms: I Sendra, Winkler 1991, 1997
I Van Hoeij 1994, 1996

: use integral bases

I Sendra 2002...
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Integral elements in number fields

I Let K = Q(α) = Q[X ]/〈f 〉 be a finite extension of Q

I All elements of K are algebraic

I Let β ∈ K , there exists ai, bi ∈ Z, d ∈ N such that

βd =
a0

b0
+

a1

b1
β + · · ·+ ad−1

bd−1
βd−1

I The monic minimal polynomial of β is µβ = X d − ad−1

bd−1
X d−1 − · · · − a0

b0
∈ Q[X ]

(with d minimal)

I β is integral if all the bi are 1, or equivalently if µβ ∈ Z[x]

I The set OK of integral elements of K is called the ring of integers of K
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Examples

Recall: β ∈ OK ⇐⇒ its monic minimal polynomial has coe�icients in Z

I OQ = Z

I OK ∩Q = Z

I Let K = Q[i], then OK = Z[i]

I Let K = Q[
√

5], then ϕ =
1 +
√

5
2

is integral with ϕ2 − ϕ− 1 = 0 and OK = Z[ϕ]
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Integral bases

I Let K = Q(α) = Q[X ]/〈f 〉 be a finite extension of Q of degree n

I OK = set of integral elements of K

I OK is a ring and a free Z module with rank n

I An integral basis of K is a basis of OK as a Z-module

I Let B = (1, α1, . . . , αn−1) be an integral basis of K

I Property: β ∈ K is integral if and only if the coe�icients of β in B are in Z

I Integral bases can be e�ectively computed (Trager, Van Hoeij)
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Summary: integral bases of number fields

Let K = Q[X ]/〈f 〉 be a finite extension of Q with degree n.

An element β ∈ K has a monic minimal polynomial µ ∈ Q[X ],

and β is integral if µ ∈ Z[X ].

The set of integral elements in K is denoted by OK ,

it is a free Z-module with rank n.

An integral basis of K is a basis of OK as a Z-module.

Let B = {1, b1, . . . , bn−1} be an integral basis of K and β ∈ K.

β is integral if and only if all its coe�icients in B lie in Z.

“
“
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Integral bases of function fields

Let K = k(X)[Y ]/〈f 〉 be a finite extension of k(X) with degree n.

An element β ∈ K has a monic minimal polynomial µ ∈ k(X)[Y ],

and β is integral if µ ∈ k[X ][Y ].

The set of integral elements in K is denoted by OK ,

it is a free k[X ]-module with rank n.

An integral basis of K is a basis of OK as a k[X ]-module.

Let B = {1, b1, . . . , bn−1} be an integral basis of K and β ∈ K.

β is integral if and only if all its coe�icients in B lie in k[X ].

“
“
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Integral algebraic functions and poles

I Let K = k(X)[Y ]/〈f 〉 with f irreducible

I Elements of K are functions (with poles) on the curve C = {(x, y) ∈ k2 : f (x, y) = 0}

I Property: β(X ,Y) ∈ K is integral if and only if β does not have any pole on C

I β is locally integral at x if it does not have any pole at (x, •) ∈ C

I A local integral basis of K at X = x is a basis B = (1, α1, . . . , αn−1) of K such that

I All αi are locally integral at x

I β ∈ K is locally integral at x i� its coe�s in B do not have X − x at the denominator
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What is parametrizing?

Data: f (X ,Y) ∈ k[X ,Y ] irreducible, C = {(x, y) : f (x, y) = 0}

Goal: find x(T ), y(T ) ∈ k(T ) such that
I for almost all t ∈ k, (x(t), y(t)) ∈ C
I for almost all (x, y) ∈ C, there exists t ∈ k such that x = x(t), y = y(t)

There is a morphism of fields:

k(X)[Y ]/〈f 〉 k(T )

X x(T )

Y y(T )

t(X ,Y) T

Such a t(X ,Y) is called a parameter for the curve.
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How to compute a parameter?

Characterization:
t(X ,Y) ∈ k(X)[Y ]/〈f 〉 is a parameter i� it has exactly one pole, with multiplicity 1, on C

Example 1

C

t ∈ k

Example 2

C

t ∈ k

Where is the pole of t?
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Back to example 2: pole at infinity

C (z 6= 0) C (x 6= 0)

t ∈ k
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Full problem

Input: a polynomial f ∈ k[X ,Y ] defining a curve C

, a point (x, y) ∈ C

Output: t(X ,Y) ∈ k(X)[Y ]/〈f 〉 parameter for C

Hypotheses:

1. f is irreducible

2. (x, y) is a point of C such that y is a single root of f (x,Y)

3. fh(0 : 1 : 0) 6= 0

Key idea: t is a parameter i� it has exactly one pole on C (including at infinity)

I Integral bases tell us which functions do not have poles

I ... but only on finite parts

I ... and we need a function with 1 pole
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Overview of the algorithm

Split the projective plane into:
I The finite plane A := {z 6= 0}
I Part of the line at infinity B := {x 6= 0, z = 0}
I The last point at infinity C := {(0 : 1 : 0)}

Algorithm:

1. Find a function P with 1 pole on the finite plane A

2. Write equations characterizing functions with no pole on A

3. Write equations characterizing functions with no pole on the line at infinity B

4. Solve them to find Q such that Q has no pole on A and P + Q has no pole on B

5. P + Q is our parameter t
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1. Finding a function with one pole

−2 −1 1 2

1

2

x

y
(1, 2)

Wanted pole

Non wanted

I
1

X − x
would be nice if it didn’t have more poles

I We want a numerator which is 0 everywhere f (x,Y) is 0, except at Y = y

Construction

1. Write f (x,Y) = (Y − y)g(Y) with g(y) 6= 0

2. P is
g(Y)

X − x
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2. Equations characterizing functions with no pole in A

1. Compute an integral basis b0, . . . , bn−1 of k(x)[y]/〈f 〉

2. Q does not have a pole in A i� Q ∈ k[x]b0 + · · ·+ k[x]bn−1

3. Write an Ansatz Q =

∑
i+j≤N aijx iy j

D(x)
where N ∈ N and D ∈ k[x] are “su�iciently big”

4. Multiply out the denominators

5. Use reductions (e.g. ala Gröbner) to write DQ = •(x)Db0 + •(x)Dbn−1 + r(x, y)

6. The coe�icients of r are linear in the aij , set them to 0 and obtain a system of equations
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3. Equations characterizing functions with no poles in B

1. Compute an local integral basis c0, . . . , cn−1 of k(z)[y]/〈fz〉

2. P + Q does not have a pole in B r A i� P + Q ∈ k[x](z)b0 + · · ·+ k[x](z)bn−1

3. Forget the denominators not divisible by z

4. Multiply out the rest of the denominators zd

5. Use reductions (e.g. ala Gröbner) to write zd(P + Q) = •(x) zd c0 + •(x) zd cn−1 + s(x, y)

6. The coe�icients of s are linear in the aij , set them to 0 and obtain a system of equations
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Full process

1. Split C into (C ∩ {z = 1}) ∪ (C ∩ {z = 0})

2. Compute P with exactly one pole at finite distance

3. Write an Ansatz for Q =

∑
i+j≤N aijx iy j

D(x)

4. Compute an integral basis of k(x)[y]/〈f 〉

5. Find a linear system in the aij ensuring that Q does not have a pole at finite distance

6. Compute an integral basis of k(z)[y]/〈fz〉

7. Find a linear system in the aij ensuring that P + Q does not have a pole at infinity

8. Solve the equations and find t = P + Q

9. Eliminate Y from the system (T − t, f ) and solve in X to find x(T )

10. Eliminate X from the system (T − t, f ) and solve in Y to find y(T )
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