Parametrizing rational algebraic curves using integral bases

Based on a 1994 paper by Mark Van Hoeij

Thibaut Verron

Johannes Kepler University, Institute for Algebra, Linz, Austria

22 October 2020

$$\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Implicit representation

$$\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Implicit representation

 $\left\{\left(\frac{2t}{t^2+1},\frac{t^2-1}{t^2+1}\right)\,:\,t\in\mathbb{R}\right\}$

Parametric representation

Parametric representation

Parametrization algorithms:

- Sendra, Winkler 1991, 1997
- Van Hoeij 1994, 1996
- Sendra 2002...

Parametrization algorithms:

- Sendra, Winkler 1991, 1997
- ► Van Hoeij 1994, 1996: use integral bases
- Sendra 2002...

• Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q}

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q}
- All elements of K are algebraic
- Let $\beta \in K$, there exists $a_i, b_i \in \mathbb{Z}$, $d \in \mathbb{N}$ such that

$$\beta^{d} = \frac{a_{0}}{b_{0}} + \frac{a_{1}}{b_{1}}\beta + \dots + \frac{a_{d-1}}{b_{d-1}}\beta^{d-1}$$

► The monic minimal polynomial of β is $\mu_{\beta} = X^d - \frac{a_{d-1}}{b_{d-1}}X^{d-1} - \dots - \frac{a_0}{b_0} \in \mathbb{Q}[X]$ (with *d* minimal)

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q}
- All elements of K are algebraic
- Let $\beta \in K$, there exists $a_i, b_i \in \mathbb{Z}$, $d \in \mathbb{N}$ such that

$$\beta^{d} = \frac{a_{0}}{b_{0}} + \frac{a_{1}}{b_{1}}\beta + \dots + \frac{a_{d-1}}{b_{d-1}}\beta^{d-1}$$

- ► The monic minimal polynomial of β is $\mu_{\beta} = X^d \frac{a_{d-1}}{b_{d-1}}X^{d-1} \dots \frac{a_0}{b_0} \in \mathbb{Q}[X]$ (with *d* minimal)
- ▶ β is integral if all the b_i are 1, or equivalently if $\mu_\beta \in \mathbb{Z}[x]$

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q}
- All elements of K are algebraic
- Let $\beta \in K$, there exists $a_i, b_i \in \mathbb{Z}$, $d \in \mathbb{N}$ such that

$$\beta^{d} = \frac{a_{0}}{b_{0}} + \frac{a_{1}}{b_{1}}\beta + \dots + \frac{a_{d-1}}{b_{d-1}}\beta^{d-1}$$

- ► The monic minimal polynomial of β is $\mu_{\beta} = X^d \frac{a_{d-1}}{b_{d-1}}X^{d-1} \dots \frac{a_0}{b_0} \in \mathbb{Q}[X]$ (with *d* minimal)
- ▶ β is integral if all the b_i are 1, or equivalently if $\mu_\beta \in \mathbb{Z}[x]$
- The set \mathcal{O}_K of integral elements of K is called the ring of integers of K

Recall: $\beta \in \mathcal{O}_{\mathcal{K}} \iff$ its monic minimal polynomial has coefficients in \mathbb{Z}

$$\triangleright \mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$

Recall: $\beta \in \mathcal{O}_{\mathcal{K}} \iff$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\blacktriangleright \mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$
- $\blacktriangleright \mathcal{O}_{\mathcal{K}} \cap \mathbb{Q} = \mathbb{Z}$

Recall: $\beta \in \mathcal{O}_{K} \iff$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\blacktriangleright \ \mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$
- $\blacktriangleright \mathcal{O}_{\mathcal{K}} \cap \mathbb{Q} = \mathbb{Z}$
- Let $K = \mathbb{Q}[i]$, then $\mathcal{O}_K = \mathbb{Z}[i]$

Recall: $\beta \in \mathcal{O}_{K} \iff$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\blacktriangleright \mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$
- $\blacktriangleright \mathcal{O}_{\mathcal{K}} \cap \mathbb{Q} = \mathbb{Z}$
- Let $K = \mathbb{Q}[i]$, then $\mathcal{O}_K = \mathbb{Z}[i]$

• Let
$$K = \mathbb{Q}[\sqrt{5}]$$
, then $\varphi = \frac{1+\sqrt{5}}{2}$ is integral with $\varphi^2 - \varphi - 1 = 0$ and $\mathcal{O}_K = \mathbb{Z}[\varphi]$

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q} of degree *n*
- \mathcal{O}_K = set of integral elements of *K*

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q} of degree *n*
- \mathcal{O}_K = set of integral elements of *K*
- \mathcal{O}_K is a ring and a free \mathbb{Z} module with rank *n*

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q} of degree *n*
- \mathcal{O}_K = set of integral elements of *K*
- $\mathcal{O}_{\mathcal{K}}$ is a ring and a free \mathbb{Z} module with rank *n*
- An integral basis of *K* is a basis of \mathcal{O}_K as a \mathbb{Z} -module

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q} of degree *n*
- \mathcal{O}_K = set of integral elements of *K*
- \mathcal{O}_K is a ring and a free \mathbb{Z} module with rank *n*
- An integral basis of *K* is a basis of \mathcal{O}_K as a \mathbb{Z} -module
- Let $\mathcal{B} = (1, \alpha_1, \dots, \alpha_{n-1})$ be an integral basis of *K*
- Property: $\beta \in K$ is integral if and only if the coefficients of β in \mathcal{B} are in \mathbb{Z}

- Let $K = \mathbb{Q}(\alpha) = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q} of degree *n*
- \mathcal{O}_K = set of integral elements of *K*
- \mathcal{O}_K is a ring and a free \mathbb{Z} module with rank *n*
- An integral basis of K is a basis of \mathcal{O}_K as a \mathbb{Z} -module
- Let $\mathcal{B} = (1, \alpha_1, \dots, \alpha_{n-1})$ be an integral basis of *K*
- Property: $\beta \in K$ is integral if and only if the coefficients of β in \mathcal{B} are in \mathbb{Z}
- Integral bases can be effectively computed (Trager, Van Hoeij)

66 Let $K = \mathbb{Q}[X]/\langle f \rangle$ be a finite extension of \mathbb{Q} with degree n. An element $\beta \in K$ has a monic minimal polynomial $\mu \in \mathbb{Q}[X]$, and β is integral if $\mu \in \mathbb{Z}[X]$.

The set of integral elements in K is denoted by \mathcal{O}_K , it is a free \mathbb{Z} -module with rank n. An integral basis of K is a basis of \mathcal{O}_K as a \mathbb{Z} -module.

Let $\mathcal{B} = \{1, b_1, \dots, b_{n-1}\}$ be an integral basis of K and $\beta \in K$. β is integral if and only if all its coefficients in \mathcal{B} lie in \mathbb{Z} .

"

Integral bases of function fields

66 Let $K = k(X)[Y]/\langle f \rangle$ be a finite extension of k(X) with degree *n*. An element $\beta \in K$ has a monic minimal polynomial $\mu \in k(X)[Y]$, and β is integral if $\mu \in k[X][Y]$.

The set of integral elements in K is denoted by \mathcal{O}_K , it is a free k[X]-module with rank n. An integral basis of K is a basis of \mathcal{O}_K as a k[X]-module.

Let $\mathcal{B} = \{1, b_1, \dots, b_{n-1}\}$ be an integral basis of K and $\beta \in K$. β is integral if and only if all its coefficients in \mathcal{B} lie in k[X].

"

• Let $K = k(X)[Y]/\langle f \rangle$ with f irreducible

- Let $K = k(X)[Y]/\langle f \rangle$ with f irreducible
- ► Elements of *K* are functions (with poles) on the curve $C = \{(x, y) \in k^2 : f(x, y) = 0\}$

- Let $K = k(X)[Y]/\langle f \rangle$ with f irreducible
- ► Elements of *K* are functions (with poles) on the curve $C = \{(x, y) \in k^2 : f(x, y) = 0\}$
- Property: $\beta(X, Y) \in K$ is integral if and only if β does not have any pole on C

- Let $K = k(X)[Y]/\langle f \rangle$ with f irreducible
- ► Elements of *K* are functions (with poles) on the curve $C = \{(x, y) \in k^2 : f(x, y) = 0\}$
- Property: $\beta(X, Y) \in K$ is integral if and only if β does not have any pole on C
- ▶ β is locally integral at *x* if it does not have any pole at $(x, \bullet) \in C$

- Let $K = k(X)[Y]/\langle f \rangle$ with f irreducible
- ▶ Elements of *K* are functions (with poles) on the curve $C = \{(x, y) \in k^2 : f(x, y) = 0\}$
- Property: $\beta(X, Y) \in K$ is integral if and only if β does not have any pole on C
- ▶ β is locally integral at *x* if it does not have any pole at $(x, \bullet) \in C$
- A local integral basis of K at X = x is a basis $\mathcal{B} = (1, \alpha_1, \dots, \alpha_{n-1})$ of K such that
 - All α_i are locally integral at x
 - ▶ $\beta \in K$ is locally integral at x iff its coeffs in \mathcal{B} do not have X x at the denominator

Data: $f(X, Y) \in k[X, Y]$ irreducible, $C = \{(x, y) : f(x, y) = 0\}$

Goal: find $x(T), y(T) \in k(T)$ such that

• for almost all $t \in k$, $(x(t), y(t)) \in C$

▶ for almost all $(x, y) \in C$, there exists $t \in k$ such that x = x(t), y = y(t)

Data: $f(X, Y) \in k[X, Y]$ irreducible, $C = \{(x, y) : f(x, y) = 0\}$

Goal: find $x(T), y(T) \in k(T)$ such that

• for almost all $t \in k$, f(x(t), y(t)) = 0 in k

▶ for almost all $(x, y) \in C$, there exists $t \in k$ such that x = x(t), y = y(t)

Data: $f(X, Y) \in k[X, Y]$ irreducible, $C = \{(x, y) : f(x, y) = 0\}$

Goal: find $x(T), y(T) \in k(T)$ such that

- f(x(T), y(T)) = 0 in k(T)
- ▶ for almost all $(x, y) \in C$, there exists $t \in k$ such that x = x(t), y = y(t)

There is a morphism of fields:

Data: $f(X, Y) \in k[X, Y]$ irreducible, $C = \{(x, y) : f(x, y) = 0\}$

Goal: find $x(T), y(T) \in k(T)$ such that

- f(x(T), y(T)) = 0 in k(T)
- ▶ for almost all $(x, y) \in C$, there exists a unique $t \in k$ such that x = x(t), y = y(t)

There is an injective morphism of fields:

Data: $f(X, Y) \in k[X, Y]$ irreducible, $C = \{(x, y) : f(x, y) = 0\}$

Goal: find $x(T), y(T) \in k(T)$ such that

- f(x(T), y(T)) = 0 in k(T)
- ▶ for almost all $(x, y) \in C$, there exists a unique $t \in k$ such that x = x(t), y = y(t)

There is an isomorphism of fields:

Data: $f(X, Y) \in k[X, Y]$ irreducible, $C = \{(x, y) : f(x, y) = 0\}$

Goal: find $x(T), y(T) \in k(T)$ and $t(X, Y) \in k(X)[Y]/\langle f \rangle$ such that

- f(x(T), y(T)) = 0 in k(T)
- $\blacktriangleright K(t(X,Y)) = K(X)[Y]/\langle f \rangle$

There is an isomorphism of fields:

Such a t(X, Y) is called a parameter for the curve.

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Characterization:

Where is the pole of *t*?

f(x,y)=0

Points at infinity

Points at infinity

Points at infinity

Input: a polynomial $f \in k[X, Y]$ defining a curve COutput: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Input: a polynomial $f \in k[X, Y]$ defining a curve COutput: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

1. f is irreducible

Input: a polynomial $f \in k[X, Y]$ defining a curve C, a point $(x, y) \in C$ Output: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

- 1. f is irreducible
- 2. (x, y) is a point of C such that y is a single root of f(x, Y)

Input: a polynomial $f \in k[X, Y]$ defining a curve C, a point $(x, y) \in C$ Output: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

- 1. f is irreducible
- 2. (x, y) is a point of C such that y is a single root of f(x, Y)

3. $f_h(0:1:0) \neq 0$

Input: a polynomial $f \in k[X, Y]$ defining a curve C, a point $(x, y) \in C$ Output: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

- 1. f is irreducible
- 2. (x, y) is a point of C such that y is a single root of f(x, Y)

3. $f_h(0:1:0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on C (including at infinity)

Input: a polynomial $f \in k[X, Y]$ defining a curve C, a point $(x, y) \in C$ Output: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

- 1. f is irreducible
- 2. (x, y) is a point of C such that y is a single root of f(x, Y)

3. $f_h(0:1:0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on C (including at infinity)

Integral bases tell us which functions do not have poles

Input: a polynomial $f \in k[X, Y]$ defining a curve C, a point $(x, y) \in C$ Output: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

- 1. f is irreducible
- 2. (x, y) is a point of C such that y is a single root of f(x, Y)

3. $f_h(0:1:0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on C (including at infinity)

- Integral bases tell us which functions do not have poles
- ... but only on finite parts

Input: a polynomial $f \in k[X, Y]$ defining a curve C, a point $(x, y) \in C$ Output: $t(X, Y) \in k(X)[Y]/\langle f \rangle$ parameter for C

Hypotheses:

- 1. f is irreducible
- 2. (x, y) is a point of C such that y is a single root of f(x, Y)

3. $f_h(0:1:0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on C (including at infinity)

- Integral bases tell us which functions do not have poles
- ... but only on finite parts
- ... and we need a function with 1 pole

Split the projective plane into:

- The finite plane $A := \{z \neq 0\}$
- Part of the line at infinity $B := \{x \neq 0, z = 0\}$

• The last point at infinity $C := \{(0:1:0)\}$

Split the projective plane into:

- The finite plane $A := \{z \neq 0\}$
- Part of the line at infinity $B := \{x \neq 0, z = 0\}$
- The last point at infinity $C := \{(0:1:0)\}$

Algorithm:

1. Find a function *P* with 1 pole on the finite plane *A*

Split the projective plane into:

- The finite plane $A := \{z \neq 0\}$
- Part of the line at infinity $B := \{x \neq 0, z = 0\}$
- The last point at infinity $C := \{(0:1:0)\}$

- 1. Find a function *P* with 1 pole on the finite plane *A*
- 2. Write equations characterizing functions with no pole on A

Split the projective plane into:

- The finite plane $A := \{z \neq 0\}$
- Part of the line at infinity $B := \{x \neq 0, z = 0\}$
- The last point at infinity $C := \{(0 : 1 : 0)\}$

- 1. Find a function *P* with 1 pole on the finite plane *A*
- 2. Write equations characterizing functions with no pole on A
- 3. Write equations characterizing functions with no pole on the line at infinity B

Split the projective plane into:

- The finite plane $A := \{z \neq 0\}$
- Part of the line at infinity $B := \{x \neq 0, z = 0\}$
- The last point at infinity $C := \{(0 : 1 : 0)\}$

- 1. Find a function *P* with 1 pole on the finite plane *A*
- 2. Write equations characterizing functions with no pole on A
- 3. Write equations characterizing functions with no pole on the line at infinity B
- 4. Solve them to find Q such that Q has no pole on A and P + Q has no pole on B

Split the projective plane into:

- The finite plane $A := \{z \neq 0\}$
- Part of the line at infinity $B := \{x \neq 0, z = 0\}$
- The last point at infinity $C := \{(0 : 1 : 0)\}$

- 1. Find a function *P* with 1 pole on the finite plane *A*
- 2. Write equations characterizing functions with no pole on A
- 3. Write equations characterizing functions with no pole on the line at infinity B
- 4. Solve them to find Q such that Q has no pole on A and P + Q has no pole on B
- 5. P + Q is our parameter t

• $\frac{1}{X-x}$ would be nice if it didn't have more poles

• $\frac{1}{X-x}$ would be nice if it didn't have more poles

• We want a numerator which is 0 everywhere f(x, Y) is 0, except at Y = y

• $\frac{1}{X-x}$ would be nice if it didn't have more poles

• We want a numerator which is 0 everywhere f(x, Y) is 0, except at Y = y

Construction

1. Write
$$f(x, Y) = (Y - y)g(Y)$$
 with $g(y) \neq 0$

• $\frac{1}{X-x}$ would be nice if it didn't have more poles

• We want a numerator which is 0 everywhere f(x, Y) is 0, except at Y = y

Construction

1. Write
$$f(x, Y) = (Y - y)g(Y)$$
 with $g(y) \neq 0$

2. Equations characterizing functions with no pole in A

- 1. Compute an integral basis b_0, \ldots, b_{n-1} of $k(x)[y]/\langle f \rangle$
- 2. *Q* does not have a pole in *A* iff $Q \in k[x]b_0 + \cdots + k[x]b_{n-1}$

3. Write an Ansatz $Q = \frac{\sum_{i+j \le N} a_{ij} x^i y^j}{D(x)}$ where $N \in \mathbb{N}$ and $D \in k[x]$ are "sufficiently big"

- 4. Multiply out the denominators
- 5. Use reductions (e.g. ala Gröbner) to write $DQ = \bullet(x) Db_0 + \bullet(x) Db_{n-1} + r(x, y)$
- 6. The coefficients of r are linear in the a_{ij} , set them to 0 and obtain a system of equations

- 1. Compute an local integral basis c_0, \ldots, c_{n-1} of $k(z)[y]/\langle f_z \rangle$
- 2. P + Q does not have a pole in $B \setminus A$ iff $P + Q \in k[x]_{(z)}b_0 + \cdots + k[x]_{(z)}b_{n-1}$
- 3. Forget the denominators not divisible by z
- 4. Multiply out the rest of the denominators z^d
- 5. Use reductions (e.g. ala Gröbner) to write $z^d(P+Q) = \bullet(x) z^d c_0 + \bullet(x) z^d c_{n-1} + s(x, y)$
- 6. The coefficients of s are linear in the a_{ij} , set them to 0 and obtain a system of equations

Full process

- 1. Split C into $(C \cap \{z = 1\}) \cup (C \cap \{z = 0\})$
- 2. Compute *P* with exactly one pole at finite distance

3. Write an Ansatz for
$$Q = rac{\sum_{i+j \leq N} a_{ij} x^i y^j}{D(x)}$$

- 4. Compute an integral basis of $k(x)[y]/\langle f \rangle$
- 5. Find a linear system in the a_{ij} ensuring that Q does not have a pole at finite distance
- 6. Compute an integral basis of $k(z)[y]/\langle f_z \rangle$
- 7. Find a linear system in the a_{ij} ensuring that P + Q does not have a pole at infinity
- 8. Solve the equations and find t = P + Q

Full process

- 1. Split C into $(C \cap \{z = 1\}) \cup (C \cap \{z = 0\})$
- 2. Compute *P* with exactly one pole at finite distance

3. Write an Ansatz for
$$Q = rac{\sum_{i+j \leq N} a_{ij} x^i y^j}{D(x)}$$

4. Compute an integral basis of $k(x)[y]/\langle f \rangle$

- 5. Find a linear system in the a_{ij} ensuring that Q does not have a pole at finite distance
- 6. Compute an integral basis of $k(z)[y]/\langle f_z \rangle$
- 7. Find a linear system in the a_{ij} ensuring that P + Q does not have a pole at infinity
- 8. Solve the equations and find t = P + Q
- 9. Eliminate Y from the system (T t, f) and solve in X to find x(T)
- 10. Eliminate X from the system (T t, f) and solve in Y to find y(T)