Parametrizing rational algebraic curves using integral bases

Based on a 1994 paper by Mark Van Hoeij

Thibaut Verron

Johannes Kepler University, Institute for Algebra, Linz, Austria

22 October 2020

Algebraic curves and parametrization

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Implicit representation

Algebraic curves and parametrization

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Implicit representation

$$
\left\{\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right): t \in \mathbb{R}\right\}
$$

Parametric representation

Algebraic curves and parametrization

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Implicit representation

$$
\left\{\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right): t \in \mathbb{R}\right\}
$$

Parametric representation

Algebraic curves and parametrization

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Implicit representation

Parametric representation

Parametrization algorithms:

- Sendra, Winkler 1991, 1997
- Van Hoeij 1994, 1996
- Sendra 2002...

Algebraic curves and parametrization

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Implicit representation

Parametric representation

Parametrization algorithms:

- Sendra, Winkler 1991, 1997
- Van Hoeij 1994, 1996: use integral bases
- Sendra 2002...

Integral elements in number fields

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q}

Integral elements in number fields

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q}
- All elements of K are algebraic
- Let $\beta \in K$, there exists $a_{i}, b_{i} \in \mathbb{Z}, d \in \mathbb{N}$ such that

$$
\beta^{d}=\frac{a_{0}}{b_{0}}+\frac{a_{1}}{b_{1}} \beta+\cdots+\frac{a_{d-1}}{b_{d-1}} \beta^{d-1}
$$

- The monic minimal polynomial of β is $\mu_{\beta}=X^{d}-\frac{a_{d-1}}{b_{d-1}} X^{d-1}-\cdots-\frac{a_{0}}{b_{0}} \in \mathbb{Q}[X]$ (with d minimal)

Integral elements in number fields

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q}
- All elements of K are algebraic
- Let $\beta \in K$, there exists $a_{i}, b_{i} \in \mathbb{Z}, d \in \mathbb{N}$ such that

$$
\beta^{d}=\frac{a_{0}}{b_{0}}+\frac{a_{1}}{b_{1}} \beta+\cdots+\frac{a_{d-1}}{b_{d-1}} \beta^{d-1}
$$

- The monic minimal polynomial of β is $\mu_{\beta}=X^{d}-\frac{a_{d-1}}{b_{d-1}} X^{d-1}-\cdots-\frac{a_{0}}{b_{0}} \in \mathbb{Q}[X]$ (with d minimal)
- β is integral if all the b_{i} are 1 , or equivalently if $\mu_{\beta} \in \mathbb{Z}[x]$

Integral elements in number fields

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q}
- All elements of K are algebraic
- Let $\beta \in K$, there exists $a_{i}, b_{i} \in \mathbb{Z}, d \in \mathbb{N}$ such that

$$
\beta^{d}=\frac{a_{0}}{b_{0}}+\frac{a_{1}}{b_{1}} \beta+\cdots+\frac{a_{d-1}}{b_{d-1}} \beta^{d-1}
$$

- The monic minimal polynomial of β is $\mu_{\beta}=X^{d}-\frac{a_{d-1}}{b_{d-1}} X^{d-1}-\cdots-\frac{a_{0}}{b_{0}} \in \mathbb{Q}[X]$ (with d minimal)
- β is integral if all the b_{i} are 1 , or equivalently if $\mu_{\beta} \in \mathbb{Z}[x]$
- The set \mathcal{O}_{K} of integral elements of K is called the ring of integers of K

Examples

Recall: $\beta \in \mathcal{O}_{K} \Longleftrightarrow$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\mathcal{O}_{\mathbb{Q}}=\mathbb{Z}$

Examples

Recall: $\beta \in \mathcal{O}_{K} \Longleftrightarrow$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\mathcal{O}_{\mathbb{Q}}=\mathbb{Z}$
- $\mathcal{O}_{K} \cap \mathbb{Q}=\mathbb{Z}$

Examples

Recall: $\beta \in \mathcal{O}_{K} \Longleftrightarrow$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\mathcal{O}_{\mathbb{Q}}=\mathbb{Z}$
- $\mathcal{O}_{K} \cap \mathbb{Q}=\mathbb{Z}$
- Let $K=\mathbb{Q}[i]$, then $\mathcal{O}_{K}=\mathbb{Z}[i]$

Examples

Recall: $\beta \in \mathcal{O}_{K} \Longleftrightarrow$ its monic minimal polynomial has coefficients in \mathbb{Z}

- $\mathcal{O}_{\mathbb{Q}}=\mathbb{Z}$
- $\mathcal{O}_{K} \cap \mathbb{Q}=\mathbb{Z}$
- Let $K=\mathbb{Q}[i]$, then $\mathcal{O}_{K}=\mathbb{Z}[i]$
- Let $K=\mathbb{Q}[\sqrt{5}]$, then $\varphi=\frac{1+\sqrt{5}}{2}$ is integral with $\varphi^{2}-\varphi-1=0$ and $\mathcal{O}_{K}=\mathbb{Z}[\varphi]$

Integral bases

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q} of degree n
- $\mathcal{O}_{K}=$ set of integral elements of K

Integral bases

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q} of degree n
- $\mathcal{O}_{K}=$ set of integral elements of K
- \mathcal{O}_{K} is a ring and a free \mathbb{Z} module with rank n

Integral bases

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q} of degree n
- $\mathcal{O}_{K}=$ set of integral elements of K
- \mathcal{O}_{K} is a ring and a free \mathbb{Z} module with rank n
- An integral basis of K is a basis of \mathcal{O}_{K} as a \mathbb{Z}-module

Integral bases

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q} of degree n
- $\mathcal{O}_{K}=$ set of integral elements of K
- \mathcal{O}_{K} is a ring and a free \mathbb{Z} module with rank n
- An integral basis of K is a basis of \mathcal{O}_{K} as a \mathbb{Z}-module
- Let $\mathcal{B}=\left(1, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ be an integral basis of K
- Property: $\beta \in K$ is integral if and only if the coefficients of β in \mathcal{B} are in \mathbb{Z}

Integral bases

- Let $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q} of degree n
- $\mathcal{O}_{K}=$ set of integral elements of K
- \mathcal{O}_{K} is a ring and a free \mathbb{Z} module with rank n
- An integral basis of K is a basis of \mathcal{O}_{K} as a \mathbb{Z}-module
- Let $\mathcal{B}=\left(1, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ be an integral basis of K
- Property: $\beta \in K$ is integral if and only if the coefficients of β in \mathcal{B} are in \mathbb{Z}
- Integral bases can be effectively computed (Trager, Van Hoeij)

Summary: integral bases of number fields

66 Let $K=\mathbb{Q}[X] /\langle f\rangle$ be a finite extension of \mathbb{Q} with degree n. An element $\beta \in K$ has a monic minimal polynomial $\mu \in \mathbb{Q}[X]$, and β is integral if $\mu \in \mathbb{Z}[X]$.

The set of integral elements in K is denoted by \mathcal{O}_{K}, it is a free \mathbb{Z}-module with rank n.
An integral basis of K is a basis of \mathcal{O}_{K} as a \mathbb{Z}-module.
Let $\mathcal{B}=\left\{1, b_{1}, \ldots, b_{n-1}\right\}$ be an integral basis of K and $\beta \in K$. β is integral if and only if all its coefficients in \mathcal{B} lie in \mathbb{Z}.

Integral bases of function fields

66 Let $K=k(X)[Y] /\langle f\rangle$ be a finite extension of $k(X)$ with degree n. An element $\beta \in K$ has a monic minimal polynomial $\mu \in k(X)[Y]$, and β is integral if $\mu \in k[X][Y]$.

The set of integral elements in K is denoted by \mathcal{O}_{K}, it is a free $k[X]$-module with rank n.
An integral basis of K is a basis of \mathcal{O}_{K} as a $k[X]$-module.
Let $\mathcal{B}=\left\{1, b_{1}, \ldots, b_{n-1}\right\}$ be an integral basis of K and $\beta \in K$. β is integral if and only if all its coefficients in \mathcal{B} lie in $k[X]$.

Integral algebraic functions and poles

- Let $K=k(X)[Y] /\langle f\rangle$ with f irreducible

Integral algebraic functions and poles

- Let $K=k(X)[Y] /\langle f\rangle$ with f irreducible
- Elements of K are functions (with poles) on the curve $\mathcal{C}=\left\{(x, y) \in k^{2}: f(x, y)=0\right\}$

Integral algebraic functions and poles

- Let $K=k(X)[Y] /\langle f\rangle$ with f irreducible
- Elements of K are functions (with poles) on the curve $\mathcal{C}=\left\{(x, y) \in k^{2}: f(x, y)=0\right\}$
- Property: $\beta(X, Y) \in K$ is integral if and only if β does not have any pole on \mathcal{C}

Integral algebraic functions and poles

- Let $K=k(X)[Y] /\langle f\rangle$ with f irreducible
- Elements of K are functions (with poles) on the curve $\mathcal{C}=\left\{(x, y) \in k^{2}: f(x, y)=0\right\}$
- Property: $\beta(X, Y) \in K$ is integral if and only if β does not have any pole on \mathcal{C}
- β is locally integral at x if it does not have any pole at $(x, \bullet) \in \mathcal{C}$

Integral algebraic functions and poles

- Let $K=k(X)[Y] /\langle f\rangle$ with f irreducible
- Elements of K are functions (with poles) on the curve $\mathcal{C}=\left\{(x, y) \in k^{2}: f(x, y)=0\right\}$
- Property: $\beta(X, Y) \in K$ is integral if and only if β does not have any pole on \mathcal{C}
- β is locally integral at x if it does not have any pole at $(x, \bullet) \in \mathcal{C}$
- A local integral basis of K at $X=x$ is a basis $\mathcal{B}=\left(1, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ of K such that
- All α_{i} are locally integral at x
- $\beta \in K$ is locally integral at x iff its coeffs in \mathcal{B} do not have $X-x$ at the denominator

What is parametrizing?

Data: $f(X, Y) \in k[X, Y]$ irreducible, $\mathcal{C}=\{(x, y): f(x, y)=0\}$
Goal: find $x(T), y(T) \in k(T)$ such that

- for almost all $t \in k,(x(t), y(t)) \in \mathcal{C}$
- for almost all $(x, y) \in \mathcal{C}$, there exists $t \in k$ such that $x=x(t), y=y(t)$

What is parametrizing?

Data: $f(X, Y) \in k[X, Y]$ irreducible, $\mathcal{C}=\{(x, y): f(x, y)=0\}$
Goal: find $x(T), y(T) \in k(T)$ such that

- for almost all $t \in k, f(x(t), y(t))=0$ in k
- for almost all $(x, y) \in \mathcal{C}$, there exists $t \in k$ such that $x=x(t), y=y(t)$

What is parametrizing?

Data: $f(X, Y) \in k[X, Y]$ irreducible, $\mathcal{C}=\{(x, y): f(x, y)=0\}$
Goal: find $x(T), y(T) \in k(T)$ such that

- $f(x(T), y(T))=0$ in $k(T)$
- for almost all $(x, y) \in \mathcal{C}$, there exists $t \in k$ such that $x=x(t), y=y(t)$

There is a morphism of fields:

$$
k(X)[Y] /\langle f\rangle \longrightarrow k(T)
$$

$$
Y \longmapsto y(T)
$$

What is parametrizing?

Data: $f(X, Y) \in k[X, Y]$ irreducible, $\mathcal{C}=\{(x, y): f(x, y)=0\}$
Goal: find $x(T), y(T) \in k(T)$ such that

- $f(x(T), y(T))=0$ in $k(T)$
- for almost all $(x, y) \in \mathcal{C}$, there exists a unique $t \in k$ such that $x=x(t), y=y(t)$

There is an injective morphism of fields:

$$
k(X)[Y] /\langle f\rangle \longrightarrow k(T)
$$

$$
Y \longmapsto y(T)
$$

What is parametrizing?

Data: $f(X, Y) \in k[X, Y]$ irreducible, $\mathcal{C}=\{(x, y): f(x, y)=0\}$
Goal: find $x(T), y(T) \in k(T)$ such that

- $f(x(T), y(T))=0$ in $k(T)$
- for almost all $(x, y) \in \mathcal{C}$, there exists a unique $t \in k$ such that $x=x(t), y=y(t)$

There is an isomorphism of fields:

$$
\begin{aligned}
k(X)[Y] /\langle f\rangle & \longrightarrow k(T) \\
X & \longmapsto x(T) \\
Y & \longmapsto y(T) \\
t(X, Y) & \longleftrightarrow T
\end{aligned}
$$

What is parametrizing?

Data: $f(X, Y) \in k[X, Y]$ irreducible, $\mathcal{C}=\{(x, y): f(x, y)=0\}$
Goal: find $x(T), y(T) \in k(T)$ and $t(X, Y) \in k(X)[Y] /\langle f\rangle$ such that

- $f(x(T), y(T))=0$ in $k(T)$
- $K(t(X, Y))=K(X)[Y] /\langle f\rangle$

There is an isomorphism of fields:

$$
\begin{aligned}
k(X)[Y] /\langle f\rangle & \longrightarrow k(T) \\
X & \longmapsto x(T) \\
Y & \longmapsto y(T) \\
t(X, Y) & \longleftrightarrow T
\end{aligned}
$$

Such a $t(X, Y)$ is called a parameter for the curve.

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}
Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

How to compute a parameter?

Characterization:

$t(X, Y) \in k(X)[Y] /\langle f\rangle$ is a parameter iff it has exactly one pole, with multiplicity 1 , on \mathcal{C}

Example 1

Where is the pole of t ?

Points at infinity

$$
f(x, y)=0
$$

$x y-1=0$

Points at infinity

$$
f(x, y)=0
$$

$$
\begin{aligned}
& x y-1=0 \\
& (z \neq 0)
\end{aligned} \quad x y-z^{2}=0
$$

Points at infinity

$x y-1=0$
$(z \neq 0)$
$(z \neq 0)$

$x y-z^{2}=0$

$$
\begin{gathered}
y-z^{2}=0 \\
(x \neq 0)
\end{gathered}
$$

Points at infinity

Finite plane

$x y-1=0$
$(z \neq 0)$
$x y-z^{2}=0$

$$
\begin{gathered}
y-z^{2}=0 \\
(x \neq 0)
\end{gathered}
$$

Back to example 2: pole at infinity

$\longrightarrow t \in k$

Back to example 2: pole at infinity

Back to example 2: pole at infinity

$\longrightarrow \quad t \in k$

Back to example 2: pole at infinity

Back to example 2: pole at infinity

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}, a point $(x, y) \in \mathcal{C}$
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible
2. (x, y) is a point of \mathcal{C} such that y is a single root of $f(x, Y)$

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}, a point $(x, y) \in \mathcal{C}$
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible
2. (x, y) is a point of \mathcal{C} such that y is a single root of $f(x, Y)$
3. $f_{h}(0: 1: 0) \neq 0$

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}, a point $(x, y) \in \mathcal{C}$
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible
2. (x, y) is a point of \mathcal{C} such that y is a single root of $f(x, Y)$
3. $f_{h}(0: 1: 0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on \mathcal{C} (including at infinity)

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}, a point $(x, y) \in \mathcal{C}$
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible
2. (x, y) is a point of \mathcal{C} such that y is a single root of $f(x, Y)$
3. $f_{h}(0: 1: 0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on \mathcal{C} (including at infinity)

- Integral bases tell us which functions do not have poles

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}, a point $(x, y) \in \mathcal{C}$
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible
2. (x, y) is a point of \mathcal{C} such that y is a single root of $f(x, Y)$
3. $f_{h}(0: 1: 0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on \mathcal{C} (including at infinity)

- Integral bases tell us which functions do not have poles
- ... but only on finite parts

Full problem

Input: a polynomial $f \in k[X, Y]$ defining a curve \mathcal{C}, a point $(x, y) \in \mathcal{C}$
Output: $t(X, Y) \in k(X)[Y] /\langle f\rangle$ parameter for \mathcal{C}

Hypotheses:

1. f is irreducible
2. (x, y) is a point of \mathcal{C} such that y is a single root of $f(x, Y)$
3. $f_{h}(0: 1: 0) \neq 0$

Key idea: t is a parameter iff it has exactly one pole on \mathcal{C} (including at infinity)

- Integral bases tell us which functions do not have poles
- ... but only on finite parts
- ... and we need a function with 1 pole

Overview of the algorithm

Split the projective plane into:

- The finite plane $A:=\{z \neq 0\}$
- Part of the line at infinity $B:=\{x \neq 0, z=0\}$
- The last point at infinity $C:=\{(0: 1: 0)\}$

Overview of the algorithm

Split the projective plane into:

- The finite plane $A:=\{z \neq 0\}$
- Part of the line at infinity $B:=\{x \neq 0, z=0\}$
- The last point at infinity $C:=\{(0: 1: 0)\}$

Algorithm:

1. Find a function P with 1 pole on the finite plane A

Overview of the algorithm

Split the projective plane into:

- The finite plane $A:=\{z \neq 0\}$
- Part of the line at infinity $B:=\{x \neq 0, z=0\}$
- The last point at infinity $C:=\{(0: 1: 0)\}$

Algorithm:

1. Find a function P with 1 pole on the finite plane A
2. Write equations characterizing functions with no pole on A

Overview of the algorithm

Split the projective plane into:

- The finite plane $A:=\{z \neq 0\}$
- Part of the line at infinity $B:=\{x \neq 0, z=0\}$
- The last point at infinity $C:=\{(0: 1: 0)\}$

Algorithm:

1. Find a function P with 1 pole on the finite plane A
2. Write equations characterizing functions with no pole on A
3. Write equations characterizing functions with no pole on the line at infinity B

Overview of the algorithm

Split the projective plane into:

- The finite plane $A:=\{z \neq 0\}$
- Part of the line at infinity $B:=\{x \neq 0, z=0\}$
- The last point at infinity $C:=\{(0: 1: 0)\}$

Algorithm:

1. Find a function P with 1 pole on the finite plane A
2. Write equations characterizing functions with no pole on A
3. Write equations characterizing functions with no pole on the line at infinity B
4. Solve them to find Q such that Q has no pole on A and $P+Q$ has no pole on B

Overview of the algorithm

Split the projective plane into:

- The finite plane $A:=\{z \neq 0\}$
- Part of the line at infinity $B:=\{x \neq 0, z=0\}$
- The last point at infinity $C:=\{(0: 1: 0)\}$

Algorithm:

1. Find a function P with 1 pole on the finite plane A
2. Write equations characterizing functions with no pole on A
3. Write equations characterizing functions with no pole on the line at infinity B
4. Solve them to find Q such that Q has no pole on A and $P+Q$ has no pole on B
5. $P+Q$ is our parameter t
6. Finding a function with one pole

1. Finding a function with one pole

- $\frac{1}{X-x}$ would be nice if it didn't have more poles

1. Finding a function with one pole

- $\frac{1}{X-x}$ would be nice if it didn't have more poles
- We want a numerator which is 0 everywhere $f(x, Y)$ is 0 , except at $Y=y$

1. Finding a function with one pole

- $\frac{1}{X-x}$ would be nice if it didn't have more poles
- We want a numerator which is 0 everywhere $f(x, Y)$ is 0 , except at $Y=y$

Construction

1. Write $f(x, Y)=(Y-y) g(Y)$ with $g(y) \neq 0$

1. Finding a function with one pole

- $\frac{1}{X-x}$ would be nice if it didn't have more poles
- We want a numerator which is 0 everywhere $f(x, Y)$ is 0 , except at $Y=y$

Construction

1. Write $f(x, Y)=(Y-y) g(Y)$ with $g(y) \neq 0$
2. P is $\frac{g(Y)}{X-x}$

2. Equations characterizing functions with no pole in A

1. Compute an integral basis b_{0}, \ldots, b_{n-1} of $k(x)[y] /\langle f\rangle$
2. Q does not have a pole in A iff $Q \in k[x] b_{0}+\cdots+k[x] b_{n-1}$
3. Write an Ansatz $Q=\frac{\sum_{i+j \leq N} a_{i j} x^{i} y^{j}}{D(x)}$ where $N \in \mathbb{N}$ and $D \in k[x]$ are "sufficiently big"
4. Multiply out the denominators
5. Use reductions (e.g. ala Gröbner) to write $D Q=\bullet(x) D b_{0}+\bullet(x) D b_{n-1}+r(x, y)$
6. The coefficients of r are linear in the $a_{i j}$, set them to 0 and obtain a system of equations

3. Equations characterizing functions with no poles in B

1. Compute an local integral basis c_{0}, \ldots, c_{n-1} of $k(z)[y] /\left\langle f_{z}\right\rangle$
2. $P+Q$ does not have a pole in $B \backslash A$ iff $P+Q \in k[x]_{(z)} b_{0}+\cdots+k[x]_{(z)} b_{n-1}$
3. Forget the denominators not divisible by z
4. Multiply out the rest of the denominators z^{d}
5. Use reductions (e.g. ala Gröbner) to write $z^{d}(P+Q)=\bullet(x) z^{d} c_{0}+\bullet(x) z^{d} c_{n-1}+s(x, y)$
6. The coefficients of s are linear in the $a_{i j}$, set them to 0 and obtain a system of equations

Full process

1. Split \mathcal{C} into $(\mathcal{C} \cap\{z=1\}) \cup(\mathcal{C} \cap\{z=0\})$
2. Compute P with exactly one pole at finite distance
3. Write an Ansatz for $Q=\frac{\sum_{i+j \leq N} a_{i j} x^{i} y^{j}}{D(x)}$
4. Compute an integral basis of $k(x)[y] /\langle f\rangle$
5. Find a linear system in the $a_{i j}$ ensuring that Q does not have a pole at finite distance
6. Compute an integral basis of $k(z)[y] /\left\langle f_{z}\right\rangle$
7. Find a linear system in the $a_{i j}$ ensuring that $P+Q$ does not have a pole at infinity
8. Solve the equations and find $t=P+Q$

Full process

1. Split \mathcal{C} into $(\mathcal{C} \cap\{z=1\}) \cup(\mathcal{C} \cap\{z=0\})$
2. Compute P with exactly one pole at finite distance
3. Write an Ansatz for $Q=\frac{\sum_{i+j \leq N} a_{i j} x^{i} y^{j}}{D(x)}$
4. Compute an integral basis of $k(x)[y] /\langle f\rangle$
5. Find a linear system in the $a_{i j}$ ensuring that Q does not have a pole at finite distance
6. Compute an integral basis of $k(z)[y] /\left\langle f_{z}\right\rangle$
7. Find a linear system in the $a_{i j}$ ensuring that $P+Q$ does not have a pole at infinity
8. Solve the equations and find $t=P+Q$
9. Eliminate Y from the system $(T-t, f)$ and solve in X to find $x(T)$
10. Eliminate X from the system $(T-t, f)$ and solve in Y to find $y(T)$
