Signature Gröbner bases over Tate algebras

Xavier Caruso ${ }^{1} \quad$ Tristan Vaccon ${ }^{2} \quad$ Thibaut Verron ${ }^{3}$

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
2. Université de Limoges, CNRS, XLIM, Limoges, France
3. Johannes Kepler University, Institute for Algebra, Linz, Austria

Seminar Algebra and Discrete Mathematics, 30 January 2020
12 March 2020
26 March 2020

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.01 X-1$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.01 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

$$
\begin{aligned}
& f=X^{2} \\
& (-100 \mathrm{Xg} \\
& 100 X \\
& (-10000 g \\
& 10000
\end{aligned}
$$

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \not \approx 0$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.0001 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

$$
\begin{aligned}
& f=X^{2} \\
& (-10000 X g \\
& 10000 X \\
& (-10000000 \\
& 100000000
\end{aligned}
$$

- It terminates, but...
- $g \simeq 1, \operatorname{but} f \bmod g \neq 0$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.000001 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

$$
\begin{aligned}
& f=X^{2} \\
& (-1000000 \mathrm{Xg} \\
& 1000000 \mathrm{X} \\
& (-1000000000000 g \\
& 1000000000000
\end{aligned}
$$

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \nsucceq 0$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.01 X-1$ $\mathrm{LT}(g)$
- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \not \approx 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.01 X^{3} \\
& \left(+0.01 X^{3} g\right. \\
& 0.0001 X^{4} \\
& \ldots \\
& \ldots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.0001 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \nsucceq 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.0001 X^{3} \\
& \left(+0.0001 X^{3} g\right. \\
& 0.00000001 X^{4} \\
& \ldots \\
& \cdots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.000001 X-1$

$$
\mathrm{LT}(\mathrm{~g})
$$

- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \nsucceq 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.000001 X^{3} \\
& \left(+0.000001 X^{3} g\right. \\
& 0.000000000001 X^{4} \\
& \ldots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.000001 X-1$
- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \neq 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& g .000001 X^{3} \\
& \left(+0.000001 X^{3} g\right. \\
& 0.000000000001 X^{4} \\
& \ldots \\
& \ldots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0
- This work: make sense of this process for convergent power series in $\mathbb{Z}_{p}[[X]]$

Valued fields and rings: basic definitions

Valuation: function val : $k \rightarrow \mathbb{Z} \cup\{\infty\}$ with:
$-\operatorname{val}(a)=\infty \Longleftrightarrow a=0$

- $\operatorname{val}(a b)=\operatorname{val}(a)+\operatorname{val}(b)$

\circ	\circ
	\circ
$a \cdot b=$	$a b$
0	

- $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$

Examples of valued fields and rings

Ring $K^{\circ} \underset{\text { val } \geq 0}{\rightleftarrows}$ Frac $K \quad$ Uniformizer $\pi \quad$ Residue field $K^{\circ} / \pi \quad$ Complete

$\mathbb{Z}_{(p)}$	\mathbb{Q}	p prime	\mathbb{F}_{p}	\times
\mathbb{Z}_{p}	\mathbb{Q}_{p}	p prime	\mathbb{F}_{p}	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x-\alpha$	\mathbb{C}	\times
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x-\alpha$	\mathbb{C}	\checkmark

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- Complete rings and fields: $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}[[x-\alpha]], \mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\begin{gathered}
\vdots \\
\vdots \\
\sum_{n=0}^{0} a_{n}=a_{0}
\end{gathered}
$$

Examples of valued fields and rings

Ring $K^{\circ} \underset{\text { val } \geq 0}{\rightleftarrows}$ Frac $K \quad$ Uniformizer $\pi \quad$ Residue field $K^{\circ} / \pi \quad$ Complete

$\mathbb{Z}_{(p)}$	\mathbb{Q}	p prime	\mathbb{F}_{p}	\times
\mathbb{Z}_{p}	\mathbb{Q}_{p}	p prime	\mathbb{F}_{p}	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x-\alpha$	\mathbb{C}	\times
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x-\alpha$	\mathbb{C}	\checkmark

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- Complete rings and fields: $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}[[x-\alpha]], \mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\begin{gathered}
\vdots \\
\vdots \\
\sum_{n=0}^{1} a_{n}=a_{0}+a_{1}
\end{gathered}
$$

Examples of valued fields and rings

Ring $K^{\circ} \underset{\text { val } \geq 0}{\rightleftarrows}$ Frac $K \quad$ Uniformizer $\pi \quad$ Residue field $K^{\circ} / \pi \quad$ Complete

$\mathbb{Z}_{(p)}$	\mathbb{Q}	p prime	\mathbb{F}_{p}	\times
\mathbb{Z}_{p}	\mathbb{Q}_{p}	p prime	\mathbb{F}_{p}	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x-\alpha$	\mathbb{C}	\times
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x-\alpha$	\mathbb{C}	\checkmark

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- Complete rings and fields: $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}[[x-\alpha]], \mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

Examples of valued fields and rings

Ring $K^{\circ} \underset{\text { val } \geq 0}{\rightleftarrows}$ Frac $K \quad$ Uniformizer $\pi \quad$ Residue field $K^{\circ} / \pi \quad$ Complete

$\mathbb{Z}_{(p)}$	\mathbb{Q}	p prime	\mathbb{F}_{p}	\times
\mathbb{Z}_{p}	\mathbb{Q}_{p}	p prime	\mathbb{F}_{p}	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x-\alpha$	\mathbb{C}	\times
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x-\alpha$	\mathbb{C}	\checkmark

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- Complete rings and fields: $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}[[x-\alpha]], \mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

Examples of valued fields and rings

Ring $K^{\circ} \underset{\text { val } \geq 0}{\rightleftarrows}$ Frac $K \quad$ Uniformizer $\pi \quad$ Residue field $K^{\circ} / \pi \quad$ Complete

$\mathbb{Z}_{(p)}$	\mathbb{Q}	p prime	\mathbb{F}_{p}	\times
\mathbb{Z}_{p}	\mathbb{Q}_{p}	p prime	\mathbb{F}_{p}	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x-\alpha$	\mathbb{C}	\times
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x-\alpha$	\mathbb{C}	\checkmark

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- Complete rings and fields: $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}[[x-\alpha]], \mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\begin{array}{ccc}
\bullet & \ddots & \ddots \\
\bullet & \ddots & \circ \\
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots
\end{array}
$$

Examples of valued fields and rings

$\mathbb{Z}_{(p)}$	\mathbb{Q}	p prime	\mathbb{F}_{p}	\times
\mathbb{Z}_{p}	\mathbb{Q}_{p}	p prime	\mathbb{F}_{p}	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x-\alpha$	\mathbb{C}	\times
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x-\alpha$	\mathbb{C}	\checkmark

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- Complete rings and fields: $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}[[x-\alpha]], \mathbb{C}((x-\alpha))$
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\begin{gathered}
\bullet \\
\vdots \\
\vdots \\
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots
\end{gathered}
$$

Tate Series

$$
\mathbf{X}=X_{1}, \ldots, X_{n}
$$

Definition

- $K\{\mathbf{X}\}^{\circ}=$ ring of series in \mathbf{X} with coefficients in K° converging for all $\mathbf{x} \in K^{\circ}$
$=$ ring of power series whose general coefficients tend to 0

Motivation

- Introduced by Tate in 1971 for rigid geometry
(p-adic equivalent of the bridge between algebraic and analytic geometry over \mathbb{C})

Examples

- Polynomials (finite sums are convergent)
$\infty \quad \bullet \quad \bullet \quad \bullet \quad 0 \quad 0 \quad 0 \quad 0$

- Not a Tate series: $\sum_{i=0}^{\infty} X^{i}=1+1 X+1 X^{2}+1 X^{3}+\cdots$
- $F \in \mathbb{C}[[Y]][[\mathbf{X}]]$ is a Tate series $\Longleftrightarrow F \in \mathbb{C}[\mathbf{X}][[Y]]$

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:
$\cdots<\pi^{2} \mathbf{X}^{\mathbf{i}_{3}}<\pi \cdot 1<\pi{ }^{\circ}$

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term
- Isomorphism $K\{\mathbf{X}\}^{\circ} /\langle\pi\rangle \simeq \mathbb{F}[\mathbf{X}]$

$$
f \mapsto \bar{f}
$$

compatible with the term order

$$
\begin{aligned}
& \left.\begin{array}{cc}
\mathrm{LT}(f) \\
\vdots & \ddots \\
\vdots & \ddots
\end{array}\right) \\
& \bar{f}=\overline{a_{2}} X Y+\overline{a_{1}} X \\
& a_{2} X Y+a_{1} X \\
& \vdots
\end{aligned}
$$

Gröbner bases

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

Gröbner bases

- Standard definition once the term order is defined:

$$
G \text { is a Gröbner basis of } I \Longleftrightarrow \text { for all } f \in I \text {, there is } g \in G \text { s.t. } \operatorname{LT}(g) \text { divides } \operatorname{LT}(f)
$$

- Standard equivalent characterizations and a surprising one:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

If I is saturated:

$$
\pi f \in I \Longrightarrow f \in I
$$

4. \bar{G} is a Gröbner basis of \bar{l} in the sense of $\mathbb{F}[\mathbf{X}]$

Gröbner bases

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations and a surprising one:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

If I is saturated:

$$
\pi f \in I \Longrightarrow f \in I
$$

4. \bar{G} is a Gröbner basis of \bar{l} in the sense of $\mathbb{F}[\mathbf{X}]$

- Every Tate ideal has a finite Gröbner basis
- It can be computed using the usual algorithms (reduction, Buchberger, F_{4})
- In practice, the algorithms run with finite precision and without loss of precision

Buchberger's algorithm

1. $G \leftarrow\left\{f_{1}, \ldots, f_{m}\right\}$
2. $B \leftarrow\left\{\mathrm{~S}\right.$-pol of g_{1} and g_{2} for $\left.g_{1}, g_{2} \in G\right\}$
3. While $B \neq \varnothing$:
4. Pop v from B
5. $w \leftarrow$ reduction of v modulo G
6. If $w=0$:
7. Pass
8. Else:
9. $B \leftarrow B \cup\{\mathrm{~S}$-pol of w and g for $g \in G\}$
10. $G \leftarrow G \cup\{w\}$
11. Return G

What about valued fields?

- Recall: $K=$ fraction field of K°
\mathbb{Q}_{p}
$\mathbb{C}((X))$

- Elements are $\frac{b}{\pi^{k}}$ with $b \in K^{\circ}, k \in \mathbb{N}$
- The valuation can be negative but not infinite

$$
\begin{aligned}
& a=a_{-3} \pi^{-3}+a_{-2} \pi^{-2}+\ldots \\
& \text { \} } \operatorname{val}(a)=-3
\end{aligned}
$$

- Same metric, same topology as K°

What about valued fields?

- Recall: $K=$ fraction field of K°
\mathbb{Q}_{p}
$\mathbb{C}((X))$
- Elements are $\frac{b}{\pi^{k}}$ with $b \in K^{\circ}, k \in \mathbb{N}$
- The valuation can be negative but not infinite

$$
\begin{aligned}
& a=a_{-3} \pi^{-3}+a_{-2} \pi^{-2}+\ldots \\
& \vdots \operatorname{val}(a)=-3
\end{aligned}
$$

- Same metric, same topology as K°
- Tate series can be defined as in the integer case
- Same order, same definition of Gröbner bases
- Main difference: πX now divides X

- Another surprising equivalence

1. G is a normalized $G B$ of $I \quad \forall g \in G, \mathrm{LC}(g)=1$ (in part., $G \subset K\{\mathbf{X}\}^{\circ}$)
2. $G \subset K\{\mathbf{X}\}^{\circ}$ is a $G B$ of $I \cap K\{\mathbf{X}\}^{\circ}$

- In practice, we emulate computations in $K\{\mathbf{X}\}^{\circ}$ in order to avoid losses of precision (and the ideal is saturated)

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

Example with a S-polynomial

$$
p=p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+\cdots+p_{m} f_{m} \quad q=q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+\cdots+q_{m} f_{m}
$$

$$
\mathrm{S}-\operatorname{Pol}(p, q)=\mu p-\nu q
$$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]

Example with a S-polynomial

$$
\begin{array}{ll}
p=p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+\cdots+p_{m} f_{m} & q=q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+\cdots+q_{m} f_{m} \\
\mathbf{p}=p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+p_{m} \mathbf{e}_{m} & \mathbf{q}=q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l}+\cdots+q_{m} \mathbf{e}_{m}
\end{array}
$$

$\mathrm{S}-\operatorname{Pol}(p, q)=\mu p-\nu q$
$\operatorname{S-Pol}(\mathbf{p}, \mathbf{q})=\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+p_{m} \mathbf{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}+\cdots+q_{m} \mathbf{e}_{m}\right)$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- $2^{\text {nd }}$ idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$
\begin{aligned}
& p=p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+\cdots+0 f_{m} \\
& \mathbf{p}=p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}
\end{aligned}
$$

$$
q=q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}
$$

$$
\mathbf{q}=q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l}
$$

$$
=\operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}+\text { smaller terms }
$$

$$
\begin{aligned}
\operatorname{S-Pol}(p, q) & =\mu p-\nu q \\
\operatorname{S-Pol}(\mathbf{p}, \mathbf{q}) & =\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}\right. \\
& =\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}-\nu \operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}+\text { smaller terms }
\end{aligned}
$$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- $2^{\text {nd }}$ idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$
\begin{aligned}
p & =p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+\cdots+0 f_{m} \\
\mathbf{p} & =p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e} \\
& =\operatorname{LT}\left(p_{k}\right) \mathbf{e}_{k}+\text { smaller terms }
\end{aligned}
$$

$$
\begin{aligned}
q & =q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+ \\
\mathbf{q} & =q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l}+ \\
& =\operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}+\text { smaller terms }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{S-Pol}(p, q) & =\mu p-\nu q \\
\operatorname{S-Pol}(\mathbf{p}, \mathbf{q}) & =\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}\right. \\
& =\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}-\nu \mathrm{LT}\left(q_{l}\right) \mathbf{e}_{l}+\text { smaller terms } \\
& =\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}+\text { smaller terms } \quad \text { if } \mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k} \ngtr \nu \mathrm{LT}\left(q_{l}\right) \mathbf{e}_{l}
\end{aligned}
$$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- $2^{\text {nd }}$ idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$
\begin{aligned}
p & =p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+ \\
\mathbf{p} & =p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k} \\
& =\operatorname{LT}\left(p_{k}\right) \mathbf{e}_{k}+\text { smaller terms }
\end{aligned}
$$

$$
\begin{aligned}
q & =q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+ \\
\mathbf{q} & =q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l}+ \\
& =\operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}+\text { smaller terms }
\end{aligned}
$$

```
s}(p)= signature of 
```

$$
\begin{align*}
& \operatorname{S-Pol}(p, q)=\mu p-\nu q \\
& \operatorname{S-Pol}(\mathbf{p}, \mathbf{q})=\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}\right. \tag{m}
\end{align*}
$$

$$
=\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}-\nu \mathrm{LT}\left(q_{l}\right) \mathbf{e}_{l}+\text { smaller terms }
$$

$$
=\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}+\text { smaller terms } \quad \text { if } \mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k} \geqslant \nu \mathrm{LT}\left(q_{l}\right) \mathbf{e}_{l} \quad \text { Regular S-polynomial }
$$

Buchberger's algorithm, with signatures

1. $G \leftarrow\left\{\left(\mathbf{e}_{1}, f_{1}\right), \ldots,\left(\mathbf{e}_{m}, f_{m}\right)\right\}$
2. $B \leftarrow\left\{\mathrm{~S}\right.$-pol of p_{1} and p_{2} for $\left.p_{1}, p_{2} \in G\right\}$
3. While $B \neq \varnothing$:
4. $\operatorname{Pop}(\mathbf{u}, v)$ from B with smallest \mathbf{u}
5. $\quad w \leftarrow$ regular reduction of (\mathbf{u}, v) modulo G
6. If $w=0$:
7. Pass
8. Else:
9. $B \leftarrow B \cup\{$ regular S-pol of (\mathbf{u}, w) and p for $p \in G\}$
10. $G \leftarrow G \cup\{(\mathbf{u}, w)\}$
11. Return G

Buchberger's algorithm, with signatures

1. $G \leftarrow\left\{\left(\mathbf{e}_{1}, f_{1}\right), \ldots,\left(\mathbf{e}_{m}, f_{m}\right)\right\}$
2. $B \leftarrow\left\{\mathrm{~S}\right.$-pol of p_{1} and p_{2} for $\left.p_{1}, p_{2} \in G\right\}$
3. While $B \neq \varnothing$:
4. $\operatorname{Pop}(\mathbf{u}, v)$ from B with smallest \mathbf{u}

Need to order the signatures!
5. $\quad w \leftarrow$ regular reduction of (\mathbf{u}, v) modulo G
6. If $w=0$:
7. Pass
8. Else:
9. $B \leftarrow B \cup\{$ regular S-pol of (\mathbf{u}, w) and p for $p \in G\}$
10.

$$
G \leftarrow G \cup\{(\mathbf{u}, w)\}
$$

11. Return G

Signature orderings

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Examples (polynomial case):

- $\mu \mathbf{e}_{i}<_{\text {pot }} \nu \mathbf{e}_{j} \Longleftrightarrow i<j$, or if equal, $\mu<\nu$
Position over Term
$-\mu \mathbf{e}_{i}<_{\text {top }} \nu \mathbf{e}_{j} \Longleftrightarrow \mu<\nu$, or if equal, $i<j$

> Term over Position

- $\mu \mathbf{e}_{i}<_{\text {dopot }} \nu \mathbf{e}_{j} \Longleftrightarrow \operatorname{deg}(p)<\operatorname{deg}(q)$, or if equal, $i<j$, or if equal, $\mu<\nu$ Degree over Position over Term

Signature orderings

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Examples (polynomial case):

- $\mu \mathbf{e}_{i}<_{\text {pot }} \nu \mathbf{e}_{j} \Longleftrightarrow i<j$, or if equal, $\mu<\nu$ Position over Term
$-\mu \mathbf{e}_{i}<_{\text {top }} \nu \mathbf{e}_{j} \Longleftrightarrow \mu<\nu$, or if equal, $i<j$ Term over Position
- Theoretically convenient
- Incremental
- Rarely the most efficient
- Better in practice
- Theoretically complicated
- $\mu \mathbf{e}_{i}<_{\text {dopot }} \nu \mathbf{e}_{j} \Longleftrightarrow \operatorname{deg}(p)<\operatorname{deg}(q)$, or if equal, $i<j$, or if equal, $\mu<\nu$ Degree over Position over Term
- "F5-ordering" for homogeneous systems and degree order
- Avoid going too high in degree, still incremental
- Best of both worlds

Buchberger's algorithm, incremental variant

1. $Q \leftarrow\left(f_{1}, \ldots, f_{m}\right)$
2. $G \leftarrow \varnothing$
3. For $f \in Q$
4. $G \leftarrow G \cup\{f\}$
5. $\quad B \leftarrow\{\mathrm{~S}$-pol of f and g for $g \in G\}$
6. While $B \neq \varnothing$:
7. Pop v from B
8. $\quad w \leftarrow$ reduction of v modulo G
9. If $w=0$:
10. Pass
11. Else:
12.

$$
B \leftarrow B \cup\{S \text {-pol of } w \text { and } g \text { for } g \in G\}
$$

13.

$$
G \leftarrow G \cup\{w\}
$$

14. Return G

Signature orderings for Tate series

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Orders for Tate series:

- $\mu \mathbf{e}_{i}<_{\text {pot }} \nu \mathbf{e}_{j} \Longleftrightarrow i<j$, or if equal, $\mu<\nu$ Position over Term
- $\mu \mathbf{e}_{i}<_{\text {top }} \nu \mathbf{e}_{j} \Longleftrightarrow \mu<\nu$, or if equal, $i<j$ Term over Position
- Theoretically convenient
- Incremental
- Rarely the most efficient
- Better in practice
- Theoretically complicated

Signature-based algorithm, PoT ordering

1. $Q \leftarrow\left(f_{1}, \ldots, f_{m}\right)$
2. $G \leftarrow \varnothing$
3. For $f \in Q$
4. $\left.G_{S} \leftarrow\left\{(0, g): g \in G_{S}\right\} \cup\{1, f)\right\}$
5. $\quad B \leftarrow\left\{\mathrm{~S}\right.$-pol of $(1, f)$ and p for $\left.p \in G_{S}\right\}$
6. While $B \neq \varnothing$:
7. $\operatorname{Pop}(u, v)$ from B with smallest u
8. $w \leftarrow$ regular reduction of (u, v) modulo $G s$
9. If $w=0$:
10.
11. Else:
12. $B \leftarrow B \cup\left\{\right.$ regular S-pol of (u, w) and p for $\left.p \in G_{S}\right\}$
13. $G_{S} \leftarrow G_{S} \cup\{(u, w)\}$
14. $G \leftarrow\left\{v:(u, v) \in G_{S}\right\}$
15. Return G

Signature-based algorithm, PoT ordering

1. $Q \leftarrow\left(f_{1}, \ldots, f_{m}\right)$
2. $G \leftarrow \varnothing$
3. For $f \in Q$
4. $\left.\quad G_{S} \leftarrow\left\{(0, g): g \in G_{S}\right\} \cup\{1, f)\right\}$ Incremental order: only the last coefficient matters
5. $\quad B \leftarrow\left\{\mathrm{~S}\right.$-pol of $(1, f)$ and p for $\left.p \in G_{S}\right\}$
6. While $B \neq \varnothing$:
7. $\operatorname{Pop}(u, v)$ from B with smallest u
8. $w \leftarrow$ regular reduction of (u, v) modulo G_{s}
9. If $w=0$:
10.
11. Else:
12. $B \leftarrow B \cup\left\{\right.$ regular S-pol of (u, w) and p for $\left.p \in G_{s}\right\}$
13. $G_{S} \leftarrow G_{S} \cup\{(u, w)\}$
14. $G \leftarrow\left\{v:(u, v) \in G_{S}\right\} \quad$ Throwing away the signatures
15. Return G

Signature orderings for Tate series

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Orders for Tate series:

- $\mu \mathbf{e}_{i}<_{\text {pot }} \nu \mathbf{e}_{j} \Longleftrightarrow i<j$, or if equal, $\mu<\nu$ Position over Term
- $\mu \mathbf{e}_{i}<_{\text {top }} \nu \mathbf{e}_{j} \Longleftrightarrow \mu<\nu$, or if equal, $i<j$ Term over Position
- Theoretically convenient
- Incremental
- Rarely the most efficient
- Better in practice
- Theoretically complicated
- $\mu \mathbf{e}_{i}<_{\text {vopot }} \nu \mathbf{e}_{j} \Longleftrightarrow \operatorname{val}(p)<\operatorname{val}(q)$, or if equal, $i<j$, or if equal, $\mu<\nu$ Valuation over Position over Term
- Analogue of the F5 ordering for the valuation
- Allows to delay (or avoid) high valuation computations

Signature-based algorithm, VoPoT ordering

1. $Q \leftarrow\left(f_{1}, \ldots, f_{m}\right)$
2. $G \leftarrow \varnothing$
3. While $\exists f \in Q$ with smallest valuation:
4. $\left.G_{S} \leftarrow\left\{(0, g): g \in G_{S}\right\} \cup\{1, f)\right\}$
5. $\quad B \leftarrow\left\{\mathrm{~S}\right.$-pol of $(1, f)$ and p for $\left.p \in G_{S}\right\}$
6. While $B \neq \varnothing$:
7. $\quad \operatorname{Pop}(u, v)$ from B with smallest u
8. $w \leftarrow$ regular reduction of (u, v) modulo $G s$
9. If $\operatorname{val}(w)>\operatorname{val}(f)$:
10. $Q \leftarrow Q \cup\{w\}$
11. Else:
12.
13.

$$
\begin{aligned}
& \text { 12. } \quad B \leftarrow B \cup\left\{\text { regular S-pol of }(u, w) \text { and } p \text { for } p \in G_{S}\right\} \\
& \text { 13. } \\
& \text { 14. } G \leftarrow\left\{v:(u, v) \in G_{S}\right\}
\end{aligned}
$$

15. Return G

Signature-based algorithm, VoPoT ordering

1. $Q \leftarrow\left(f_{1}, \ldots, f_{m}\right)$
2. $G \leftarrow \varnothing$
3. While $\exists f \in Q$ with smallest valuation: Order by valuation first
4. $\left.G_{S} \leftarrow\left\{(0, g): g \in G_{S}\right\} \cup\{1, f)\right\} \quad$ then incremental
5. $\quad B \leftarrow\left\{\mathrm{~S}\right.$-pol of $(1, f)$ and p for $\left.p \in G_{S}\right\}$
6. While $B \neq \varnothing$:
7. $\operatorname{Pop}(u, v)$ from B with smallest u
8. $w \leftarrow$ regular reduction of (u, v) modulo $G s$
9. If $\operatorname{val}(w)>\operatorname{val}(f)$:
10. $Q \leftarrow Q \cup\{w\}$
11. Else:
12.
13.

$$
B \leftarrow B \cup\left\{\text { regular } S \text {-pol of }(u, w) \text { and } p \text { for } p \in G_{S}\right\}
$$

$$
G_{S} \leftarrow G_{S} \cup\{(u, w)\}
$$

14. $G \leftarrow\left\{v:(u, v) \in G_{s}\right\}$
15. Return G

Conclusion and perspectives

What we presented here

- Tate series = formal power series appearing in algebraic geometry
- Definitions of Gröbner bases for Tate series
- Algorithms for computing and using those Gröbner bases (also with signatures)
- Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)

Extensions

- Tate series with convergence radius different from 1 (integer or rational log)

Perspectives

- Faster reduction: algorithms for local monomial orderings and standard bases (Mora)

Conclusion and perspectives

What we presented here

- Tate series = formal power series appearing in algebraic geometry
- Definitions of Gröbner bases for Tate series
- Algorithms for computing and using those Gröbner bases (also with signatures)
- Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)

Extensions

- Tate series with convergence radius different from 1 (integer or rational log)

Perspectives

- Faster reduction: algorithms for local monomial orderings and standard bases (Mora)

Thank you for your attention!

More information and references:

- Xavier Caruso, Tristan Vaccon and Thibaut Verron (2019). 'Gröbner bases over Tate algebras'. In: ISSAC'19, arXiv:1901.09574. arXiv: 1901.09574 [math.AG]
- Xavier Caruso, Tristan Vaccon and Thibaut Verron (Feb. 2020). 'Signature-based algorithms for Gröbner bases over Tate algebras'. In: URL: https://hal .archives-ouvertes.fr/hal-02473665 [preprint]

