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Non-linear modelization and computer algebra

Applications CryptographyRobotics Dynamical systems . . .

System of polynomial
equations (and inequations)

Solutions

Many tools:
I Numeric

I Ex: Newton iteration, homotopy...
I Trade precision for speed

I Computer Algebra
I Ex: Resultants, Gröbner bases...
I Exact, exhaustive and certifiable

I Hybrid
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Generic and structured systems

Goal: exact, exhaustive and certified results
I Replace or supplement numeric calculations with symbolic manipulations
I Di�iculty: intrinsic complexity of the objects being computed

Examples:
I NP-complete problem over finite fields
I Bézout bound: number of solutions exponential (product of the degrees)
I Worst case: doubly exponential space complexity [Mayr, Meyer 1984]

I For generic system, singly exponential bounds (time and space)

In practice, systems from applications are...
I ... not generic
I ... not instances of the worst case complexity

Key question: identify underlying structures to recover the generic complexity
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An example: algebraic classification for magnetic resonance imagery
(With B. Bonnard, J.-C. Faugère, A. Jacquemard and M. Safey El Din)

I Context: Magnetic Resonance Imagery
I Goal: optimize contrast

Bad contrast Optimized

I Optimal control approach: the Bloch model


d
dt

yi = −Γi yi − u zi

d
dt

zi = −γi (1− zi ) + u yi

(i = 1, 2, . . . , n)

yi, zi : 2n dynamic variables

Bloch ball: y2
i + z2

i ≤ 1

u : control function

γi, Γi : 2n physical parameters
fixed by the experimental se�ing
γi > 0, Γi > 0, 2 Γi ≥ γi
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Semi-algebraic classification problem for MRI

Problem: classification of optimal trajectories
I Control of a single particle: done
I For two particles: more complicated
I Classify some algebraic invariants instead
I Used for choosing simulations to run

SATURATION PAIR OF SPINS AND MRI 15

in the figure), by the horizontal singular segment Σ2 between the points S1 and
S3, the switching locus Σ3 due to the saturation phenomenon and by the part of
the vertical singular direction between S′2 and O (the Σ4 segment), S′2 being the
extremity of the bridge on y = 0. The bang arc with u = −1 starting from S1

splits the domain in two sub-domains, one with a bang-bang policy and the other
containing a non trivial singular arc.

We have, as a corollary, that in this case, the optimal strategy to steer the system
from the North Pole to the origin in minimum time is of the form σN+ σ

h
s σ

b
+σ

v
s , where

σhs and σvs denote respectively horizontal and vertical singular arcs, and where σb+
is the bridge.

Remark 4. Note that the switching locus has a complex structure, but due to the
symmetry, all the cut points, i.e. the first points where the extremal trajectories
cease to be optimal, are on the vertical z-axis where two symmetric solutions starting
respectively on the left and right part of the Bloch ball intersect at the same time.
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Figure 6. Schematic time minimal synthesis to steer a single
spin system from the North Pole N to any point of the Bloch ball
in the reachable set, for parameters (Γ, γ) ∈ C. An arbitrary zoom
has been used to construct the figure. The set of Σi forms the
switching surface Σ dividing the +1 and −1 areas respectively in
red and blue. The minimal time trajectory to steer the spin from N
to O is NS1S2S

′
2O, i.e. it is of the form σN+ σ

h
s σ

b
+σ

v
s with horizontal

σhs and vertical σvs singular arcs. The spin leaves the horizontal
singular arc before the point S3 (where the control saturates the
constraint) producing a bridge σb+ to reach the vertical singular
line.

3.7. The optimal synthesis in the sub-domains B. For the optimal synthesis
in the sub-domain B, we have the following: the parameters satisfy 0 < 3γ < 2Γ, the
point S′3 is below the origin O and there exist S1 and S2 such that S2 < S1 ≤ S3, i.e.
we are in the situation of the right sub-graph of Fig. 2. In this case, the horizontal
singular line cuts the Bloch ball in the domain −1 < z < 0 and still plays a role.

Example of algebraic invariant:
I Linked to equilibrium points
I Equations:

V =

{
D =

∂D
∂y1

=
∂D
∂z1

=
∂D
∂y2

=
∂D
∂z2

= 0
}

I D : determinant of 4 vector fields
I Inequalities: B =

{
y2
i + z2

i ≤ 1
}

I Classification question: real points of V ∩ B
depending on γi, Γi

B

Γ

X
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2
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Results for the MRI classification problem

State of the art:
I Existing tools can’t solve the problem e�iciently
I 1000s on the case of water (easier: γ1=Γ1=1), full problem out of reach
I Complicated output for further steps

Results:
I Dedicated algorithm exploiting the structure of the system (determinants of matrices)
I Implemented in Maple
I Used to give full classification to the application
I 10s on the case of water, 4h on the full problem

Tools:
I Real geometry: Whitney stratification, Thom’s isotopy theorem, critical points
I Algebra: determinantal ideals, incidence varieties
I Computer Algebra: polynomial elimination
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Classification in the case of water (γ1 = Γ1 = 1)
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Main computer algebra building block : polynomial elimination

Polynomial elimination:
I Given an ideal I ⊂ K [X1, . . . , Xn,G1, . . . ,Gr ]

I Compute a basis of IG = I ∩ K [G1, . . . ,Gr ]

Computing eliminations allows to...
I ... compute projections of varieties
I ... solve if finitely many solutions (by iterating)
I ... compute unions and di�erences of varieties (by li�ing)

Many tools: resultants, triangular sets, Gröbner bases


2X1

2G1 − 3X2
2G2 − 3G2

2

X1G1 + 2X2G2

X1X2 + 4G1G2 − 8G2
2



X1X2 + 4G1G2 − 8G2
2

X1G1 + 2X2G2

32X1G2
3 + 3X1G2

2 − 12X2G1G2
2 + 56X2G2

3

3X2
2G2 − 16G1G2

2 + 32G2
3 + 3G2

2

6G1
2G2 − 28G1G2

2 + 32G2
3 + 3G2

2
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Tool for e.g. cryptography: weighted homogeneous systems
(With J.C. Faugère and M. Safey El Din)

Example: system from the discrete logarithm problem [Faugère, Gaudry, Huot, Renault, 2013]

0 =


41518
33900
8840
22855
29081

 X 16
5 +


49874
32136
34252
24932
11782

 X 8
1 +


45709
10698
45336
26076
55993

 X 7
1 X2 +


46659
59796
38267
39647
27683

 X 6
1 X

2
2 +


32367
23164
64111
63692
29095

 X 5
1 X

3
2 +


37627
25182
59951
60422
11080

 X 4
1 X

4
2 +


27200
38476
28698
5708
47718

 X 3
1 X

5
2 +


64271
43542
57950
52276
9739

 X 2
1 X

6
2 +


49159
11328
33520
65039
27178

 X1X
7
2 +


59456
49518
46071
49716
33760

 X 8
2 + 2069 terms

5 equations
5 unknowns
Degree 16

“Default” strategy:
I Irregular behavior
I Long calculation
I No complexity estimates

With weights:
= Subst. Xi ← X 2

i (i = 1 . . . 4):
I Regular behavior
I Faster calculation

10 20 30 40
0

20

40

60

1h45

15 min

Step

Degree of the polynomials at each step
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Weighted homogeneous: results and future works

Results:
I Full algorithmic strategy taking advantage of generic regularity properties
I Full understanding of the graduation (syzygy module, Hilbert series)
I Characterization of generic properties (regularity, semi-regularity, Noether position)
I Complexity bounds divided by (

∏
wi)

3

I Can be used by any existing implementation without computational cost

Future work:
I Automatic detection of the best system of weights
I More general structures allowing the weights to be 0 (elimination)...
I ... or < 0 (variables with local ordering, saturation)
I Multi-graduation: weighted homogeneous for several systems of weights (physics)
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Tool for number theory: modern algorithms for Gröbner bases over rings
(With M. Francis)

I Applications:
I Number theory [Lichtblau, 2011]
I La�ice-based cryptography [Francis, Dukkipati 2016]
I Computation in finitely-presented groups [Sims, 1994]

I Example: intersection of two ideals in Z[
√
−11][x, y] ' Z[x, y, z]/〈z2 + 11〉 ?Z[
√
−11] Z

Non Euclidean (non factorial)
Euclidean (Z)

I Algorithms developed in the late 80’s and early 90’s
I Impossible to mitigate coe�icient growth with modular methods
I Many usual criteria when coe�icients are in a field become more complicated over rings
I Recent surge of interest with focus on Z and Euclidean rings (Lichtblau, Eder, Popescu...)
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Gröbner bases over Z: results and future work

�estion:
I Signatures: technique for recovering and exploiting info. on the module of syzygies

[Faugère, 2002]

I Is it possible to compute Gröbner bases with signatures over Z?
I State of the art: No, impossible [Eder, Popescu 2017]

Results:
I New answer: Yes, with another definition!
I Proof of concept of two algorithms working over any principal ring
I Prototype implementation of the algorithms in Magma

Future work:
I Complete analysis of existing algorithms and criteria to identify what is or not possible
I Complexity analyses
I Competitive implementation of the algorithms
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Tool for algebraic geometry: Gröbner bases over Tate algebras
(With X. Caruso and T. Vaccon)

I Tate series = convergent series over a complete valued ring (e.g. Zp or Qp)
⇐⇒ the valuation of the coe�icients goes to infinity

I Introduced by Tate in 1971 for rigid geometry
(p-adic equivalent of the bridge between algebraic and analytic geometry over C)

I No existing implementation of arithmetic or ideal operations

∞∑
i,j=0

pi+jX iY j = 1 + pX + pY + p2X 2 + · · ·

Tate series

∞∑
i=0

X i = 1 + 1X + 1X 2 + 1X 3 + · · ·

Not a Tate series
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Tate algebras: results and future work

Features of those systems:
I In the valued case, there is no di�erence between ring and field
I Main di�iculty: in Tate series, we need to order terms (with coe�icients)...
I ... in a mixed ordering: pX < 1 < X

Results:
I Definitions and algorithms for Gröbner bases over Tate algebras
I Implementation of arithmetic and Gröbner basis algorithms in Sage

(included in Sage since version 8.5 [2019])
I Signature-based algorithms over Tate algebras

Future work:
I More e�icient algorithms for reductions
I More optimized implementation
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Example of general questions: complexity and strategy for elimination?
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One last word...

Thank you for your a�ention!
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