Signature-based Gröbner basis algorithms over Tate algebras

Xavier Caruso ${ }^{1} \quad$ Tristan Vaccon ${ }^{2} \quad$ Thibaut Verron ${ }^{3}$

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
2. Université de Limoges, CNRS, XLIM, Limoges, France
3. Johannes Kepler University, Institute for Algebra, Linz, Austria

Journées Nationales de Calcul Formel, 2 mars 2020

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.01 X-1$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.01 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

$$
\begin{aligned}
& f=X^{2} \\
& (-100 \mathrm{Xg} \\
& 100 X \\
& (-10000 g \\
& 10000
\end{aligned}
$$

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \nsucceq 0$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.0001 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

$$
\begin{aligned}
& f=x^{2} \\
& (-10000 \mathrm{Xg} \\
& 10000 \mathrm{X} \\
& (-100000000 g \\
& 100000000
\end{aligned}
$$

- It terminates, but...
- $g \simeq 1, \operatorname{but} f \bmod g \neq 0$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.000001 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

$$
\begin{aligned}
& f=X^{2} \\
& (-1000000 X g \\
& 1000000 X \\
& (-1000000000000 g \\
& 1000000000000
\end{aligned}
$$

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \nsucceq 0$

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.01 X-1$ $\mathrm{LT}(g)$
- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \not \approx 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.01 X^{3} \\
& \left(+0.01 X^{3} g\right. \\
& 0.0001 X^{4} \\
& \ldots \\
& \ldots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.0001 X-1$

$$
\mathrm{LT}(\mathrm{~g})
$$

- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \not \approx 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.0001 X^{3} \\
& \left(+0.0001 X^{3} g\right. \\
& 0.00000001 X^{4} \\
& \ldots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.000001 X-1$

$$
\operatorname{LT}(g)
$$

- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \not \approx 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.000001 X^{3} \\
& \left(+0.000001 X^{3} g\right. \\
& 0.000000000001 X^{4} \\
& \ldots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0

Precision and Gröbner bases

- Question: in $\mathbb{R}[X]$, reduce $f=X^{2}$ modulo $g=0.000001 X-1$
- The usual way:

- It terminates, but...
- $g \simeq 1$, but $f \bmod g \neq 0$
- Another way?

$$
\begin{aligned}
& f=X^{2} \\
& \left(+X^{2} g\right. \\
& 0.000001 X^{3} \\
& \left(+0.000001 X^{3} g\right. \\
& 0.000000000001 X^{4} \\
& \cdots
\end{aligned}
$$

- It does not terminate, but...
- The sequence of reductions tends to 0
- This work: make sense of this process for convergent power series in $\mathbb{Z}_{p}[[X]]$

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=\max n$ such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"
- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=\max n$ such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"
- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

- No loss of precision possible: if a and b are small, $a+b$ is small

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=$ max n such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"

- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=$ max n such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"

- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=$ max n such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"

- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=$ max n such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"

- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

A recap on Complete Discrete Valuation Rings

- $\operatorname{DVR}=$ principal local domain K° with maximal ideal $\langle\pi\rangle$, residue field $\mathbb{F}=K^{\circ} /\langle\pi\rangle$

- Elements can be written $a=\sum_{n=0}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- Valuation of $a=$ max n such that π^{n} divides a
- Metric defined by " a is small $\Longleftrightarrow \operatorname{val}(a)$ is large"
- \mathbb{Z}_{p} and $\mathbb{C}[[X]]$ are complete for this topology

Tate Series

$$
\mathbf{x}=X_{1}, \ldots, X_{n}
$$

Definition

- $K\{\mathbf{X}\}^{\circ}=$ ring of series in \mathbf{X} with coefficients in K° converging for all $\mathbf{x} \in K^{\circ}$ $=$ ring of power series whose general coefficients tend to 0

Motivation

- Introduced by Tate in 1971 for rigid geometry
(p-adic equivalent of the bridge between algebraic and analytic geometry over \mathbb{C})
Examples
- Polynomials (finite sums are convergent)
$-\sum_{i, j=0}^{\infty} \pi^{i+j} X^{i} Y^{j}=1+\pi X+\pi Y+\pi^{2} X^{2}+\pi^{2} X Y+\pi^{2} Y^{2}+\cdots$ $1+1 X+1 X^{2}+1 X^{3}+\cdots$

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:
Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

$$
\begin{gathered}
\mathrm{LT}(f) \\
\vdots
\end{gathered}
$$

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term
- Isomorphism $K\{\mathbf{X}\}^{\circ} /\langle\pi\rangle \simeq \mathbb{F}[\mathbf{X}]$

$$
f \mapsto \bar{f}
$$

compatible with the term order

Gröbner bases

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

Gröbner bases

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations and a surprising one:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

If I is saturated:

$$
\pi f \in I \Longrightarrow f \in I
$$

4. \bar{G} is a Gröbner basis of \bar{l} in the sense of $\mathbb{F}[\mathbf{X}]$

Gröbner bases

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations and a surprising one:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

If I is saturated:

$$
\pi f \in I \Longrightarrow f \in I
$$

4. \bar{G} is a Gröbner basis of \bar{l} in the sense of $\mathbb{F}[\mathbf{X}]$

- Every Tate ideal has a finite Gröbner basis
- It can be computed using the usual algorithms (reduction, Buchberger, F_{4})
- In practice, the algorithms run with finite precision and without loss of precision

What about Tate series over a field?

- CDVF $=$ fraction field K of a CDVR K°

- Elements can be written $a=\sum_{n=-r}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- The valuation can be negative but not infinite

- Same metric, same topology as K°

What about Tate series over a field?

- CDVF $=$ fraction field K of a CDVR K°

- Elements can be written $a=\sum_{n=-r}^{\infty} a_{n} \pi^{n}, a_{n} \in \mathbb{F}$
- The valuation can be negative but not infinite

- Same metric, same topology as K°
- Tate series can be defined as in the integer case
- Same order, same definition of Gröbner bases
- Main difference: πX now divides X

- Another surprising equivalence

1. G is a normalized $G B$ of I

$$
\forall g \in G, \mathrm{LC}(g)=1 \text { (in part., } G \subset K\{\mathbf{X}\}^{\circ} \text {) }
$$

2. $G \subset K\{\mathbf{X}\}^{\circ}$ is a GB of $I \cap K\{\mathbf{X}\}^{\circ}$

- In practice, we emulate computations in $K\{\mathbf{X}\}^{\circ}$ in order to avoid losses of precision (and the ideal is saturated)

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

Example with a S-polynomial

$$
p=p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+\cdots+p_{m} f_{m} \quad q=q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+\cdots+q_{m} f_{m}
$$

$$
\mathrm{S}-\operatorname{Pol}(p, q)=\mu p-\nu q
$$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]

Example with a S-polynomial

$$
\begin{array}{ll}
p=p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+\cdots+p_{m} f_{m} & q=q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+\cdots+q_{m} f_{m} \\
\mathbf{p}=p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+p_{m} \mathbf{e}_{m} & \mathbf{q}=q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l}+\cdots+q_{m} \mathbf{e}_{m}
\end{array}
$$

$\mathrm{S}-\operatorname{Pol}(p, q)=\mu p-\nu q$
$\operatorname{S-Pol}(\mathbf{p}, \mathbf{q})=\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+p_{m} \mathbf{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}+\cdots+q_{m} \mathbf{e}_{m}\right)$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- $2^{\text {nd }}$ idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$
\begin{aligned}
p & =p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+ \\
\mathbf{p} & =p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k} \\
& =\text { smaller terms }+\operatorname{LT}\left(p_{k}\right) \mathbf{e}_{k}
\end{aligned}
$$

$$
\begin{aligned}
q & =q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+ \\
\mathbf{q} & =q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l} \\
& =\text { smaller terms }+\operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{S-Pol}(p, q) & =\mu p-\nu q \\
\operatorname{S-Pol}(\mathbf{p}, \mathbf{q}) & =\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}+\cdots+0 \mathrm{e}_{m}\right) \\
& =\text { smaller terms }+\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}-\nu \operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}
\end{aligned}
$$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- $2^{\text {nd }}$ idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$
\begin{aligned}
p & =p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+ \\
\mathbf{p} & =p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k} \\
& =\text { smaller terms }+\operatorname{LT}\left(p_{k}\right) \mathbf{e}_{k}
\end{aligned}
$$

$$
\begin{aligned}
q & =q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l} \\
\mathbf{q} & =q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l} \\
& =\text { smaller terms }+\operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{S-Pol}(p, q) & =\mu p-\nu q \\
\operatorname{S-Pol}(\mathbf{p}, \mathbf{q}) & =\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}\right. \\
& =\operatorname{smaller} \text { terms }+\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}-\nu \operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l} \\
& =\text { smaller terms }+\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k} \quad \text { if } \mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k} \ngtr \nu \operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}
\end{aligned}
$$

Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

- $1^{\text {st }}$ idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- $2^{\text {nd }}$ idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$
\begin{aligned}
p & =p_{1} f_{1}+p_{2} f_{2}+\cdots+p_{k} f_{k}+ \\
\mathbf{p} & =p_{1} \mathbf{e}_{1}+p_{2} \mathbf{e}_{2}+\cdots+p_{k} \mathbf{e}_{k} \\
& =\text { smaller terms }+\operatorname{LT}\left(p_{k}\right) \mathbf{e}_{k}
\end{aligned}
$$

$$
\begin{aligned}
q & =q_{1} f_{1}+q_{2} f_{2}+\cdots+q_{l} f_{l}+ \\
\mathbf{q} & =q_{1} \mathbf{e}_{1}+q_{2} \mathbf{e}_{2}+\cdots+q_{l} \mathbf{e}_{l} \\
& =\text { smaller terms }+\operatorname{LT}\left(q_{l}\right) \mathbf{e}_{l}
\end{aligned}
$$

$$
\mathfrak{s}(p)=\text { signature of } p
$$

$\operatorname{S-Pol}(p, q)=\mu p-\nu q$
$\operatorname{S-Pol}(\mathbf{p}, \mathbf{q})=\mu\left(p_{1} \mathbf{e}_{1}+\cdots+p_{k} \mathbf{e}_{k}+\cdots+0 \mathrm{e}_{m}\right)-\nu\left(q_{1} \mathbf{e}_{1}+\cdots+q_{l} \mathbf{e}_{l}+\cdots+0 \mathrm{e}_{m}\right)$
$=$ smaller terms $+\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k}-\nu \mathrm{LT}\left(q_{l}\right) \mathbf{e}_{l}$
$=$ smaller terms $+\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k} \quad$ if $\mu \mathrm{LT}\left(p_{k}\right) \mathbf{e}_{k} \not \geqslant \nu \mathrm{LT}\left(q_{l}\right) \mathbf{e}_{l} \quad$ Regular S-polynomial

Signatures for Tate algebra

Main properties of signatures:

- Ordered (in a way compatible with monomials)
- Example: Position over Term: $\mu \mathbf{e}_{i}<\nu \mathbf{e}_{j} \Longleftrightarrow i<j$ or $i=j$ and $\mu<\nu$
- Never decreasing in the course of the algorithms

Difficulties with Tate series:

- Need to order them with their coefficients
- The order is mixed: $1>\pi$

Results:

- Proof of correctness and termination for two orders:
- Position over Term
- Valuation over Position over Term: analogue of the F5 order for the valuation
- No need to multiply signatures by π

Conclusion and perspectives

Main results

- Definitions of Gröbner bases for Tate series
- Algorithms for computing and using those Gröbner bases
- Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)
- Two signature-based algorithms with significant performance improvements

Perspectives

- Reduction of Tate series is very different from reduction of polynomials
- Design algorithms to perform those reductions more efficiently
- Goal: being able to take advantage of e.g. delaying reductions using signatures

Conclusion and perspectives

Main results

- Definitions of Gröbner bases for Tate series
- Algorithms for computing and using those Gröbner bases
- Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)
- Two signature-based algorithms with significant performance improvements

Perspectives

- Reduction of Tate series is very different from reduction of polynomials
- Design algorithms to perform those reductions more efficiently
- Goal: being able to take advantage of e.g. delaying reductions using signatures

Thank you for your attention!

More information and references:

- Xavier Caruso, Tristan Vaccon and Thibaut Verron (2019). 'Gröbner bases over Tate algebras'. In: ISSAC'19, arXiv:1901.09574. arXiv: 1901.09574 [math.AG]
- Xavier Caruso, Tristan Vaccon and Thibaut Verron (Feb. 2020). 'Signature-based algorithms for Gröbner bases over Tate algebras'. In: URL: https://hal .archives-ouvertes.fr/hal-02473665

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\ominus}{-} \bar{f}$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\ominus}{-} \bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\stackrel{\bullet}{f}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \stackrel{\bullet}{g_{2}}-\cdots-\stackrel{\bullet}{q_{r}} \stackrel{\bullet}{g_{r}}=0
$$

\bar{G} is a Gröbner basis of \bar{I}

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\bullet}{-} \bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\stackrel{\bullet}{f}-q_{1} \frac{\bullet}{g_{1}}-q_{2} \frac{\bullet}{g_{2}}-\cdots-q_{r} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
f-\sum_{i=1}^{r} q_{i} g_{i}
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\ominus}{-} \bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\stackrel{\bullet}{f}-q_{1} \frac{\bullet}{g_{1}}-q_{2} \frac{\bullet}{g_{2}}-\cdots-q_{r} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
f-\sum_{i=1}^{r} q_{i} g_{i}=f-\sum_{i=1}^{r} q_{i} \bar{g}_{i}+\sum_{i=1}^{r} q_{i}\left(\frac{\bullet}{g_{i}}-g_{i}\right)
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\bullet}{-} \bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\stackrel{\bullet}{f}-q_{1} \frac{\bullet}{g_{1}}-q_{2} \frac{\bullet}{g_{2}}-\cdots-q_{r} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
\begin{aligned}
& \stackrel{\bullet}{f}-\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}} \dot{g}_{i}=f-\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}} \stackrel{\bullet}{g_{i}}+\sum_{i=1}^{r}{ }^{\bullet}\left(\frac{\bullet}{q_{i}}\left(\stackrel{\bullet}{g_{i}}\right)\right. \\
& =f \stackrel{\ominus}{\circ} \bar{f}+\sum_{i=1}^{r}{\stackrel{\bullet}{q_{i}}}^{\circ}\left(\overline{g_{i}} \stackrel{\ominus}{\circ} g_{i}\right)
\end{aligned}
$$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\ominus}{-} \bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\stackrel{\bullet}{f}-q_{1} \frac{\bullet}{g_{1}}-q_{2} \frac{\bullet}{g_{2}}-\cdots-q_{r} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
\begin{aligned}
& \stackrel{\bullet}{f}-\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}} \dot{g}_{i}=f-\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}} \stackrel{\bullet}{g_{i}}+\sum_{i=1}^{r}{ }^{\bullet}\left(\frac{\bullet}{q_{i}}\left(\stackrel{\bullet}{g_{i}}\right)\right. \\
& =f \stackrel{\circ}{-f}+\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}}\left(\overline{g_{i}}-\stackrel{\circ}{\circ}^{\circ}\right)=\stackrel{\ominus}{\square}=\pi \cdot f_{1}
\end{aligned}
$$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f \stackrel{\ominus}{-} \bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\stackrel{\bullet}{f}-q_{1} \frac{\bullet}{g_{1}}-q_{2} \frac{\bullet}{g_{2}}-\cdots-q_{r} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
\begin{aligned}
& \stackrel{\bullet}{\bullet}-\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}} \dot{g}_{i}=f-\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}} \stackrel{\bullet}{g_{i}}+\sum_{i=1}^{r} \stackrel{\bullet}{q}_{i}\left(\stackrel{\bullet}{g_{i}}-\stackrel{\bullet}{g_{i}}\right) \\
& =f \stackrel{\circ}{-} \bar{f}+\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}}\left(\overline{g_{i}} \stackrel{\ominus}{\circ} g_{i}\right)=\stackrel{\ominus}{\square}=\pi \cdot f_{1}
\end{aligned}
$$

