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> Question: in R[X], reduce f = X* modulo g = 0.01X — 1




Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.01X — 1
LT(g)

> The usual way:
f=x
—100Xg
100X
—10000g
10 000

» [t terminates, but...

> g~ 1,butf mod g0



Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.0001X — 1
LT(g)

> The usual way:
f=x
—10000Xg
10 000X
—100 000 000g
100 000 000

» [t terminates, but...

> g~ 1,butf mod g0



Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.000001X — 1
LT(g)

> The usual way:
f=x
—1000000Xg
1000 000X
—1000 0000000008
1000 000 000 000

» [t terminates, but...

> g~ 1,butf mod g0



Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.01X — 1
LT(g)

> Another way?
f=x
+X’g
0.01X°

+0.01X°g

0.0001X*

> |t does not terminate, but...

> The sequence of reductions tends to 0



Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.0001X — 1
LT(g)

> Another way?
f=x
+X’g
0.0001X>
+0.0001X3g

0.000 000 01X*

> |t does not terminate, but...

> The sequence of reductions tends to 0



Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.000001X — 1
LT(g)

> Another way?
f=x
+X’g
0.000001X>
+0.000001X%g

0.000 000 000 001X*

> |t does not terminate, but...

> The sequence of reductions tends to 0



Precision and Grobner bases

> Question: in R[X], reduce f = X* modulo g = 0.000001X — 1

> Another way?
f=x
+X’g
0.000 001X>
+0.000001X%g

0.000 000 000 001X*

> |t does not terminate, but...
> The sequence of reductions tends to 0

> This work: make sense of this process for convergent power series in Z,[[X]]



A recap on Complete Discrete Valuation Rings

> DVR = principal local domain K° with maximal ideal (), residue field F = K° /()

Zp p Fp
ClIX1 X C
> Elements can be written a =32 a,7", a, € F
» Valuation of a = max n such that 7" divides a °
> Metric defined by “a is small <= val(a) is large” ° 8 val(a) = 3
. e O ©O
> Z, and C[[X]] are complete for this topology 1 7T a=ar’+ar +...
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> No loss of precision possible:

if a and b are small, a+ b is small
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A recap on Complete Discrete Valuation Rings

> DVR = principal local domain K° with maximal ideal (), residue field F = K° /()
Zp p Fp
ClIX1 X C

> Elements can be written a =32 a,7", a, € F
» Valuation of a = max n such that 7" divides a °
> Metric defined by “a is small <= val(a) is large” ° 8 val(a) = 3
> Z, and C[[X]] are complete for this topology ? ; 2: e a4 .
> No loss of precision possible: > In a CDVR, a series is convergent
if a and b are small, a+ b is small iff its general term tends to 0
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A recap on Complete Discrete Valuation Rings

> DVR = principal local domain K° with maximal ideal (), residue field F = K° /()

Zp p Fp
ClIX1 X C
> Elements can be written a =32 a,7", a, € F
» Valuation of a = max n such that 7" divides a °
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A recap on Complete Discrete Valuation Rings

> DVR = principal local domain K° with maximal ideal (), residue field F = K° /()

vy vYyyYy
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Elements can be written a=Y_"° a,7n", a, € F

n=0

Valuation of a = max n such that 7" divides a
Metric defined by “a is small <= val(a) is large”
Zp and C[[X]] are complete for this topology

No loss of precision possible:

if a and b are small, a+ b is small
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> In a CDVR, a series is convergent

iff its general term tends to 0
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Tate Series

X:X1,...

Definition
> K{X}° = ring of series in X with coefficients in K® converging for all x € K°

= ring of power series whose general coefficients tend to 0

Motivation
> Introduced by Tate in 1971 for rigid geometry
(p-adic equivalent of the bridge between algebraic and analytic geometry over C)

Examples

> Polynomials (finite sums are convergent)

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] (@] (@] (@]
e [ ] (@] (@] (@] (@] (@]
> § XY =14+ 7X + 7Y + 02X+ XY + Y 4+

i,j=0

o o ° °
o o ° °
o o ° °
=1+1X+1 1

oo
> Not a Tate series: Z X113+

s Xn



Term ordering for Tate algebras

X=X X
» Starting from a usual monomial ordering 1 <;, X' < X2 <l
> We define a term ordering putting more weight on large coefficients
Usual term ordering;: Term ordering for Tate series:
° ° ° ° ° ° ° °
° ° ° ° ° ° ° °
° ° ° o o ° ° °
o o . o . o . o . o o . o .
Tl < 1XT <y TX? <y WX <y v o <X <l <X <X <



Term ordering for Tate algebras

Xt = xh ... xin
» Starting from a usual monomial ordering 1 <;, X" <, X2 <
> We define a term ordering putting more weight on large coefficients
Usual term ordering;: Term ordering for Tate series:
° ° ° ° ° ° ° °
° ° ° ° ° ° ° °
° ° ° 9 o ° ° °
o ° o . © o . o .
7r w 1X" <m7TXI2<m7rX <m e <X <l <X <IXT <
o)

> It has infinite descending chains, but they converge to zero
> Tate series always have a leading term LT(f)

° ° ° °
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f= aXY—|—a1X+a0 T4+ a XY +...



Term ordering for Tate algebras

Xt = xh ... xin

> Starting from a usual monomial ordering 1 <, X" <, X2 <

> We define a term ordering putting more weight on large coefficients

Usual term ordering;:

ceee
oOO0Cee

[
[
[
o
s

—k....

X <m7rX'2 <m7r X% <o

Term ordering for Tate series:

> It has infinite descending chains, but they converge to zero

> Tate series always have a leading term

> Isomorphism K{X}°/(r) =~
f =

compatible with the term order

FiX]
f

f=

° ° ° °
° ° ° °
0 ° ° °
o . o o . ° .
X <1 <oX? <1X"< -
o
LT(f)
° ° ° °
° ° ° °
o )

(@]
1+ aX Y2+ ...

°
aXY—|—a1X+a0

f=mXY +@X



Grobner bases

» Standard definition once the term order is defined:

G is a Grobner basis of | <= forall f € I, there is g € Gs.t. LT(g) divides LT(f)

> Standard equivalent characterizations:
1. G is a Grobner basis of /
2. for all f € I, f is reducible modulo G

3. for all f € I, f reduces to zero modulo G 3 sequence of reductions converging to 0



Grobner bases

» Standard definition once the term order is defined:

G is a Grobner basis of | <= forall f € I, there is g € Gs.t. LT(g) divides LT(f)

> Standard equivalent characterizations and a surprising one:
1. G is a Grobner basis of /
2. for all f € I, f is reducible modulo G

3. for all f € I, f reduces to zero modulo G 3 sequence of reductions converging to 0

If I is saturated: nfel = fel
4. G is a Grobner basis of I in the sense of F[X]



Grobner bases

» Standard definition once the term order is defined:

G is a Grobner basis of | <= forall f € I, there is g € Gs.t. LT(g) divides LT(f)

> Standard equivalent characterizations and a surprising one:
1. G is a Grobner basis of /
2. for all f € I, f is reducible modulo G

3. for all f € I, f reduces to zero modulo G 3 sequence of reductions converging to 0

If I is saturated: nfel = fel
4. G is a Grobner basis of I in the sense of F[X]

> Every Tate ideal has a finite Grobner basis
> It can be computed using the usual algorithms (reduction, Buchberger, F;)

> In practice, the algorithms run with finite precision and without loss of precision

No division by



What about Tate series over a field?

v

CDVF = fraction field K of a CDVR K°

Qp Ly
C((x)) Cl[x1]

v

Elements can be written a=>_."° a,n", a, € F

n=—r

000 0000

val(a) = -3

v

The valuation can be negative but not infinite

v

Same metric, same topology as K°

-3 —2
a_sm " Ha—,m “+...



What about Tate series over a field?

> CDVF = fraction field K of a CDVR K°
Qp Zp [ ]
C((X)) CIxIl .
® -3 —2
Elements can be written a= Y>> a,n", a, € F d=asm taom “+...
> The valuation can be negative but not infinite . val(a) = -3
> Same metric, same topology as K°
> Tate series can be defined as in the integer case ° ° ° °
» Same order, same definition of Grobner bases : : : 8
° °

> Main difference: 7X now divides X 7 4 1X+?X2+7SZX3+- ..

> Another surprising equivalence
1. G is a normalized GB of | Vg € G, LC(g) =1 (in part., G C K{X}°)
2. G C K{X}° is a GB of IN K{X}°

> In practice, we emulate computations in K{X}° in order to avoid losses of precision

(and the ideal is saturated)



Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

Example with a S-polynomial

p=pifi+pfot-+pife+ e+ pmfm q=qfi+ @+ +qfi+ -+ Gufm

S-Pol(p, q) = up —vq



Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

> 1° idea: keep track of the representation of the ideal elements
[Maller, Mora, Traverso 1992]

Example with a S-polynomial

p=pfit+pfot-+pefe+ -+ pmfm g=qfit@h+ - taqfi+ -+ gnfn
p = pier + per + -+ prex + - + pmen q=qe+qe,+---+qe ~+- -+ gnem

S-Pol(p, q) = up —vq
S-Pol(p,q) = p(prer + -+ prex + - + pmem) — v (qres + -+ qer+ - - + qmem)



Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

> 1% idea: keep track of the representation of the ideal elements
[Maoller, Mora, Traverso 1992]

» 2" idea: the largest term of the representation is enough
[Faugére 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

Example with a S-polynomial

p=pifi+pfot--+pifi g=qfi+ @+ -+ qfi
p:p1e1+p2e2+...+pkek q:q1e1+q2e2+.4.+qle[
= smaller terms + LT(pk)ex = smaller terms + LT(q/)e;

S-Pol(p, q) = pup — vq
S-Pol(p,q) = p(prer + -+ - + piex ) —v(qer+---+ qe
= smaller terms + uLT(px)ex — vLT(qi)e;
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Problem: useless and redundant computations, infinite reductions to 0
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Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

> 1% idea: keep track of the representation of the ideal elements
[Maoller, Mora, Traverso 1992]

» 2" idea: the largest term of the representation is enough
[Faugére 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

Example with a S-polynomial

p=pfi+pfat-+ pifi g=qfi+ @+ -+ qfi
p:p1e1+p2e2+...+pkek q:q1e1+q2e2+.4.+qle[
= smaller terms + LT(py)ey = smaller terms + LT(q/)e;

s(p) = signature of p

S-Pol(p, q) = pup — vq
S-Pol(p,q) = p(prer + -+ - + piex ) —v(qer+ -+ qe )
= smaller terms + uLT(px)ex — vLT(qi)e;
= smaller terms + uLT(pi)ex if uLT(pk)ex > vLT(q)er Regular S-polynomial



Signatures for Tate algebra

Main properties of signatures:
> Ordered (in a way compatible with monomials)
> Example: Position over Term: pe; < ve; <= i< jori=jand p <v

> Never decreasing in the course of the algorithms

Difficulties with Tate series:
> Need to order them with their coefficients

» The order is mixed: 1 > 7

Results:
> Proof of correctness and termination for two orders:

> Position over Term
> Valuation over Position over Term: analogue of the F5 order for the valuation

> No need to multiply signatures by 7



Conclusion and perspectives

Main results
> Definitions of Grobner bases for Tate series
> Algorithms for computing and using those Grobner bases
> Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)
>

Two signature-based algorithms with significant performance improvements

Perspectives
> Reduction of Tate series is very different from reduction of polynomials
> Design algorithms to perform those reductions more efficiently

> Goal: being able to take advantage of e.g. delaying reductions using signatures



Conclusion and perspectives

Main results
> Definitions of Grobner bases for Tate series
> Algorithms for computing and using those Grobner bases
> Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)
>

Two signature-based algorithms with significant performance improvements

Perspectives
> Reduction of Tate series is very different from reduction of polynomials
> Design algorithms to perform those reductions more efficiently

> Goal: being able to take advantage of e.g. delaying reductions using signatures

Thank you for your attention!

More information and references:

> Xavier Caruso, Tristan Vaccon and Thibaut Verron (2019). ‘Grébner bases over Tate algebras’. In:
ISSAC’19, arXiv:1901.09574. arXiv: 1901.09574 [math.AG]

> Xavier Caruso, Tristan Vaccon and Thibaut Verron (Feb. 2020). ‘Signature-based algorithms for
Grobner bases over Tate algebras’. In: URL: https://hal.archives-ouvertes.fr/hal-02473665
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1. Start with f € I, we can assume that f has valuation 0 | is saturated
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How does it work? (4 — 3)

1. Start with f € I, we can assume that f has valuation 0 | is saturated
° °
° °

e o o _
2. Separate f =f +f — f

3. f € 10 we have a sequence of reductions G is a Grobner basis of /
e o0 oo o0
a8~ @&~ —qg=0

4. So we have a sequence of reductions
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How does it work? (4 — 3)

1. Start with f € I, we can assume that f has valuation 0
° °
° °
e o o_

2. Separate f =f +f — f

3. f € 10 we have a sequence of reductions
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4. So we have a sequence of reductions
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How does it work? (4 — 3)

1. Start with f € I, we can assume that f has valuation 0
° °
° °

e o o _
2. Separate f =f +f — f

3. f € I'so we have a sequence of reductions

() o0 o0 o0

f—q8 —q@g&——qg=0

4. So we have a sequence of reductions

Z 98 + Z a(g-&)

-}

ForYaece)

| is saturated

G is a Grobner basis of [



How does it work? (4 — 3)

1. Start with f € I, we can assume that f has valuation 0 | is saturated
° °
° °

e o o _
2. Separate f =f +f — f

3. f € Iso we have a sequence of reductions G is a Grobner basis of
e o0 oo o0
f-9& -qg&——qg =0

4. So we have a sequence of reductions

[ ] [ J [ J [ J
: ! o: : Uy Y ) ‘.o ,0 :
f-Yag=f-> ag+> a(e-g)
i=1 i=1 i=1
[ J [ J [ J [ J
87 Y } g g ¢
= f-F +Xa(z-g) =m=r-f
i=1



How does it work? (4 — 3)

~ 1. Start with f € I, we can assume that f has valuation 0 | is saturated
° °
° °

e o o _
2. Separate f =f +f — f

3. f € Iso we have a sequence of reductions G is a Grobner basis of
e o0 oo o0
f-9& -qg&——qg =0

4. So we have a sequence of reductions

[ ] [ ] [ ] [ ]

: ! o: : 'Y ) ‘Lo 0 :

f=dag=Ff-> ag+> als-g)
i=1 i=1 i=1

. [
f +Z<;i(§3gi) =

| cee®
Hoeo

= f

I
3
—— =~ o0




