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Precision and Gröbner bases

I �estion: in R[X ], reduce f = X 2

modulo g = 0.01X − 1

f = X 2

100X

10 000

f = X 2

0.01X 3

0.0001X 4

· · ·

I The usual way:

I It terminates, but...

I g ' 1, but f mod g 6' 0

I Another way?

I It does not terminate, but...

I The sequence of reductions tends to 0

−100Xg

−10 000g

+X 2g

+0.01X 3g

· · ·

I This work: make sense of this process for convergent power series in Zp[[X ]]
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Precision and Gröbner bases

LT(g)

I �estion: in R[X ], reduce f = X 2

modulo g = 0.000 001X − 1

f = X 2
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f = X 2

0.000 001X 3

0.000 000 000 001X 4

· · ·
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I g ' 1, but f mod g 6' 0

I Another way?

I It does not terminate, but...

I The sequence of reductions tends to 0

−1 000 000Xg
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+X 2g

+0.000 001X 3g

· · ·

I This work: make sense of this process for convergent power series in Zp[[X ]]
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A recap on Complete Discrete Valuation Rings

I DVR = principal local domain K◦ with maximal ideal 〈π〉, residue field F = K◦/〈π〉
Zp

C[[X ]]
p
X

Fp

C

I Elements can be wri�en a =
∑∞

n=0
anπn

, an ∈ F
I Valuation of a = max n such that πn

divides a
I Metric defined by “a is small ⇐⇒ val(a) is large”

I Zp and C[[X ]] are complete for this topology
1 π a = a3π

3 +a4π
4 +. . .

val(a) = 3

I No loss of precision possible:

if a and b are small, a + b is small

a + b = a + b a + b = a + b

?

I In a CDVR, a series is convergent

i� its general term tends to 0

∑
n=0

an = a0

+ a1 + a2 + a3 + · · ·
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Tate Series

X = X1, . . . , Xn
Definition

I K{X}◦ = ring of series in X with coe�icients in K◦ converging for all x ∈ K◦

= ring of power series whose general coe�icients tend to 0

Motivation

I Introduced by Tate in 1971 for rigid geometry

(p-adic equivalent of the bridge between algebraic and analytic geometry over C)

Examples

I Polynomials (finite sums are convergent)

I

∞∑
i,j=0

πi+jX iY j = 1 + πX + πY + π2X 2 + π2XY + π2Y 2 + · · ·

I Not a Tate series:

∞∑
i=0

X i = 1 + 1X + 1X 2 + 1X 3 + · · ·



Term ordering for Tate algebras

Xi = X i1
1
· · ·X in

n

I Starting from a usual monomial ordering 1 <m Xi1 <m Xi2 <m . . .

I We define a term ordering pu�ing more weight on large coe�icients

Usual term ordering:

π · 1 <m 1Xi1 <m π Xi2 <m π
2 Xi3 <m · · ·

Term ordering for Tate series:

· · · < π2 Xi3 < π· 1 < π Xi2 < 1Xi1 < · · ·
<m

I It has infinite descending chains, but they converge to zero

I Tate series always have a leading term

I Isomorphism K{X}◦/〈π〉 ' F[X]

f 7→ f̄

compatible with the term order

f = a2XY + a1X + a0 · 1 + a3X
2Y 2 + . . .

f = a2XY + a1X

LT(f )
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Gröbner bases

I Standard definition once the term order is defined:

G is a Gröbner basis of I ⇐⇒ for all f ∈ I, there is g ∈ G s.t. LT(g) divides LT(f )

I Standard equivalent characterizations:

1. G is a Gröbner basis of I

2. for all f ∈ I, f is reducible modulo G

3. for all f ∈ I, f reduces to zero modulo G

If I is saturated:

4. G is a Gröbner basis of I in the sense of F[X]

πf ∈ I =⇒ f ∈ I

∃ sequence of reductions converging to 0

I Every Tate ideal has a finite Gröbner basis

I It can be computed using the usual algorithms (reduction, Buchberger, F4)

I In practice, the algorithms run with finite precision and without loss of precision

No division by π
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What about Tate series over a field?

I CDVF = fraction field K of a CDVR K◦

Zp

C[[X ]]
Qp

C((X))

I Elements can be wri�en a =
∑∞

n=−r anπ
n
, an ∈ F

I The valuation can be negative but not infinite

I Same metric, same topology as K◦

I Tate series can be defined as in the integer case

I Same order, same definition of Gröbner bases

I Main di�erence: πX now divides X

I Another surprising equivalence

1. G is a normalized GB of I

2. G ⊂ K{X}◦ is a GB of I ∩ K{X}◦

I In practice, we emulate computations in K{X}◦ in order to avoid losses of precision

(and the ideal is saturated)

∀g ∈ G, LC(g) = 1 (in part., G ⊂ K{X}◦)

a = a−3π
−3 + a−2π

−2 + . . .

val(a) = −3

π−2+π−1X+1X 2+π2X 3+· · ·
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Why signatures?

Problem: useless and redundant computations, infinite reductions to 0

I 1
st

idea: keep track of the representation of the ideal elements

[Möller, Mora, Traverso 1992]

I 2
nd

idea: the largest term of the representation is enough

[Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

p = p1f1 + p2f2 + · · ·+ pk fk + · · ·+ pmfm
p = p1e1 + p2e2 + · · ·+ pkek + · · ·+ pmem

= smaller terms + LT(pk)ek

q = q1f1 + q2f2 + · · ·+ qlfl + · · ·+ qmfm
q = q1e1 + q2e2 + · · ·+ qlel + · · ·+ qmem

= smaller terms + LT(ql)el

S-Pol(p, q) = µp− νq

S-Pol(p,q) = µ (p1e1 + · · ·+ pkek + · · ·+ pmem)− ν (q1e1 + · · ·+ qlel + · · ·+ qmem)

= smaller terms + µLT(pk)ek − νLT(ql)el
= smaller terms + µLT(pk)ek if µLT(pk)ek 
 νLT(ql)el
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Signatures for Tate algebra

Main properties of signatures:

I Ordered (in a way compatible with monomials)

I Example: Position over Term: µei < νej ⇐⇒ i < j or i = j and µ < ν

I Never decreasing in the course of the algorithms

Di�iculties with Tate series:

I Need to order them with their coe�icients

I The order is mixed: 1 > π

Results:

I Proof of correctness and termination for two orders:

I Position over Term

I Valuation over Position over Term: analogue of the F5 order for the valuation

I No need to multiply signatures by π



Conclusion and perspectives

Main results

I Definitions of Gröbner bases for Tate series

I Algorithms for computing and using those Gröbner bases

I Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)

I Two signature-based algorithms with significant performance improvements

Perspectives

I Reduction of Tate series is very di�erent from reduction of polynomials

I Design algorithms to perform those reductions more e�iciently

I Goal: being able to take advantage of e.g. delaying reductions using signatures
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How does it work? (4 =⇒ 3)

1. Start with f ∈ I, we can assume that f has valuation 0 I is saturated

2. Separate f = f + f − f

3. f ∈ I so we have a sequence of reductions G is a Gröbner basis of I

f − q1g1 − q2g2 − · · · − qrgr = 0

4. So we have a sequence of reductions

f −
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i=1

qigi = f −
r∑

i=1
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i=1
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(
gi − gi
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= f − f +
r∑

i=1

qi
(
gi − gi

)
= � = π · f1
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