
Gröbner bases over Tate algebras
Xavier Caruso

Université de Bordeaux, CNRS, INRIA
Bordeaux, France

xavier.caruso@normalesup.org

Tristan Vaccon
Université de Limoges; CNRS, XLIM

UMR 7252
Limoges, France

tristan.vaccon@unilim.fr

Thibaut Verron
Johannes Kepler University

Institute for Algebra
Linz, Austria

thibaut.verron@jku.at

ABSTRACT
Tate algebras, introduced in [Ta71], are fundamental objects in the
context of analytic geometry over the p-adics. Roughly speaking,
they play the same role as polynomial algebras play in classical
algebraic geometry. In the present article, we develop the formalism
of Gröbner bases for Tate algebras. We prove an analogue of the
Buchberger criterion in our framework and design a Buchberger-
like and a F4-like algorithm for computing Gröbner bases over Tate
algebras. An implementation in SageMath is also discussed.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms;

KEYWORDS
Algorithms, Power series, Tate algebra, Gröbner bases, F4 algorithm,
p-adic precision
ACM Reference Format:
Xavier Caruso, Tristan Vaccon, and Thibaut Verron. 2019. Gröbner bases
over Tate algebras. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In complex geometry, the concept of analytic functions is obviously
a notion of first importance. They form a class of functions that
exhibit strong rigidity properties as polynomials do but, at the same
time, allow for many analytic constructions such as taking limits,
integrals, etc. For this reason, they often appear as a bridge between
algebra and analysis.

For many arithmetical applications, the completion Qp of Q is
often as relevant as R or C. At the beginning of the 20th century,
mathematicians realized that it would be quite interesting to de-
velop the theory of p-adic analytic functions and eventually that
of p-adic analytic geometry. However doing so is not an easy task
owing to the unpleasant topology on Qp , which is totally discon-
nected.

In [Ta71], Tate proposed to replace the classical p-adic topology
by some well-suited Grothendieck topology and came up with the

The third author is supported by the Austrian FWF grant F5004.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

notion of p-adic rigid variety. Basically, the construction of rigid
varieties follows that of schemes in algebraic geometry. They are
obtained by gluing pieces — the so-called affinoids — with respect
to the aforementioned Grothendieck topology. As for affinoids, they
are defined as the “spectrum” of quotients of some particular alge-
bras, called Tate algebras. Thereby, Tate algebras play the same role
in rigid geometry as polynomial algebras do in classical algebraic
geometry.

From the purely algebraic point of view, Tate algebras have been
widely studied and it has been demonstrated that they share some
properties with polynomial algebras [BGR84]. However, as far as
we know, the computational aspects of Tate algebras have not been
developed yet. This contrasts with the polynomial setting, for which
we have at our disposal the theory of Gröbner bases [Bu65, Co15],
which has become over the years a research topic on its own. The
aim of the present article is to extend the notion of Gröbner bases
to Tate algebras.

Some difficulties need to be overcome. The most significant one
is that elements in Tate algebras are, by nature, infinite convergent
series and so they do not have a degree. This seems to be a serious
obstruction since the degree is the most basic notion on which the
classical theory of Gröbner bases is built. However, analyzing the
definition of Tate algebras, we notice that a Tate series defines a
sequence of polynomials (of growing degrees) by reduction modulo
pn when n varies. In order to take advantage of this observation,
we introduce an order on the terms taking into account the p-adic
valuation of the coefficients. This order is not well-founded as
classical term orders are usually. However, we shall prove that it
is topologically well-founded (in the sense that every decreasing
sequence tends to 0) and that this weaker property is enough to
guarantee the termination of our algorithms in the finite precision
model.

Related works. Gröbner bases over rings — and in particular over Z
and Z/nZ— have also received some attention [AL94, KC09]. These
developments are of course related to this article since quotients
of Tate algebras are polynomial algebras over Z/pnZ for n varying.
The main difference between our point of view and that of loc. cit.
appears in the choice of the term ordering; while, in the theory of
Gröbner bases of rings, only the degree is considered, our setting
forces us to include the valuation of the coefficients in the definition
of the term ordering. It is the “price to pay” to be able to pass
smoothly to the completion and catch inexact bases as Zp or Qp .

The special term ordering we use comes from two different
sources. The first one is the theory of tropical Gröbner bases by
Chan and Maclagan [CM19] in which, for the first time, the valua-
tion of the coefficients has been taken into account in the definition
of the term ordering. Later on, Vaccon and his coauthors [Va*, Va15,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

VY17, VVY18] observed that tropical orders are relevant for the
computation of p-adic Gröbner bases as they improve substantially
the numerical accuracy. The definition of our term order is the nat-
ural outcome of this observation. Our second source of inspiration
is the theory of standard bases, which was designed originally to
“compute” the singularties of algebraic varieties [Mo82, GR95]. This
theory introduces the notion of term order of local/mixed type,
on which the term ordering we are using in the present article is
modeled.

Structure of the article. In §2, we introduce Tate algebras and develop
the theory of Gröbner bases over them. We prove in particular the
existence of finite Gröbner bases and study their structure. §3 is
devoted to algorithms. We first design a variant of the Buchberger
algorithm that runs over Tate algebras. Several results towards its
numerical stability are also presented. We then move to F4-like
algorithms and show how they could be adapted to fit into the
framework of Tate algebras. Finally, in §4, an implementation in
SageMath is briefly discussed.

Notations. The notation N will refer to the set of nonnegative inte-
gers (including 0). IfA is a ring, wewill denote its group of invertible
elements byA×. We fix a positive integern. LetX1, . . . ,Xn ben vari-
ables. We will use the short notation X for (X1, . . . ,Xn). Similarly
for i = (i1, . . . , in) ∈ Nn , we shall write Xi for X i1

1 · · ·X
in
n .

2 GRÖBNER BASES OVER TATE ALGEBRAS
Throughout this article, we fix a field K equipped with a discrete
valuation val : K → Z ⊔ {+∞}, normalized by val(K×) = Z. We
shall always assume that K is complete with respect to the distance
defined by val. We let K◦ be the subring of K consisting of elements
of nonnegative valuation and π be a uniformizer of K , that is an
element of valuation 1. We set K̄ = K◦/πK◦.

A typical example of K as above is the field of p-adic numbers
Qp (equipped with the p-adic valuation). For this example, we have
K◦ = Zp and K̄ = Fp .

2.1 Tate algebras
We endow Rn with the usual scalar product.

Definition 2.1. Let r = (r1, . . . , rn) ∈ Qn . The Tate algebraK {X; r}
is defined by:

K {X; r} :=



∑
i∈Nn

aiXi s.t. ai ∈ K and val(ai) − r·i −−−−−−−→
|i |→+∞

+∞



The tuple r is called the convergence log-radii of the Tate algebra.

Elements of K {X; r} are the power series converging on the product
of closed balls B (0, |π |r1)×· · ·×B (0, |π |rn) where | · | is the absolute
value on K induced by val. When r = (0, . . . , 0), we will simply
write K {X} instead of K {X; (0, . . . , 0)}.

Example 2.2. LetK = Qp . The series f1 = 1
p +X+pX

2+p2X 3+. . .

lies in K {X }. The series f2 = 1 + X + X 2 + X 3 + . . . does not lie
in K {X }, because it does not converge when evaluated at 1 (for
example). However, it does converge when evaluated at x with
|x | < 1, so it lies in K {X ; (r)} for all negative r .

The Tate algebra K {X; r} is equipped with the Gauss valuation
valr : K {X; r} → Q ⊔ {+∞} defined as follows:

valr
(∑
i∈Nn

aiX
i
)
= min

i∈Nn
val(ai) − r·i.

We observe that the minimum is always reached thanks to the
growth condition imposed in Definition 2.1. Moreover, the image
of valr is discrete. Geometrically, the Gauss valuation corresponds
to the minimal valuation reached by the series on its domain of
convergence (possibly after a finite extension of K).

Definition 2.3. The integral Tate algebra ring K {X; r}◦ is defined
as the subring of K {X; r} consisting of elements with nonnegative
Gauss valuation.

Again we will use the notation K {X}◦ for K {X; (0, . . . , 0)}◦. When
r ∈ Zn , observe that K {X; r} = K {π r1X1, . . . ,π rnXn } and similarly
for K {X; r}◦. The case r ∈ Zn then reduces to r = 0 via a change of
variables.

Example 2.4. With the notations of Example 2.2, f1 does not lie
in K {X }◦, but f2 does lie in K {X ; r }◦.

Proposition 2.5. We have K {X; r} = K {X; r}◦
[

1
π

]
.

2.2 About terms
From now on, we fix a log-radii r ∈ Qn .

Monoids of terms. We first recall some basic definitions.

Definition 2.6. A monoid is a set equipped with a single associa-
tive binary operation, which has a neutral element.

An ideal of a monoidM is a subset I ⊂ M such that, for all a ∈ M
and x ∈ I , we have ax ∈ I .

We define the monoid of terms T {X; r} as the multiplicative
monoid consisting of the elements aXi with a ∈ K× and i ∈ Nn . We
let also T {X; r}◦ be the submonoid of T {X; r} consisting of terms
aXi for which valr (aXi) ≥ 0. The multiplicative group K× (resp.
(K◦)×) embeds into T {X; r} (resp. T {X; r}◦). We set:

T{X; r} = T {X; r}/K× and T{X; r}◦ = T {X; r}◦/(K◦)×.

The inclusion T {X; r}◦ ⊂ T {X; r} induces a canonical morphism
(which is no longer injective) T{X; r}◦ → T{X; r}. The ideals of
T{X; r} (resp. of T{X; r}◦) are in bijective correspondance with the
ideals of T {X; r} (resp. of T {X; r}◦). Moreover, T{X; r} and T{X; r}◦
do not contain non trivial invertible elements. In other words, the
divisibility relation defines an order on T{X; r} and T{X; r}◦. The
following lemma elucidates the structure of T{X; r} and T{X; r}◦.

Lemma 2.7. (1) The mapping T{X; r} → Nn , aXi 7→ i is an iso-
morphism of monoids.
(2) The mapping T{X; r}◦ → Q+ × Nn , aXi 7→ (valr (aXi), i) is an
injective morphism of monoids; its image is included in 1

DN × N
n

where D is a common denominator of the coordinates of r.
(3) The natural morphism T{X; r}◦ → T{X; r} corresponds to the
projection onto the factor Nn .

Proposition 2.8. Let I be an ideal of T{X; r} (resp. of T{X; r}◦).
Then there exists a unique subset S of I having the two following prop-
erties: (1) S generates I , and (2) every subset generating I contains S .
Moreover S is finite.

Proof. The unicity is easy. Indeed if S and S ′ satisfy (1) and (2),
one must have S ⊂ S ′ and S ′ ⊂ S , i.e. S = S ′. In order to prove the
existence, we define S as the set of minimal elements of I for the
divisibility relation. The fact that S generates I follows from the fact
that divisibility is a well-funded order on T{X; r} (cf Lemma 2.7).
The point (2) is obvious.

It remains to prove that S is finite. For this, we observe that
any sequence with values in N necessarily has a nondecreasing
subsequence. Extracting subsequences repeatedly, we find that the
previous property also holds for sequences with values in Nm for
any integer m. By Lemma 2.7, it also holds for sequences with
values in T{X; r} (resp. in T{X; r}◦). Therefore, if S were not finite,
we would be able to extract from S a nondecreasing sequence. This
contradicts the fact that S is composed by minimal elements. □

Definition 2.9. Let I be an ideal of T{X; r} (resp. of T{X; r}◦). The
subset S of Proposition 2.8 is called the skeleton of I ; it is denoted
by Skel(I).

The skeleton of an ideal ofT {X; r} (resp. ofT {X; r}◦) is defined as
the skeleton of its image in T{X; r} (resp. in T{X; r}◦); it is denoted
by Skel(I).

In what follows, it will sometimes be convenient to work more
generally with fractional ideals. By definition a fractional ideal of
T{X; r}◦ is a subset of T{X; r} which is stable by multiplication by
elements in T{X; r}◦. The notion of skeleton can be extended to
fractional ideals I of T{X; r}◦ for which there exists N ∈ N such
that I ⊂ π−N T{X; r}◦. For such ideals, Skel(I) is a finite subset of
T {X; r}/(K◦)×. An interesting example of fractional ideal is:

T{X; r}≥v =
{
t ∈ T{X; r} s.t. valr (t) ≥ v

}
. (1)

Remark 2.10. The effective computation of Skel(T{X; r}≥v) is not
an easy problem. It has been solved for n = 1 in [CL14] using the
theory of continued fractions. It would be interesting to generalize
the results of loc. cit. to higher n.

Term order. We fix a monomial order ≤ω on Nn . We recall that
this means that ≤ω is a well-order which is compatible with the
addition. Usual examples of monomial orders are lex, grevlex, etc.

Definition 2.11. We define a preorder ≤ on T {X; r}, T {X; r}◦ by:

aXi ≤ bXj iff valr (aXi) > valr (bXj)
or valr (aXi) = valr (bXj) and i ≤ω j.

Remark 2.12. The inequality sign is reversed in the first line: we
require that valr (aXi) > valr (bXj) and not valr (aXi) < valr (bXj).
This is not a typo and will be important in the sequel.

We underline that ≤ is not antisymmetric (and so not an order).
More precisely, for t1, t2 ∈ T {X; r}, the fact that t1 ≤ t2 and t2 ≤ t1
is equivalent to the existence of a ∈ (K◦)× such that t1 = at2. As
a consequence, ≤ induces an order on T{X; r}◦. On the contrary,
we draw the attention of the reader that ≤ does not factor through
T{X; r}.

Example 2.13. Let K = Qp and consider K {X ,Y } with the lexico-
graphical order. The preorder ≤ orders terms as follows:

· · · > XY 2 > XY > X > · · · > Y > 1 > · · ·

· · · > pXY 2 > · · · > p > · · · > p2XY 2 > · · ·

The terms Xi and −Xi are “equal” for ≤. So are Xi and (1+p)Xi.

It is easily seen that the preorder ≤ is total. In turns out that it
is not a well-order since the infinite sequence (pn)n≥0 is strictly
decreasing. Nevertheless, we have:

Lemma 2.14. Let (tj)j ∈N be a strictly decreasing sequence inT {X; r}
(resp. in T {X; r}◦). Then limj→∞ valr (tj) = +∞.

Proof. From the definition of ≤, it follows that the sequence
(valr (tj))j ∈N is nondecreasing. Moreover it takes its values in 1

DN
for some positive integer D. Finally, the fact that ≤ω is a well-order
implies that for each fixed v ∈ 1

DN, there is only a finite number of
indices j for which valr (tj) = v . Combining these inputs, we find
that valr (tj) must tend to +∞. □

We notice that if i , j, the terms aiXi and ajX j are never “equal”
for ≤. Therefore, any nonzero series f =

∑
i∈Nn aiX

i ∈ K {X; r} has
a unique leading term. We denote it LT (f).

Example 2.15. With the notations of Example 2.13, the leading
term of д2 = XY + p + p2XY is LT (д2) = (1+p2)XY .

2.3 Gröbner bases
Definition 2.16. Given an ideal J ofK {X; r} (resp. ofK {X; r}◦), we
denote by LT (J) the subset of T {X; r} (resp. of T {X; r}◦) consisting
of elements of the form LT (f) with f ∈ J , f , 0.

We check immediately that LT (J) is an ideal of the monoid
T {X; r} (resp. of T {X; r}◦).

Definition 2.17. Let J be an ideal of K {X; r} (resp. of K {X; r}◦).
A family (д1, . . . ,дs) ∈ J s is a Gröbner basis (in short, GB) of J if
LT (J) is generated by the LT (дi)’s in T {X; r} (resp. T {X; r}◦).

Proposition 2.18. Let G = (д1, . . . ,дs) be a GB of an ideal J of
K {X; r} (resp. of K {X; r}◦). Then G generates J .

Proof. Let f ∈ J . We define inductively a sequence (fj)j ∈N as
follows. Let f0 = f . Given j , we write LT (fj) = ajXij LT (дi j) and de-
fine fj+1 = fj − ajXijдi j . Then LT (fj+1) < LT (fj). By Lemma 2.14,
valr (LT (fj)) = valr (fj) goes to infinity when j goes to infinity.
Therefore we can then write f =

∑
j ajXijдi j as a converging se-

ries. By regrouping terms, we get f ∈
〈
д1, . . . ,дs

〉
. □

Proposition 2.8 gives a lot of information about the ideal LT (J)
(where J is an ideal of K {X; r} or K {X; r}◦). These results have
interesting consequences on Gröbner bases.

Theorem 2.19. Any ideal of K {X; r} or K {X; r}◦ has a finite GB.

Proof. Let t1, . . . , ts be the elements of Skel(LT (J)). For all i , let
дi ∈ J be such that LT (дi) = ti in T{X; r} (resp. in T{X; r}◦). Then
(д1, . . . ,дs) is a GB of J . □

Remark 2.20. Combining the previous theorem with Proposi-
tion 2.18, we obtain that any ideal of K {X; r} (resp. of K {X; r}◦) is
finitely generated. In other words, we have proved that the rings
K {X; r} and K {X; r}◦ are Noetherian (which was of course already
known for a long time).

Another important consequence of Proposition 2.8 is the notion of
minimal GB that we discuss now.

Definition 2.21. Let J be an ideal of K {X; r} (resp. of K {X; r}◦). A
GB G = (д1, . . . ,дs) is minimal if the images in T{X; r} (resp. in
T{X; r}◦) of the LT (дi)’s are exactly the elements of Skel(LT (J)),
with no repetition.

A direct consequence of the definition is that two minimal GB
of a given ideal J have the same cardinality, namely the cardinality
of Skel(LT (J)). Proposition 2.8 also implies the next theorem.

Theorem 2.22. Let J be an ideal of K {X; r} (resp. of K {X; r}◦). Let
G be a GB of J . Then, there exists a subsetG ′ ⊂ G which is a minimal
GB of J .

2.4 Comparison results
So far, we have defined a notion of GB for ideals of K {X; r} and
K {X; r}◦. The aim of this subsection is to compare them.

Proposition 2.23. Let I be an ideal of K {X; r}◦ and letG be a GB
of I . Then G is a GB of the ideal J = I

[
1
π

]
of K {X; r}.

Remark 2.24. Note that minimality of GB is not preserved when
passing from K {X; r}◦ to K {X; r}. For example, G = (p,X) is a
minimal GB of the ideal I = (p,X) of K◦{X }. However it is not a
minimal GB of J = I

[
1
π

]
= K {X } since p divides X in this ring.

Going in the other direction (i.e. fromK {X; r} toK {X; r}◦) is more
subtle. First of all, we remark that, if we start with an ideal J of
K {X; r}, there exist many ideals I of K {X; r}◦ with the property that
I
[

1
π

]
= J . However, the set of such ideals I has a unique maximal

element (for the inclusion); it is the ideal J◦ = J ∩ K {X; r}◦. This
special ideal J◦ can also be caracterized by the fact that it is π -
saturated.

Proposition 2.25. Let J be an ideal of K {X; r} and let G =
(д1, . . . ,дs) be a GB (resp. a minimal GB) of J . We assume that
valr (дi) = 0 for all i . Then G is a GB (resp. a minimal GB) of J◦.

Proof. Let G be a GB of J . Let t ∈ LT (J◦). Then t is a multiple
of one of the LT (дi)’s inT {X; r}. Since valr (дi) = 0, we deduce that
LT (дi) divides t in T {X; r}◦ as well. Consequentlt G is a GB of J◦.
The fact that minimality is preserved is easy. □

When r ∈ Zn , it is easy to build a GB of J satisfying the assump-
tion of Proposition 2.25 from any GB of J . Indeed if (д1, . . . ,дs)
is a GB of J then valr (дi) is an integer for all i and the family
(π− valr (д1)д1, . . . ,π− valr (дs)дs) is a GB of J . On the contrary, when
r < Zn , the problem is more complicated as illustrated by the next
example.

Example 2.26. Choose n = 1 and r = (1
2) and let J be ideal of

K {X } generated by X . The ideal J◦ is then generated by д1 = πX
and д2 = πX 2. More precisely, one checks that (д1,д2) is a minimal
GB of J◦. In particular, we observe that the cardinality of a minimal
GB of J does not agree with that of a minimal GB of J◦.

For a general r ∈ Qn , Proposition 2.25 can be refined as follows.

Proposition 2.27. Let J be an ideal of K {X; r}◦ and let G =
(д1, . . . ,дs) be a GB of J . Then a GB of J◦ is (ti, j ·дi)’s where, for each
fixed i , the ti, j ’s enumerate the elements of Skel

(
T {X; r}≥− valr (дi)

)
(cf Eq. (1)).

Reduction in the residue field. When r = (0, . . . , 0), the quotient
K {X}◦/πK {X}◦ is isomorphic to the polynomial algebra K̄[X], on
which we have a well-defined notion of Gröbner bases.

Proposition 2.28. Let J be an ideal of K {X}. Set J◦ = J ∩K {X}◦

and let J̄◦ be the image of J◦ in K̄[X]. Let д1, . . . ,дs in J be such
that val0 (дi) = 1 and let д̄1, . . . , д̄s be their images in J̄◦. Then the
following assertions are equivalent:
(1) (д1, . . . ,дs) is a GB of J ;
(2) (д1, . . . ,дs) is a GB of J◦;
(3) (д̄1, . . . , д̄s) is a GB of J̄◦.

Proof. The equivalence between (1) and (2) has been already
proved. We now prove that (2) implies (3). Let f̄ ∈ J̄◦ and let f ∈ J◦

be a lift of f̄ . We can write LT (f) = aX iLT (дi) for some a, i and i .
Then LT (f̄) = āX iLT (д̄i). Therefore the LT (д̄i)’s generate LT (J̄◦).
We prove finally that (3) implies (2). Let f ∈ J◦. Set h = π− val0 (f) f .
Clearly h ∈ J and h ∈ K {X}◦. Thus h ∈ J◦. By (3), we can write
LT (h̄) = āX iLT (д̄i) for ā ∈ K̄ and i ∈ Nn . We write LT (h) = h0XH

with h0 ∈ (K◦)× and similarly, LT (дi) = b0X F with b0 ∈ (K◦)×.
Then X F divides XH . Let L be such that XH = X F · XL . Then

LT (h) = h0b
−1
0 XLLT (дi)

with h0
b0
∈ K◦. This concludes the proof. □

3 ALGORITHMS
3.1 Division and membership test
Not surprisingly, Gröbner bases can be used to test membership
in ideals. Before going further in this direction, we need to adapt
the division algorithm to our setting. We will need two variants
depending on where we are looking for the quotients.

Proposition 3.1. Let f ,h1, . . . ,hm ∈ K {X; r}. Then, there exist
q1, . . . ,qm ∈ K {X; r} (resp. q1, . . . ,qm ∈ K {X; r}◦) and r ∈ K {X; r}
such that:
(1) f = q1h1 + · · · + qmhm + r ,
(2) for all i and all terms t of r , LT (hi) ∤ t inT {X; r} (resp. inT {X; r}◦),
(3) for all terms ti of qi , we have LT (tihi) ≤ LT (f).

Proof. We only give the proof of K {X; r}, the case of K {X; r}◦
being totally similar. We will construct by induction sequences
(fj)j≥0, (qi, j)j≥0 (1 ≤ i ≤ m) and (r j)j≥0 such that:

f = fj + q1, jh1 + · · · + qm, jhj + r j . (2)

We set f0 = f , r0 = 0 and q1,0 = · · · = qm,0 = 0. If LT (fj) is
divisible by some LT (hi j), we set fj+1 = fj −

LT (fj)
LT (hi)

hi and qi j , j+1 =

qi j , j +
LT (fj)
LT (hi)

, and leave unchanged r and the others qi ’s. Otherwise,
we set fj+1 = fj − LT (fj) and r j+1 = r j + LT (fj).

If follows from the construction that LT (fj+1) < LT (fj) for all j .
By Lemma 2.14, limj→∞ valr (fj) = +∞, i.e. (fj)j≥0 converges to 0
in K {X; r}. Besides, valr

(LT (fj)
LT (hi)

)
tends to infinity as well, so that

the sequences (qi, j)j≥0 all converge. Combining this with Eq. (2),
we find that (r j)j≥0 also converges. The elements qi = limj→∞ qi, j
and r = limj→∞ r j satisfy the requirements of the proposition. □

Algorithm 1 below summarizes the proof of Proposition 3.1. In
general, it does not terminate, keeping computing more and more

Algorithm 1: division
input : f ,h1, . . . ,hm ∈ K {X; r}
output :q1, . . . ,qm , r satisfying Prop. 3.1

1 r ,q1, . . . ,qm ← 0;
2 while f , 0 do
3 while ∃i ∈ {1, . . . ,m} such that LT (hi) | LT (f) do
4 qi ← qi +

LT (f)
LT (hi)

;

5 f ← f −
LT (f)
LT (hi)

hi ;

6 r ← r + LT (f);
7 f ← f − LT (f);
8 Return q1, . . . ,qm , r ;

accurate approximations of the qi ’s and r . However, in the common
case where the coefficients of the input series are all known up
to finite precision, i.e. modulo πN for some N , Algorithm 1 does
terminate.

Remark 3.2. When working at finite precision, it is more intel-
ligent, instead of computing the quotient LT (f)

LT (hi)
(which would

possibly lead to losses of precision), to choose an exact term t such
that the equality LT (f) = t · LT (hi) holds at the working precision,
and use it on lines 4 and 5. Doing so, we limit the losses of precision.

In general, the conditions of Proposition 3.1 are not enough to
determine uniquely the qi ’s and r . However, Proposition 3.3 below
provides a weak unicity result when (h1, . . . ,hm) is a Gröbner
bases, which can be used to test membership.

Proposition 3.3. Let J be an ideal of K {X; r} (resp. of K {X; r}◦)
and let (д1, . . . ,дs) be a GB of J . Let f ∈ K {X; r}. We assume that
we are given a decomposition f = q1д1 + · · · + qsдs + r satisfying
the requirements of Proposition 3.1. Then r = 0 if and only if f ∈ J .

Proof. The “only if” is clear. Conversely, assume by contradic-
tion that f ∈ J and r , 0. Then LT (r) makes sense. From the
conditions of Proposition 3.1, we deduce that LT (r) is not divisible
by LT (дi) for all i . Hence LT (r) < LT (J). This is contradiction since
r ∈ J . □

Remark 3.4. In the integral Tate algebra setting, it is not true
that the remainder in the division by Gröbner bases is unique. For
example, the division in K {X}◦ of f = 1+p by h = p can be written
either f = 0×h+ (1+p) or f = 1×h+1. This is a general limitation
of Gröbner bases over rings, even in the polynomial case [AL94].

3.2 Buchberger’s algorithm
In this subsection, we adapt Buchberger’s algorithm to fit into
the framework of Tate algebras. The adaptation is more or less
straightforward except on two points. The first one is related to
finite precision, as already encountered previously. The second
point is of different nature; it is related to the fact that, when the
log-radii are not integers, the crucial notion of S-polynomials is not
well-defined as the monoid T {X; r}◦ does not admit gcd’s. In what
follows, we will give satisfying answers to these issues.

Buchberger’s criterion. To begin with, we assume r = (0, . . . , 0).
Under this hypothesis, the monoid of terms T {X} admits gcd’s and
lcm’s. Concretely we define:

gcd(aXi, bXj) = πmin(val(a),val(b))X inf (i, j) ,

lcm(aXi, bXj) = πmax(val(a),val(b))X sup(i, j)

where the inf and the sup over Nn are taken coordinate by coordi-
nate. In what follows, in order to simplify notations, we will write
val instead of val(0, ...,0) . If t1 and t2 are two terms, the valuation of
gcd(t1, t2) (resp. of lcm(t1, t2)) is the minimum (resp. the maximum)
of val(t1) and val(t2).

Definition 3.5. For f ,д in K {X}, we define:

S (f ,д) =
LT (д)

gcd(LT (f),LT (д))
f −

LT (f)

gcd(LT (f),LT (д))
д.

We have the following classical lemma:

Lemma 3.6. Let h1, . . . ,hm ∈ K {X} and t1, . . . , tm ∈ T {X}. We
assume that the LT (tihi)’s all have the same image in T {X}/(K◦)×

and that LT (
∑m
i=1 tihi) < LT (tihi). Then

m∑
i=1

tihi =
m−1∑
i=1

t ′i ·S (hi ,hi+1) + t
′
m ·hm

for some t ′1, . . . , t
′
m ∈ T {X} such that val(t ′mhm) > val(t1h1) and

val(t ′i) +max(val(hi), val(hi+1)) ≥ val(t1h1) for i ∈ {1, . . . ,m−1}.

Theorem 3.7. Let h1, . . . ,hs be elements of K {X} (resp. of K {X}◦)
and let I be the ideal of K {X} (resp. of K {X}◦) generated by the hi ’s.
Then (h1, . . . ,hs) is a GB of I if and only if all S (hi ,hj), i , j , reduce
to zero after division by (h1, . . . ,hs) using Algorithm 1.

Proof. The “only if” part follows from Proposition 3.3. We prove
the “if” part. Let us assume by contradiction that there exists some
f ∈ I such that LT (f) < ⟨LT (hi)⟩. We can write f =

∑
i qihi with

qi ∈ K {X} (resp. qi ∈ K {X}◦). Define t = maxi LT (qihi). We have
LT (f) < t because of the hypothesis that LT (f) < ⟨LT (hi)⟩. We can
moreover assume that the decomposition f =

∑
i qihi is chosen in

such a way that t is minimal.
Let J be the set of indices i for which LT (qihi) = a·t for some

a ∈ (K◦)×. Set ti = LT (qi) for i ∈ J and define h =
∑
i ∈J tihi ; we

have LT (h) < t . Applying Lemma 3.6, we find j0 ∈ J and terms t ′,
t ′j,k (for j,k ∈ J) such that:

h =
∑
j,k ∈J

t ′j,kS (hj ,hk) + t
′hj0

and val(t ′hj0) > val(h), val(t ′j,k) + min(val(hj), val(hj)) ≥ val(h).
Applying Proposition 3.1 with the S-polynomials, and using the
fact that the leading terms of the summands in an S-polynomial
cancel out, we get b1, . . . ,bm ∈ K {X} such that h =

∑m
i=1 bihi and

LT (bihi) < t for all i . Therefore, we find that f can be written as
f =
∑
i ∈i q

′
ihi with q′1, . . . ,q

′
m ∈ K {X} and LT (q′ihi) < t for all i .

This contradicts the minimality of t . □

Algorithm 2: Buchberger’s algorithm
input : f1, . . . , fm in K {X} (resp. in K {X}◦)
output : a GB G of the ideal of K {X} (resp. of K {X}◦)

generated by the fi ’s
1 G ← { f1, . . . , fm }; B ← {(fi , fj), 1 ≤ i < j ≤ m};
2 while B , ∅ do
3 (f ,д) ← element of B; B ← B \ {(f ,д)};
4 h ← S-polynomial of f and д;
5 _, r ← division(h,G);
6 if r , 0 then
7 B ← B ∪ {(д, r) for д ∈ G}; G ← G ∪ {r }

8 Return G

Buchberger’s algorithm. After Theorem 3.7, it is easy to design
a Buchberger type algorithm for computing GB over K {X} and
K {X}◦. It is Algorithm 2. Studying its termination is a bit subtle.
Indeed, we have already seen that Algorithm 1 does not terminate
in general when we are working at infinite precision. Therefore,
Algorithm 2 does not terminate either (since it calls Algorithm 1
on line 5). Nevertheless, one may observe that if, instead of calling
Algorithm 1, we ask the reduced form of h modulo G to an oracle
that answers instantly, then Algorithm 2 does terminate. In other
terms, the only source of possible infinite loops in Algorithm 2
comes from Algorithm 1.

Of course, this point of view is purely theoretical and not satisfy-
ing in practice. In practice, the coefficients of f1, . . . , fm are given
at finite precision, i.e. modulo πN for some integer N , and all the
computations are carried out at finite precision. In this setting, we
have seen that Algorithm 1 does terminate, so Algorithm 2 also
terminates. The counterpart is that it is a priori not clear that the
result output by Algorithm 2 is a correct approximation of a GB of
the ideal we started with. Nevertheless, in the case of K {X}◦, this
property holds true as precised by the following theorem.

Theorem 3.8. Let I be an ideal of K {X}◦ and let (f1, . . . , fm) be a
generating family of I . Let also N be an integer such that N > val(t)
for all t ∈ Skel(LT (I)).

When Algorithm 2 is called with f1 +O (πN), . . . , fm +O (πN),
it outputs G = (д1, . . . ,дs) with the following properties:
(1) each дi is known at precision at least O (πN), and
(2) G is the approximation of an actual GB of I .

Proof. The fact that the precision on the дi ’s does not decrease
follows from the fact that Algorithm 2 only performs “exact” divi-
sions (cf Remark 3.2).

We now prove (2). Since the дj ’s are obtained as linear combina-
tions of the inputs fi +O (πN), there exist д̂1, . . . , д̂s ∈ I such that
дi = д̂i +O (πN) for all i . We set Ĝ = (д̂1, . . . , д̂s); it is enough to
prove that Ĝ is a GB of I .

Let IN = I + πNK {X}◦ and ĜN = (д̂1, . . . , д̂s ,πN). We claim
that ĜN is a GB of IN . Since it generates IN , it is enough to check
Buchberger’s criterion. By construction, we know that the reduction
of S (д̂i , д̂j) modulo Ĝ is a multiple of πN . Hence S (д̂i , д̂j) reduces to
zero modulo ĜN . On the other hand, it follows from the definition

of S-polynomials that S (д̂i ,πN) is divisible by πN ; hence it also
reduces to 0 modulo ĜN . The claim is proved.

Let t ∈ LT (IN). Then t = LT (f +πNh) for some f ∈ I and some
h ∈ K {X}◦. If val(f) < N , we have t = LT (f) ∈ LT (I). Otherwise t
is a multiple of πN . We have then proved that LT (IN) is the ideal
generated by LT (I) and the term πN . This implies that, if H is a
GB of I , then HN = H ∪ {πN } is a GB of IN . Moreover by our
assumption on Skel(LT (I)), if H is minimal then HN is also.

Choose now a minimal GB H of I . From what we have done
before and Theorem 2.22, it follows that LT (HN) ⊂ LT (ĜN). Be-
sides, since the дi ’s do not vanish at precision O (πN), we have
val(д̂i) < N for all i . Consequently, LT (H) ⊂ LT (Ĝ). In particular
LT (Ĝ) generates LT (I), and so Ĝ is a GB of I . □

In the case of K {X}, we cannot hope to have similar guarantees.
Indeed, if we ask from the GB of the ideal I generated by f1 =
X +O (πN) and f2 = X +O (πN), the answer might be either (X)
if f1 = f2 = X , or (1) if f1 = X and f2 = X + πN , or many other
results. The best we can do is to compute a GB of the fractional ideal
of K {X}◦ generated by the fi ’s and answer that the obtained result
is likely a GB of I . In the example considered above, we will end
up with the GB (X +O (πN)), which is certainly the more natural
result we may expect.

General log-radii. We now consider the case of a general r ∈ Qn .
In this situation, the monoid T {X; r}◦ no longer admits gcd’s. As
a basic example, take r = (1

2 ,
1
2) and consider the terms t1 = πX1

and t2 = πX2. Then valr (t1) = valr (t2) = 1
2 . So the valuation of

gcd(t1, t2) should be 1
2 as well, implying that gcd(t1, t2) should be

√
π , which is not an element ofT {X; r}◦. When we are working over

K {X; r}, this issue does not happen since we can freely multiply by
any power of π . Over K {X; r}, Algorithm 2 works and is correct
(althought we have to be careful with the normalization of gcd’s in
order to avoid losses of precision as much as possible).

Let us now focus on the case of K {X; r}◦ which is more compli-
cated. Let D be a common denominator of the coordinates of r, i.e.
D·r ∈ Zn . We consider the field extension L = K[η] with ηD = π .
The valuation val extends uniquely to L; we have val(η) = 1

D . We
define L◦, L{X} and L{X}◦ accordingly. Observe that L◦ = K◦[η].
If D·r = (r1, . . . , rn), we have L{X; r} = L{Y} and L{X; r}◦ = L{Y}◦

with Yi = ηriXi . Moreover the valuation valr over L{X; r} (resp.
L{X; r}◦) is transformed into the valuation val0 over L{Y} (resp.
L{Y}◦). The above identifications show that there is a good notion
of gcd’s and S-polynomials over L{X; r} and L{X; r}◦, so that even-
tually Algorithm 2 runs and computes GB over L{X; r} and L{X; r}◦.
Before relating those to GB over K {X; r} and K {X; r}◦, we need to
examine the shape of the GB output by Algorithm 2.

Let ηNK {X; r} be the subset of L{X; r} consisting of elements
of the form ηv f for v ∈ N and f ∈ K {X; r}. Clearly, ηNK {X; r} is
stable by multiplication. Beyond this, one can check that it exhibits
additional stability properties:

Proposition 3.9. (1) When Algorithm 1 is called with inputs
f ,h1, . . . ,hm ∈ ηNK {X; r}, it outputs q1, . . . ,qm , r ∈ ηNK {X; r}.
(2) If f ,д ∈ ηNK {X; r}, then S (f ,д) ∈ ηNK {X; r}.

From Proposition 3.9, we deduce immediately that, when Al-
gorithm 2 is called with inputs fi ∈ K {X; r} ⊂ L{X; r}, the GB it

outputs consists of elements of ηNK {X; r}. The following proposi-
tion shows that, after minimizing this GB, we obtain a GB of the
ideal of K {X; r}◦ we started with.

Proposition 3.10. Let I be an ideal of K {X}◦. LetG be a minimal
GB of I ·L{X; r}◦. We assume G ⊂ ηNK {X; r}. Then G ⊂ K {X; r} and
G is a minimal GB of I .

Proof. Write IL = I ·L{X; r}◦. We claim that:

LT (IL) = η
NLT (I) and I = IL ∩ K {X; r}. (3)

The inclusion ηNLT (I) ⊂ LT (IL) is clear. As for the reverse inclu-
sion, it follows from the fact that any f ∈ IL can be decomposed
as f = f0 + ηf1 + · · · + ηD−1 fD−1 with fi ∈ K {X; r} for all i . Set
J = IL∩K {X; r}. From LT (IL) = η

NLT (I), we deduce LT (I) = LT (J).
Since moreover J obviously contains I , we find I = J .

Let д ∈ G . Write LT (д) = ηvaXi with v ∈ N, a ∈ K× and i ∈ Nn .
Since G is a minimal GB of IL , we know that LT (д) is minimal
in LT (IL). From Eq. (3), we deduce that LT (д) ∈ T {X; r}, that is
ηva ∈ K . Thus ηv ∈ K and д ∈ K {X; r} as claimed. The fact that G
is a minimal GB of I follows again from Eq. (3). □

To conclude this section, we underline that all computations
(i.e. Algorithm 1 and the computation of S-polynomials) can be
carried out within ηNK {X; r}, representing an element of this set
as a pair (v, f) with v ∈ N and f ∈ K {X; r}. This strategy avoids
constructing and working in the field L.

3.3 F4 algorithm
In the history of the computation of Gröbner bases, the development
of Faugère’s F4 algorithm [Fa99] has been a decisive cornerstone
towards faster algorithms. In this section, we adjust its strategy to
the computation of Gröbner bases over Tate algebras. We restrict
ourselves to r = 0, keeping in mind that the case of general log-radii
can be reached using the techniques discussed at the end of §3.2.

Roughly, the F4 algorithm is an adaptation of Buchberger’s algo-
rithm such that all S-polynomials of a given degree are processed
and reduced together in a big matrix of polynomials, along with
their reducers. The algorithm carries on the computation until there
is no S-polynomials to reduce. Over Tate algebras, there is no de-
gree as for polynomials. However, we can use instead the degree of
the lcm of the leading terms of an S-pair.

The F4 strategy can be then summed-up as follows:
(1) Collect all S-pairs sharing the smallest degree for the lcm of
their leading terms, and prepare their reduction (Algorithm 4).
(2) Reduce them all together (Algorithm 3).
(3) Update the GB in construction and list of S-pairs according to
the result of the previous reduction.
(4) Carry on the previous steps until there is no S-pair remaining.
The main algorithm is Algorithm 5, with Algorithms 3 and 4 as
subroutines.

Lemma 3.11. At finite precision, Algorithm 4 terminates in a finite
number of steps, and the outputM has a finite number of rows.

Proof. We remark that the sequence formed by the elements t ’s
considered n the while loop is strictly decreasing. Indeed, we notice
first that t is added toD on line 6, so it cannot reappear later. Then, if
V is not empty, all the terms of δ ·д on line 11 are strictly smaller than

Algorithm 3: TateRowReduction
input : a matrixM ,

a list of monomials mon indexing the col. ofM
output : theU -part of the Tate LUP-form ofM

1 if M has no non-zero entry then ReturnM ;
2 Find i, j s.t.Mi, j has the greatest termMi, jx

monj for ≤;
3 Swap the columns 1 and j ofM ;
4 Swap the entries 1 and j of mon;
5 Swap the rows 1 and i ofM ;
6 By pivoting with the first row, eliminates the coefficients of
the other rows on the first column;

7 Proceed recursively on the submatrixMi≥2, j≥2;
8 ReturnM ;

Algorithm 4: Symbolic-Preprocessing
input : a list P of pairs of elements of K {X} (resp. of K {X}◦),

a list G of elements in K {X} (resp. in K {X}◦).
output : a matrixM

1 U ← the series in P ;
2 C ←

⋃
f ∈U {terms of f };

3 A ← K (resp. A ← K◦); D ← ∅;
4 while A·C , A·D do
5 t ← max {t ∈ C, t < A·D};
6 D ← D ∪ {t };
7 V ←

{(
д, t

LT (д)

)
for д ∈ G s.t. LT (д) | t

}
;

8 if V , ∅ then
9 (д,δ) ← the element (д,δ) of V with maximal LT (δ ·д),

with tie-breaking by taking minimal δ (for degree then
for ≤ω);

10 U ← U ∪ {δ ·д};
11 C ← C ∪ {terms of δ ·д};

12 M ← the series ofU , written in a matrix of series;
13 ReturnM ;

Algorithm 5: F4 algorithm
input : f1, . . . , fm in K {X} (resp. in K {X}◦)
output : a GB G of the ideal of K {X} (resp. of K {X}◦)

generated by the fi ’s
1 G ← (f1, . . . , fm);
2 B ← {(fi , fj), 1 ≤ i < j ≤ m};
3 while B , ∅ do
4 d ← min(u,v)∈B deg lcm(LT (u),LT (v));
5 P receives the pop of the pairs of degree d in B;
6 M ← Symbolic-Preprocessing(P ,G);
7 M ← TateRowReduction(M);
8 Add to G all the polynomials obtained fromM that

provide leading terms not in
〈{
LT (д) for д ∈ G

}〉
;

9 Add to B the corresponding new pairs;
10 Return G;

t , except its leading term which is t . At finite precision, there is no
infinite strictly decreasing sequence by Lemma 2.14. Consequently,
Algorithm 4 terminates in a finite number of steps. □

Proposition 3.12. Under the same hypotheses as in Theorem 3.8,
Algorithm 5 outputs G satisfying the same conclusions.

Proof. Thanks to Lemma 3.11, it is clear that Algorithms 3 and 4
terminate. Termination of Algorithm 5 can then be proved along
the following lines. If the algorithm did not terminate for some
given input, then it would mean that B (the list of pairs) is never
empty. Hence, there would be an infinite number of times when
new polynomials are added to G. From them, we would be able to
construct a strictly increasing sequence of monomial ideals inside
T {X} which are nonzero at the precision O (πN). This contradicts
Lemma 2.14. Finally, thanks to the Buchberger criterion for Tate
algebras (cf Theorem 3.7), the correctness follows along the same
lines as in the proof of Theorem 3.8. □

4 IMPLEMENTATION
We have implemented in SageMath all the algorithms presented in
this paper, together with an interface for workingwith Tate algebras.
Our implementation of Buchberger algorithm (cf §3.2) is now part
of the standard distribution of SageMath since version 8.5. It is
fairly optimized but it is clear that more work need to be done in this
direction: the timings we obtain are far from the average timings
reached by other softwares (as singular) for the computation of
Gröbner bases over Z/pnZ, whereas we could expect them to match,
even if the context is a bit different. Our implementation of the F4
algorithm (cf §3.3) is still a toy implementation, which does not
exhibit good performances yet; we plan to improve it in a near
future. It is available at:

https://gist.github.com/TristanVaccon

Short demo. Our implementation provides a constructor for cre-
ating Tate algebras, called TateAlgebra:

In: K = Qp(2, prec=5, print_mode='digits')
A.<x,y> = TateAlgebra(K); A

Out: Q2 {x, y }

We observe that, by default, the log-radii are all zero; the keyword
log_radii can be use to pass in other values. Similarly the default
order is the one attached toω = grevlex, but any other order known
by SageMath can be specified via the keyword order.

The ring of integers of the Tate algebras can be built as follows:
In: Ao = A.integer_ring(); Ao
Out: Q2 {x, y }◦

We can now create and manipulate elements:
In: f = 2*x^2 + 5*x*y^2

g = 4 + 2*x^2*y
f + g

Out: ...00101xy2 + ...000010x 2y + ...000010x 2 + ...0000100
In: (1+g).inverse_of_unit()
Out: ...01101 + ...01110x 2y + ...10100x 4y2 +

...11000x 6y3 + ...10000x 8y4 +O (25 Q2 {x, y }◦)

We observe that, in the outputs, terms are ordered with respect to
the term order on T {X}, the greatest one coming first. The big-oh
appearing on the last line hides terms which are multiple of 25.

Classical transcendantal functions are also implemented, e.g.:
In: log(1+g)
Out: ...01110x 4y2 + ...11010x 2y + ...11100x 8y4+

...11100 + ...11000x 6y3 +O (25 Q2 {x, y }◦)

Ideals of K {X} can be defined and manipulated as follows:
In: J = A.ideal([f,g])

J.groebner_basis()
Out: [...0001x 3 + ...1011y +O (24 Q2 {x, y }◦),

...00001x 2y + ...00010 +O (25 Q2 {x, y }◦),

...0001y2 + ...1010x +O (24 Q2 {x, y }◦)]
In: A.random_element()*f + A.random_element()*g in J
Out: True
In: log(1+g) in J
Out: True

And similarly for ideals ofK {X}◦ (observe that no losses of precision
occur this time, in accordance with Theorem 3.8):

In: Jo = Ao.ideal([f,g])
Jo.groebner_basis()

Out: [...00001xy2 + ...11010x 2 +O (25 Q2 {x, y }◦),
...000010x 2y + ...000100 +O (26 Q2 {x, y }◦),
...000100x 3 + ...101100y +O (26 Q2 {x, y }◦),
...000100y2 + ...101000x +O (26 Q2 {x, y }◦)]

In: g/2 in Jo
Out: False

REFERENCES
[AL94] Adams William and Loustaunau Philippe, An Introduction to Gröbner Bases,

Amer. Math. Soc. 7 (1994)
[BGR84] Bosch Siegfried, Günzter Ulrich and Remmert Reinhold, Non-Archimedean

analysis, Springer-Verlag (1984)
[Bu65] Buchberger Bruno, Ein Algorithmus zum Auffinden der Basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm
for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimen-
sional Polynomial Ideal), English translation in J. of Symbolic Computation,
Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol.
41, Number 3-4, Pages 475–511, 2006

[CL14] Caruso Xavier and Lubicz David, Linear Algebra over Zp [[u]] and related
rings, LMS J. Comput. Math. 17 (2014), 302-344

[CM19] Chan Andrew andMaclagan Diane, Gröbner bases over fields with valuations,
Math. Comp. 88 (2019), 467-483.

[Co15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015.

[Fa99] Faugère Jean-Charles, A new efficient algorithm for computing Gröbner bases
(F4), Journal of Pure and Applied Algebra, 1999

[GR95] Gräbe Hans-Gert, Algorithms in Local Algebra, Journal of Symbolic Compu-
tation 19, 1995, 545–557

[KC09] Kapur Deepak and Cai Yongyang, An Algorithm for Computing a Gröbner
Basis of a Polynomial Ideal over a Ring with Zero Divisors, Mathematics in
Computer Science, 2009

[Mo82] Mora Ferdinando, An algorithm to compute the equations of tangent cones,
Proceedings of European Computer Algebra Conference in Marseille, 1982, 158–
165

[Sage] SageMath, the Sage Mathematics Software System (Version 8.6), The Sage
Development Team, 2018, http://www.sagemath.org

[Ta71] Tate John, Rigid analytic spaces, Inventiones Mathematicae 12, 1971, 257–289
[Va14] Vaccon Tristan, Matrix-F5 algorithms over finite-precision complete discrete

valuation fields, Proceedings of 39th International Symposium on Symbolic and
Algebraic Computation, ISSAC’14, Kobe, Japan.

[Va*] Vaccon Tristan, Précision p-adique, thèse de l’Université de Rennes 1,
https://tel.archives-ouvertes.fr/tel-01205269.

[Va15] Vaccon Tristan, Matrix-F5 Algorithms and Tropical Gröbner Bases Com-
putation, Proceedings of the 40th International Symposium on Symbolic and
Algebraic Computation, ISSAC 2015, Bath, United Kingdom. Extended version in
the Journal of Symbolic Computation, Dec. 2017.

[VY17] Vaccon Tristan and Yokoyama Kazuhiro, A Tropical F5 algorithm, Proceedings
of the 42th International Symposium on Symbolic and Algebraic Computation,
ISSAC 2017, Kaiserslautern, Germany.

[VVY18] Vaccon Tristan, Verron Thibaut and Yokoyama Kazuhiro, On Affine Tropical
F5 algorithm, Proceedings of the 43th International Symposium on Symbolic
and Algebraic Computation, ISSAC 2018, New York, USA.

https://gist.github.com/TristanVaccon
http://www.sagemath.org

	Abstract
	1 Introduction
	2 Gröbner bases over Tate algebras
	2.1 Tate algebras
	2.2 About terms
	2.3 Gröbner bases
	2.4 Comparison results

	3 Algorithms
	3.1 Division and membership test
	3.2 Buchberger's algorithm
	3.3 F4 algorithm

	4 Implementation
	References

