Why You Should Remove Zeros From Data Before Guessing

Manuel Kauers, Thibaut Verron
Institute for Algebra, Johannes Kepler University, Linz, Austria

Problem: Determine a recurrence relation for the sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{F}_{97}^{\mathbb{N}}$ starting with $3,0,0,8,0,0,18,0,0,30,0,0,42,0,0,54,0,0,68,0,0,80,0,0,1,0$,

- Generate a new sequence $\bar{a}_{n}=a_{3 n}$ without the zeroes: $3,8,18,30,42,54,68,80,1$,
- Make an ansatz equation
- Make an ansatz equation

$$
\sum_{j=0}^{3} \sum_{i=0}^{4} c_{i, j} n^{i} a_{n+j}=0 \quad \underset{\sum c_{i, j / 3}\left(\frac{n}{3}\right)^{i} a_{n+3 j}=\sum c_{i, j / 3}\left(\frac{n}{3}\right)^{i} \bar{a}_{n / 3+j}=0}{\longrightarrow} \sum_{j=0}^{1} \sum_{i=0}^{4} \bar{c}_{i, j} n^{i} \bar{a}_{n+j}=0
$$

- Plug in the values of a_{n} and obtain a linear system

20 unknowns

- If it was generic, the system would not have any solution.
- But it has a dimension 2 kernel:
$(1,0,38,36,92,0,0,0,0,0,0,0,0,0,0,7,38,77,75,92)^{T}$
$(0,1,35,38,16,0,0,0,0,0,0,0,0,0,0,49,58,73,82,68)^{T}$
- So we can deduce some relations:

$$
\left(92 n^{4}+75 n^{3}+77 n^{2}+38 n+7\right) a_{n+3}+\left(92 n^{4}+36 n^{3}+38 n^{2}+1\right) a_{n}=0
$$

$$
\left(68 n^{4}+82 n^{3}+73 n^{2}+58 n+49\right) a_{n+3}+\left(16 n^{4}+38 n^{3}+35 n^{2}+n\right) a_{n}=0
$$

- If it was generic, the system would have a dimension 2 solution space.

- It does, the kernel is generated by

$(1,0,93,80,19,86,67,54,62,83)^{\top}$
$(0,1,83,9,41,33,41,18,4,72)^{T}$

- The corresponding relations would be:
$\left(83 n^{4}+62 n^{3}+54 n^{2}+67 n+86\right) \bar{a}_{n+1}+\left(19 n^{4}+80 n^{3}+93 n^{2}+1\right) \bar{a}_{n}=0$
- We do not have enough data to obtain a recurrence!

The same happens with other guessing techniques, such as Hermite-Padé approximation.

- The correspondence between the recurrences for $\left(a_{n}\right)$ and $\left(\bar{a}_{n}\right)$ is always true. It ensures that removing the zeros does not lose information.
- In general, the number of values required to guess with any confidence a recurrence relation of order r and degree d is $(r+1)(d+2)-1$.
- In the example, on the left-hand side, with $r=3$ and $d=4$, we find that we need at least 23 points, so our 26 points should have been enough if the sequence had been generic.
- On the right-hand side, with $r=1$ and $d=4$, we find that we need 11 points, so our 9 points are indeed not enough.
- The actual minimal number of values, for a sequence such that $a_{n}=0$ whenever $n \bmod m \neq 0$, is

$$
m\left[\left(\left\lfloor\frac{r}{m}\right\rfloor+1\right)(d+2)-1\right]
$$

- Again in the example, for the original sequence, we need 33 points, which confirms that our 26 points are not enough.
- One can also guess polynomial relations.
- There, one considers the formal power series $a(t)=\sum_{n=0}^{\infty} a_{n} t^{t}$ and looks for a relation of the form

$$
P(t, a(t))=\sum_{j=0}^{r} \sum_{i=0}^{d} c_{i, j} t^{i} a(t)^{j}=0
$$

- If $\bar{a}(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$, then $a(t)=\bar{a}\left(t^{m}\right)$ and

$$
\sum_{j=0}^{r} \sum_{i=0}^{d / m} c_{i / m, j} t^{i} \bar{a}(t)^{j}=0
$$

- In general, the number of values required to guess with any confidence a polynomial relation of degree r in a and d in t is

$$
(r+1)(d+1) .
$$

- For a sequence such that $a_{n}=0$ whenever $n \bmod m \neq 0$, the actual value is

$$
m(r+1)\left(\left\lfloor\frac{d}{m}\right\rfloor+1\right)
$$

- One can also guess differential equations of the form

$$
\sum_{j=0}^{r} \sum_{i=0}^{d} c_{i, j} t^{i} a(t)^{(j)}=0
$$

- But $a^{\prime}(t)=m t^{m-1} \bar{a}^{\prime}\left(t^{m}\right)$ does not lead to a convenient conversion between equations for $a(t)$ and $\bar{a}(t)$
- Example: $\cos (t)=1+0 t-\frac{t^{2}}{2}+0 t^{3}+\frac{t^{4}}{24}+\ldots$ satisfies the differential equation

$$
\cos ^{\prime \prime}(t)+\cos (t)=0 \quad(\text { order } 2, \text { degree } 0)
$$

- If we remove the zeros, we obtain $a(t)=\cos (\sqrt{t})$, for which the smallest differential equation is

$$
4 t a^{\prime \prime}(t)+2 a^{\prime}(t)+a(t)=0 \quad(\text { order } 2, \text { degree } 1)
$$

- If we add zeros, we can consider $b(t)=\cos \left(t^{2}\right)$, for which the smallest differential equation are

$$
t b^{\prime \prime}(t)-b^{\prime}(t)+4 t^{3} b(t)=
$$

(order 2, degree 3)

$$
b^{(3)}(t)+4 t^{2} b^{\prime}(t)+12 t b(t)=0
$$ (order 3, degree 2)

References

- B. Beckermann and G. Labahn (1994). "A uniform approach for the fast computation of Matrix-type Pace approximants". In: SIAM Journal on Matrix Analysis and Applications 15.3, pp. 804-823
- W. Hebisch and M. Rubey (2011). "Extended Rate, more GFUN". In Journal of Symbolic Computation 46.8, pp. 889-903
- M. Kauers (2009). Guessing Handbook. Tech. rep. 09-07. RISC-Linz
M. Kauers (2013). "The Holonomic Toolkit". In: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions Springer, pp. 119-144
- M. Kauers, M. Jaroschek, and F. Johansson (2014). "Ore Polynomials in Sage". In: Computer Algebra and Polynomials. LNCS 8942. Springer, pp. 105-125
B. Salve and P. Zimmerman (1994). "Gun: a Maple package for the manipulation of generating and holonomic functions in one variable". In

