Why You Should Remove Zeros From Data Before Guessing
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Problem: Determine a recurrence relation for the sequence (ap),eNn € FI§7 starting with
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» Generate a new sequence a, = az, without the zeroes:

3,8,18,30,42, 54,68,80, 1, ...

» Make an ansatz equation
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» Make an ansatz equation
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» Plug in the values of a, and obtain a linear system:
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» If it was generic, the system would not have any solution. » If it was generic, the system would have a dimension 2 solution space.

» But it has a dimension 2 kernel:
(1, 0, 38, 36,92, 0,0,0,0,0,0,0,0, 0,0, 7, 38, 77, 75, 92) |
(0, 1, 35, 38, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 49, 58, 73, 82, 68) "

» So we can deduce some relations:

(92n* 4 75n° + 77n* + 38n + 7)ap. 3 + (92n" + 36n° + 38n° + 1)a, = 0
(68n* + 82n° + 73n” + 58n + 49) a3 + (16n" + 381> + 35n° + n)a, = 0

» But those relations are not valid! » We do not have enough data to obtain a recurrence!

» The same happens with other guessing techniques, such as » One can also guess polynomial relations. » One can also guess differential equations of the form
Hermite-Padé approximation. rod
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» In the example, on the left-hand side, with r = 3 and d = 4, we
find that we need at least 23 points, so our 26 points should

have been enough if the sequence had been generic.

On the right-hand side, with r = 1 and d = 4, we find that we
need 11 points, so our 9 points are indeed not enough.

The actual minimal number of values, for a sequence such that
an = 0 whenever n mod m # 0, is

m (L) + 1) (e+2) =1

Again in the example, for the original sequence, we need 33
points, which confirms that our 26 points are not enough.

» In general, the number of values required to guess with any

confidence a polynomial relation of degree r in a and d in t is

(r+1)(d+1).

» For a sequence such that a, = 0 whenever n mod m # 0, the

actual value is
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If we remove the zeros, we obtain a(t) = cos(/t), for which the
smallest differential equation is

atd"(t) + 24 (t) + a(t) = 0 (order 2, degree 1)

If we add zeros, we can consider b(t) = cos(t?), for which the
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(order 2, degree 3)
(order 3, degree 2)
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