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Precision and Gröbner bases

I �estion: in R[X ], reduce f = X 2 modulo g = 0.01X − 1

f = X 2

100X

10 000

f = X 2

0.01X 3

0.0001X 4

· · ·

I The usual way:

I It terminates, but...

I g ' 1, but f mod g 6' 0

I Another way?

I It does not terminate, but...

I The sequence of reductions tends to 0

−100Xg

−10 000g

+X 2g

+0.01X 3g

· · ·

I This work: make sense of this process for convergent power series in Zp[[X ]]
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Precision and Gröbner bases

LT(g)
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f = X 2

10 000X

100 000 000

f = X 2
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Precision and Gröbner bases

LT(g)

I �estion: in R[X ], reduce f = X 2 modulo g = 0.000 001X − 1

f = X 2

1 000 000X

1 000 000 000 000

f = X 2

0.000 001X 3

0.000 000 000 001X 4

· · ·

I The usual way:

I It terminates, but...

I g ' 1, but f mod g 6' 0

I Another way?

I It does not terminate, but...

I The sequence of reductions tends to 0

−1 000 000Xg

−1 000 000 000 000g

+X 2g

+0.000 001X 3g

· · ·

I This work: make sense of this process for convergent power series in Zp[[X ]]
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A recap on Complete Discrete Valuation Rings

I DVR = principal local domain K◦ with maximal ideal 〈π〉, residue field F = K◦/〈π〉
Zp

C[[X ]]
p
X

Fp

C

I Elements can be wri�en a =
∑∞

n=0 anπ
n, an ∈ F

I Valuation of a = max n such that πn divides a
I Metric defined by “a is small ⇐⇒ val(a) is large”
I Zp and C[[X ]] are complete for this topology 1 π a = a3π

3 +a4π
4 +. . .

val(a) = 3

I No loss of precision possible:
if a and b are small, a + b is small

a + b = a + b a + b = a + b

?

I In a CDVR, a series is convergent
i� its general term tends to 0

∑
n=0 an = a0

+ a1 + a2 + a3 + · · ·
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Tate Series

X = X1, . . . , Xn
Definition
I K{X}◦ = ring of series in X with coe�icients in K◦ converging for all x ∈ K◦

= ring of power series whose general coe�icients tend to 0

Motivation
I Introduced by Tate in 1971 for rigid geometry

(p-adic equivalent of the bridge between algebraic and analytic geometry over C)

Examples
I Polynomials (finite sums are convergent)

I

∞∑
i,j=0

πi+jX iY j = 1 + πX + πY + π2X 2 + π2XY + π2Y 2 + · · ·

I Not a Tate series:
∞∑
i=0

X i = 1 + 1X + 1X 2 + 1X 3 + · · ·



5

Term ordering for Tate algebras

Xi = X i1
1 · · ·X in

n

I Starting from a usual monomial ordering 1 <m Xi1 <m Xi2 <m . . .

I We define a term ordering pu�ing more weight on large coe�icients

Usual term ordering:

π · 1 <m 1Xi1 <m π Xi2 <m π
2 Xi3 <m · · ·

Term ordering for Tate series:

· · · < π2 Xi3 < π· 1 < π Xi2 < 1Xi1 < · · ·
<m

I It has infinite descending chains, but they converge to zero

I Tate series always have a leading term

I Isomorphism K{X}◦/〈π〉 ' F[X]

f 7→ f̄

compatible with the term order

f = a2XY + a1X + a0 · 1 + a3X
2Y 2 + . . .

f = a2XY + a1X

LT(f )
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Gröbner bases

I Standard definition once the term order is defined:

G is a Gröbner basis of I ⇐⇒ for all f ∈ I, there is g ∈ G s.t. LT(g) divides LT(f )

I Standard equivalent characterizations:

1. G is a Gröbner basis of I

2. for all f ∈ I, f is reducible modulo G

3. for all f ∈ I, f reduces to zero modulo G

If I is saturated:

4. G is a Gröbner basis of I in the sense of F[X]

πf ∈ I =⇒ f ∈ I

∃ sequence of reductions converging to 0

I Every Tate ideal has a finite Gröbner basis

I It can be computed using the usual algorithms (reduction, Buchberger, F4)

I In practice, the algorithms run with finite precision and without loss of precision

No division by π
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How does it work? (4 =⇒ 3)

1. Start with f ∈ I, we can assume that f has valuation 0 I is saturated

2. Separate f = f + f − f

3. f ∈ I so we have a sequence of reductions G is a Gröbner basis of I

f − q1g1 − q2g2 − · · · − qrgr = 0

4. So we have a sequence of reductions

f −
r∑

i=1

qigi = f −
r∑

i=1

qigi +
r∑

i=1

qi
(
gi − gi

)

= f − f +
r∑

i=1

qi
(
gi − gi

)
= � = π · f1
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What about Tate series over a field?

I CDVF = fraction field K of a CDVR K◦

Zp

C[[X ]]
Qp

C((X))

I Elements can be wri�en a =
∑∞

n=−r anπ
n, an ∈ F

I The valuation can be negative but not infinite
I Same metric, same topology as K◦

I Tate series can be defined as in the integer case
I Same order, same definition of Gröbner bases
I Main di�erence: πX now divides X

I Another surprising equivalence

1. G is a normalized GB of I

2. G ⊂ K{X}◦ is a GB of I ∩ K{X}◦

I In practice, we emulate computations in K{X}◦ in order to avoid losses of precision

∀g ∈ G, LC(g) = 1 (in part., G ⊂ K{X}◦)

a = a−3π
−3 + a−2π

−2 + . . .

val(a) = −3

π−2+π−1X+1X 2+π2X 3+· · ·
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Generalizing the convergence condition: log-radii in Zn

Xi = X i1
1 · · ·X in

nDefinition
I K{X} = ring of power series converging for all x ∈ K◦

= ring of power series whose general coe�icients tend to 0
= ring of power series

∑
aiXi with val(ai) −−−−→

|i|→∞
+∞

I The term order is not the same!

f (X) =
∞∑
i=0

X i = 1 + 1X + 1X 2 + · · ·

f /∈ K{X}

(= K{X ; 0})

f (x) = 1 + x + x2 + · · · is divergent

f ∈ K{X ; 1}

f (x) = 1 + x + x2 + · · · is convergent
Log-radii in Qn are more complicated, but things still work.

I Reduction to previous case by change of variables: f (πX) = 1 + πX + π2X 2 + · · ·
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f (x) = 1 + x + x2 + · · · is convergent
Log-radii in Qn are more complicated, but things still work.

I Reduction to previous case by change of variables: f (πX) = 1 + πX + π2X 2 + · · ·
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Conclusion and perspectives

What we presented here
I Tate series = formal power series appearing in algebraic geometry
I Definitions of Gröbner bases for Tate series
I Algorithms for computing and using those Gröbner bases
I Data structure and algorithms implemented in Sage (version 8.5, 22/12/2018)

Extensions
I Coe�icients in a complete discrete valuation field (controlling the precision)
I Tate series with convergence radius di�erent from 1 (integer or rational log)

Perspectives
I Faster reduction: algorithms for local monomial orderings and standard bases (Mora)
I Faster Gröbner basis computation: signature-based algorithms

Thank you for your a�ention!

More information and references:

I Xavier Caruso, Tristan Vaccon and Thibaut Verron (2019). ‘Gröbner bases over Tate algebras’. In:
ISSAC’19, arXiv:1901.09574. arXiv: 1901.09574 [math.AG]

https://arxiv.org/abs/1901.09574
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