Signature-based algorithms for computing Gröbner bases over Principal Ideal Domains

Maria Francis ${ }^{1}$, Thibaut Verron ${ }^{2}$
1. Indian Institute of Technology Hyderabad, Hyderabad, India
2. Institute for Algebra, Johannes Kepler University, Linz, Austria

Séminaire Algebra and Discrete Mathematics, Johannes Kepler University, Linz 21 March 2019

Gröbner bases

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Gröbner bases

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- Signature-based criteria: F5 (2002), GVW (2010)...

Gröbner bases

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:

- Möller (1988) for general rings and principal domains, Kandri-Rodi Kapur (1988) for Euclidean domains...
- Optimizations and general criteria are still available
- What about signatures?

Gröbner bases

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:

- Möller (1988) for general rings and principal domains, Kandri-Rodi Kapur (1988) for Euclidean domains...
- Optimizations and general criteria are still available
- What about signatures?

This work: signature-based algorithms for PIDs

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Definition (Leading term, monomial, coefficient)
R ring, $A=R\left[X_{1}, \ldots, X_{n}\right]$ with a monomial order $<, f=\sum a_{i} X^{b_{i}}$

- Leading term $\operatorname{LT}(f)=a_{i} X^{b_{i}}$ with $X^{b_{i}}>X^{b_{j}}$ if $j \neq i$
- Leading monomial $\operatorname{LM}(f)=X^{b_{i}}$
- Leading coefficient $\operatorname{LC}(f)=a_{i}$

Definition (Weak/strong Gröbner basis)

$G \subset \mathfrak{a}=\left\langle f_{1}, \ldots, f_{n}\right\rangle$

- G is a weak Gröbner basis $\Longleftrightarrow\langle\operatorname{LT}(f): f \in \mathfrak{a}\rangle=\langle\operatorname{LT}(g): g \in G\rangle$
- G is a strong Gröbner basis \Longleftrightarrow for all $f \in \mathfrak{a}, f$ reduces to 0 modulo G

Equivalent if R is a field
$f \in A=R[X], G=\left\{g_{1}, \ldots, g_{s}\right\} \subset A$

Definition (S-polynomial)

$T(i)=\operatorname{LT}\left(g_{i}\right), T(i, j)=\operatorname{lcm}\left(\operatorname{LT}\left(g_{i}\right), \operatorname{LT}\left(g_{j}\right)\right)$

$$
\mathrm{S}-\operatorname{Pol}\left(g_{i}, g_{j}\right)=\frac{T(i, j)}{T(i)} g_{i}-\frac{T(i, j)}{T(j)} g_{j}
$$

Definition (Reduction)

If $\operatorname{LT}(f)=c X^{a} \operatorname{LT}\left(g_{i}\right)$, then f reduces to $h=f-c X^{a} g$ modulo G.
We use the same word for the transitive closure of the relation.

Buchberger's criterion

G is a (strong) Gröbner basis \Longleftrightarrow for all $i, j \in\{1, \ldots, s\}, S-\operatorname{Pol}\left(g_{i}, g_{j}\right)$ reduces to 0 modulo G.

Buchberger's algorithm

(Strong) S-polynomial:
$\mathrm{S}-\mathrm{Pol}=\frac{T(i, j)}{\mathrm{LT}\left(g_{i}\right)} g_{i}-\frac{T(i, j)}{\mathrm{LT}\left(g_{j}\right)} g_{j}$
(Strong) reduction:

$$
f \rightsquigarrow h=f-c X^{a} \operatorname{LT}(g)
$$

- $1^{\text {st }}$ idea: keep track of the representation $g=\sum_{i} q_{i} f_{i}$ for $g \in\left\langle f_{1}, \ldots, f_{m}\right\rangle$ [Möller, Mora, Traverso 1992]
- Work in the module $A^{m}=A \mathbf{e}_{1} \oplus \cdots \oplus A \mathbf{e}_{m}$ with ${ }^{-}: \mathbf{e}_{i} \mapsto \overline{\mathbf{e}}_{i}=f_{i}$
- Example: S-polynomial: S-Pol $\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)=\frac{T(i, j)}{T(i)} \mathbf{g}_{i}-\frac{T(i, j)}{T(j)} \mathbf{g}_{j}$
- This computation is expensive!
- $2^{\text {nd }}$ idea: we don't need the full representation, the largest term might be enough! [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]
- Define a signature $\mathfrak{s}(g)$ of g as

$$
\mathfrak{s}(g)=\operatorname{LT}\left(q_{j}\right) \mathbf{e}_{j}=\operatorname{LT}(\mathbf{g}) \text { for some } \mathbf{g}=\sum_{i=1}^{m} q_{i} \mathbf{e}_{i} \in A^{m} \text { with } \overline{\mathbf{g}}=g=\sum_{i=1}^{m} q_{i} f_{i}
$$

where q_{j} is the last coef. $\neq 0$

Signatures

- Signatures are ordered as "position over term":

$$
a X^{b} \mathbf{e}_{i}<a^{\prime} X^{b^{\prime}} \mathbf{e}_{j} \Longleftrightarrow i<j \text { or } i=j \text { and } X^{b}<X^{b^{\prime}}
$$

- Example: S-polynomial: S-Pol $\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)=\frac{T(i, j)}{T(i)} \mathbf{g}_{i}-\frac{T(i, j)}{T(j)} \mathbf{g}_{j}$

Up to permutation, two situations:
$-\frac{T(i, j)}{T(i)} \operatorname{LT}\left(\mathbf{g}_{i}\right)>\frac{T(i, j)}{T(j)} \mathrm{LT}\left(\mathbf{g}_{j}\right) \quad \rightarrow \quad \mathrm{LT}\left(\mathrm{S}-\operatorname{Pol}\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)\right)=\frac{T(i, j)}{T(i)} \mathrm{LT}\left(\mathbf{g}_{i}\right)$
$-\frac{T(i, j)}{T(i)} \mathrm{LT}\left(\mathbf{g}_{i}\right) \simeq \frac{T(i, j)}{T(j)} \mathrm{LT}\left(\mathbf{g}_{j}\right) \quad \rightarrow \quad \mathrm{LT}\left(\mathrm{S}-\operatorname{Pol}\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)\right) \leq \frac{T(i, j)}{T(i)} \mathrm{LT}\left(\mathbf{g}_{i}\right)$

Signatures

- Signatures are ordered as "position over term":

$$
a X^{b} \mathbf{e}_{i}<a^{\prime} X^{b^{\prime}} \mathbf{e}_{j} \Longleftrightarrow i<j \text { or } i=j \text { and } X^{b}<X^{b^{\prime}}
$$

- Example: S-polynomial: S-Pol $\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)=\frac{T(i, j)}{T(i)} \mathbf{g}_{i}-\frac{T(i, j)}{T(j)} \mathbf{g}_{j}$

Up to permutation, two situations:
$-\frac{T(i, j)}{T(i)} \mathfrak{s}\left(g_{i}\right)>\frac{T(i, j)}{T(j)} \mathfrak{s}\left(g_{j}\right) \quad \rightarrow \quad \mathfrak{s}\left(\mathrm{S}-\operatorname{Pol}\left(g_{i}, g_{j}\right)\right)=\frac{T(i, j)}{T(i)} \mathfrak{s}\left(g_{i}\right)$
Regular S-polynomial
$-\frac{T(i, j)}{T(i)} \mathfrak{s}\left(g_{i}\right) \simeq \frac{T(i, j)}{T(j)} \mathfrak{s}\left(g_{j}\right) \quad \rightarrow \quad \mathfrak{s}\left(\mathrm{S}-\operatorname{Pol}\left(g_{i}, g_{j}\right)\right) \leq \frac{T(i, j)}{T(i)} \mathfrak{s}\left(g_{i}\right)$
Non regular S-polynomial: possible signature drop

- Keeping track of the signature is free if we restrict to regular S-pols and reductions!

Definition (Signature reductions)

$f, g, h \in\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with signatures, such that f reduces to $h=f-c X^{a} g$
The reduction is

- a \mathfrak{s}-reduction if $X^{a} \mathfrak{s}(g) \leq \mathfrak{s}(f)$
- a regular \mathfrak{s}-reduction if $X^{a} \mathfrak{s}(g) \leq \mathfrak{s}(f)$
(i.e. $\mathfrak{s}(h) \leq \mathfrak{s}(f)$)
(i.e. $\mathfrak{s}(h)=\mathfrak{s}(f))$

Definition (Signature Gröbner basis)

$G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathfrak{a}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is a (strong) \mathfrak{s}-Gröbner basis iff for all $f \in \mathfrak{a}, f \mathfrak{s}$-reduces to 0 modulo G.

Key theorem

- A s-Gröbner basis is a Gröbner basis
- Every ideal admits a finite \mathfrak{s}-Gröbner basis

Buchberger's algorithm, with signatures

(Strong) S-polynomial:

$$
\begin{gathered}
\text { S-Pol }=\frac{T(i, j)}{\mathrm{LT}\left(g_{i}\right)} g_{i}-\frac{T(i, j)}{\mathrm{LT}\left(g_{j}\right)} g_{j} \\
\text { Regular: } \frac{T(i, j)}{\operatorname{LT}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)>\frac{T(i, j)}{\mathrm{LT}\left(g_{j}\right)} \mathfrak{s}\left(g_{j}\right) \\
\\
S(i, j)=\frac{T(i, j)}{\mathrm{LT}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)
\end{gathered}
$$

(Strong) reduction:

$$
f \rightsquigarrow h=f-c X^{a} \operatorname{LT}(g)
$$

$$
\text { Regular: } \mathfrak{s}(f)>X^{a} \mathfrak{s}(g)
$$

$$
\mathfrak{s}(h)=\mathfrak{s}(f)
$$

Consequences of signatures

Key property

Buchberger's algorithm with signatures computes $G B$ elements with increasing signatures.

Main consequence

Buchberger's algorithm with signatures is correct and computes a signature GB.

Then we can add criteria...
Singular criterion: eliminate some redundant computations
If $\mathfrak{s}(g) \simeq \mathfrak{s}\left(g^{\prime}\right)$ then after regular reduction, $\mathrm{LM}(g)=\operatorname{LM}\left(g^{\prime}\right)$.

F5 criterion: eliminate Koszul syzygies $f_{i} f_{j}-f_{j} f_{i}=0$
If $\mathfrak{s}(g)=\operatorname{LT}\left(g^{\prime}\right) e_{j}$ and $\mathfrak{s}\left(g^{\prime}\right)=\star e_{i}$ for some indices $i<j$, then g reduces to 0 modulo the already computed basis.

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	LC reductions

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	LC reductions
With signatures			

Main difficulty: how to order the signatures with their coefficients?

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	
With signatures			LC reductions [Eder, Popescu 2017]

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients
- Impossible to avoid signature drops, signatures can decrease

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	LC reductions
	With signatures [F., V. 2018] (for PIDs) [F., V. 2019]		
[Eder, Popescu 2017]			

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients
- Impossible to avoid signature drops, signatures can decrease
- This work: partial order disregarding the coefficients
- No signature drops, signatures don't decrease (but they may not increase)
- Möller's weak GB algo.: proved for PIDs
- Möller's strong GB algo.: signatures also for the G-polynomials

Towards weak bases: saturated sets and weak S-polynomials

Definition (Saturated set)

Given a basis $\left\{g_{1}, \ldots, g_{t}\right\}$, saturated sets are constructed as follows:

1. Pick $J \subset\{1, \ldots t\}$
2. $M(J) \leftarrow \operatorname{Icm}\left\{\mathrm{LM}\left(g_{j}\right): j \in J\right\}$
3. Add to J all $j \in\{1, \ldots, t\}$ such that $\mathrm{LM}\left(g_{j}\right)$ divides $M(J)$

Definition (Weak S-polynomial)

Let $s=\max (J), J^{*}=J \backslash\{s\}$, and let $c \neq 0$ an element of $\left\langle\operatorname{LC}\left(g_{j}\right): j \in J^{*}\right\rangle:\left\langle\mathrm{LC}\left(g_{s}\right)\right\rangle$.
There exists $\left(b_{j}\right)_{j \in J^{*}}$ such that $\mathrm{LC}\left(g_{s}\right) c=\sum_{j \in J^{*}} b_{j} \mathrm{LC}\left(g_{j}\right)$.
The associated weak S-polynomial is

$$
\mathrm{S}-\mathrm{Pol}(J ; c)=c \frac{M(J)}{\mathrm{LM}\left(g_{s}\right)} g_{s}-\sum_{j \in J^{*}} b_{j} \frac{M(J)}{\mathrm{LM}\left(g_{j}\right)} g_{j} .
$$

Definition (Weak reduction)

f weakly reduces to h modulo G if there exists $J \subset\{1, \ldots, t\}$ such that

- for all $j \in J, \operatorname{LM}\left(g_{j}\right)$ divides $\operatorname{LM}(f)$, say, $X^{a_{i}} \operatorname{LM}\left(g_{j}\right)=\operatorname{LM}(f)$
- LC (f) lies in $\left\langle\mathrm{LC}\left(g_{j}\right): j \in J\right\rangle$, say, $\operatorname{LC}(f)=\sum_{j \in J} b_{j} \operatorname{LC}\left(g_{j}\right)$
- $h=f-\sum_{j \in J} b_{j} X^{a_{j}} g_{j}$

We use the same word for the transitive closure of the relation.

"Möller's criterion"

The following statements are equivalent:

- G is a weak Gröbner basis of $\mathfrak{a}=\langle G\rangle$
- $\langle\operatorname{LT}(G)\rangle=\langle\operatorname{LT}(\mathfrak{a})\rangle$
- For all f in \mathfrak{a}, f weakly reduces to 0 modulo G
- For all J and c, the weak S-pol S-Pol $(J ; c)$ weakly reduces to 0 modulo G

Möller's weak GB algorithm

(R is a Noetherian ring)

Weak S-polynomial:

$\mathrm{S}-\mathrm{Pol}=c \frac{M(J)}{\operatorname{LM}\left(g_{s}\right)} g_{s}-\sum b_{j} \frac{M(J)}{\operatorname{LM}\left(g_{j}\right)} g_{j}$

Weak reduction:

$$
f \rightsquigarrow h=f-\sum c_{i} X^{a_{i}} g_{i}
$$

[Möller 1988]

Definition (Saturated set)

Given a basis $\left\{g_{1}, \ldots, g_{s}\right\}$, saturated sets are constructed as follows:

1. Pick $J \subset\{1, \ldots s\}$
2. $M(J) \leftarrow \operatorname{Icm}\left\{\operatorname{LM}\left(g_{j}\right): j \in J\right\}$
3. Add to J all $j \in\{1, \ldots, s\}$ such that $\mathrm{LM}\left(g_{j}\right)$ divides $M(J)$

The signature of a saturated set is

$$
S(J)=\max \left(\frac{M(J)}{\operatorname{LM}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)\right)_{i \in J}
$$

A regular saturated set is constructed such that this max is reached only once, at $s \in J$. Then

$$
\mathfrak{s}(S-\operatorname{Pol}(J ; s ; c))=c S(J)
$$

Möller's weak GB algorithm, with signatures (R is a Principal Ideal Domain)

Weak $\mathfrak{s - G B} \xrightarrow[g_{s}, \mathfrak{s}\left(g_{s}\right)]{\substack{f_{1} \\ \mathbf{e}_{1}, \ldots,,_{m}}}$
[Möller 1988]
[F, V 2018]

Weak S-polynomial:
$\mathrm{S}-\mathrm{Pol}=c \frac{M(J)}{\operatorname{LM}\left(g_{s}\right)} g_{s}-\sum b_{j} \frac{M(J)}{\operatorname{LM}\left(g_{j}\right)} g_{j}$
Regular: $\forall j, \frac{M(J)}{\operatorname{LM}\left(g_{s}\right)} \mathfrak{s}\left(g_{s}\right)>\frac{M(J)}{\operatorname{LM}\left(g_{j}\right)} \mathfrak{s}\left(g_{j}\right)$

$$
S(J)=c \frac{M(i, j)}{\operatorname{LM}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)
$$

Weak reduction:
$f \rightsquigarrow h=f-\sum c_{i} X^{a_{i}} g_{i}$
Regular: $\forall i, \mathfrak{s}(f)>X^{a_{i}} \mathfrak{s}^{\left(g_{i}\right)}$

$$
\mathfrak{s}(h)=\mathfrak{s}(f)
$$

Signatures \mathfrak{s} do not decrease.

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Weak S-pols and reductions:
Same as in Möller's weak GB

Strong S-pols and reductions:
Same as in Buchberger

The syzygy lifting theorem

(R is a Noetherian ring)

$G=\left\{g_{1}, \ldots, g_{s}\right\}$

Definition

A term-syzygy of G is $S=\sum_{i=1}^{s} s_{i} \varepsilon_{i} \in A^{s}$, whose syzygy polynomial $\bar{S}=\sum s_{i} g_{i}$
satisfies $\operatorname{LT}(\bar{S}) \lesseqgtr \max \left(\operatorname{LT}\left(s_{i} g_{i}\right)\right)$.

Syzygy lifting theorem

The following statements are equivalent:

- G is a (weak/strong) Gröbner basis
- If \mathcal{S} is a basis of term-syzygies of G, for all $S \in \mathcal{S}, \bar{S}$ (weakly/strongly) red. to 0 mod. G.
- Buchberger's criterion:
(Strong) S-polynomials form a basis of term-syzygies over a field
- Buchberger's chain criterion:

Some S-pols can be removed without compromising the basis

- Möller's criterion:

Weak S-polynomials form a basis of term-syzygies in general

Why is life easier with PIDs (1/2)

Principal syzygies / Strong S-polynomials

If R is a principal ring, then principal syzygies (of the form $c_{i} X^{a_{i}} \varepsilon_{i}-c_{j} X^{a_{j}} \varepsilon_{j}$) form a basis of term syzygies.

Weak S-pols and reductions:
Same as in Möller's weak GB

Strong S-pols and reductions:
Same as in Buchberger

Why is life easier with PIDs (2/2)

Principal syzygies / Strong S-polynomials

If R is a principal ring, then principal syzygies (of the form $c_{i} X^{a_{i}} \varepsilon_{i}-c_{j} X^{a_{j}} \varepsilon_{j}$) form a basis of term syzygies.

Definition (G-polynomials)

From a Bézout relation $\operatorname{gcd}(\mathrm{LC}(f), \mathrm{LC}(g))=u \mathrm{LC}(f)+v \mathrm{LC}(g)$,
the G-polynomial of f and g is defined as

$$
\mathrm{G}-\operatorname{Pol}(f, g)=u \frac{\operatorname{lcm}(\mathrm{LM}(f), \mathrm{LM}(g))}{\mathrm{LM}(f)} f+v \frac{\operatorname{Icm}(\mathrm{LM}(f), \mathrm{LM}(g))}{\mathrm{LM}(g)} g
$$

Completion

The completion $C(F)$ of $F=\left\{f_{1}, \ldots, f_{r}\right\}$ is defined as follows:

- $C(\varnothing)=\varnothing$
- $C\left(F \cup f_{r+1}\right)=C(F) \cup\left\{f_{r+1}\right\} \cup\left\{\mathrm{G}-\operatorname{Pol}\left(h, f_{r+1}\right): h \in C(F)\right\}$
G is a weak Gröbner basis $\Longleftrightarrow C(G)$ is a strong Gröbner basis.

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Tool for the proof: signature version of the lifting theorem

Definition (Signatures for term-syzygies)

- Signature of $S=\sum_{i=1}^{s} s_{i} \varepsilon_{i}: \mathfrak{s}(S)=\max \left\{\operatorname{LT}\left(s_{i}\right) \mathfrak{s}\left(g_{i}\right) \mid s_{i} \neq 0\right\}$
- S-basis of term-syzygies: basis such that every element can be represented without a signature drop:
$\left\{\Sigma_{1}, \ldots, \Sigma_{k}\right\}$ such that for all term-syzygy S, there exists $\tau_{1}, \ldots, \tau_{k}$ such that
- $S=\sum_{i=1}^{k} \tau_{i} \Sigma_{i}$
- $\mathfrak{s}(S) \simeq \max \left\{\operatorname{LT}\left(\tau_{i}\right) S\left(\Sigma_{i}\right) \mid \tau_{i} \neq 0\right\}$

Syzygy lifting theorem, signature version

The following statements are equivalent:

- G is a (weak/strong) \mathfrak{s}-Gröbner basis
- If \mathcal{S} is a S-basis of term-syzygies of G, for all $S \in \mathcal{S}, \bar{S}$ (weakly/strongly) red. to 0 mod. G.

Skeleton of the proof

(R is a PID)

[F., V. 2018] :

1. Reg. weak S-pols s-red. to 0 \Longrightarrow weak S-GB

Skeleton of the proof

(R is a PID)

1. Reg. weak S-pols s-red. to 0 \Longrightarrow weak S-GB

Möller's weak GB algorithm with signatures is correct
2. Reg. weak S-pols form a S-basis of term syzygies

Weak S-pol rewriting
3. Reg. strong S-pols form a S-basis of term syzygies

Möller's strong GB algorithm Signature with signatures is correct lifting thm

Skeleton of the proof

Möller's weak GB algorithm with signatures is correct
2. Reg. weak S-pols form a S-basis of term syzygies

Weak S-pol rewriting
3. Reg. strong S-pols form a S-basis of term syzygies

Chain criterion syz. rewriting
4. Reg. strong S-pols not eliminated by the chain crit. form a S-basis of term syzygies lifting thm

Experimental data (1/2)

Toy implementation of the algorithms in Magma: https://github.com/ThibautVerron/SignatureMoller

			Added as pairs, not S-pols		Added as S-pols, not reduced		Reduced, thrown away	
Algorithm	Pairs	S-pols (red)	Copr.	Chain	F5	Sing.	1-sing.	0 red.
Weak, sigs	2227	51	0	0	2125	51	0	0
Strong, no sigs	1191	344	251	596	0	0	0	282
Strong, sigs	488	178 (62)	157	153	115	1	6	0

Katsura-3 system (in $\mathbb{Z}\left[X_{1}, \ldots, X_{4}\right]$)

Algorithm	Pairs	S-pols (red)	Copr.	Chain	F5	Sing.	1-sing.	0 red.
Strong, no sigs	2712	837	759	1116	0	0	0	739
Strong, sigs	1629	$603(206)$	509	517	388	9	84	0
Katsura-4 system (in $\left.\mathbb{Z}\left[X_{1}, \ldots, X_{5}\right]\right)$								

Experimental data (2/2)

Toy implementation of the algorithms in Magma: https://github.com/ThibautVerron/SignatureMoller

System	Möller with sigs	Native F4 from Magma
Katsura 3	0.05 s	0.01 s
Katsura 4	0.30 s	0.10 s
Katsura 5	5.71 s	5.74 s
Katsura 6	2055.66 s	251.10 s
Timings		

Results

- Signature-based algorithms for GB over principal domains
- Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
- Möller's strong GB algorithm: computes a strong basis
- In both cases: proof of correctness and termination, signatures do not decrease
- Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- Toy implementation in Magma, with some first optimizations

Results and future work

- Signature-based algorithms for GB over principal domains
- Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
- Möller's strong GB algorithm: computes a strong basis
- In both cases: proof of correctness and termination, signatures do not decrease
- Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- Toy implementation in Magma, with some first optimizations
- Main bottlenecks
- Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
- Strong GB algo.: basis growth and coefficient swell

Results and future work

- Signature-based algorithms for GB over principal domains
- Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
- Möller's strong GB algorithm: computes a strong basis
- In both cases: proof of correctness and termination, signatures do not decrease
- Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- Toy implementation in Magma, with some first optimizations
- Main bottlenecks
- Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
- Strong GB algo.: basis growth and coefficient swell
- Current and future work
- Optimizations to counter those bottlenecks
- Selection strategies? Degree over Position over Term ordering? F4/F5?
- Does Möller's weak GB algo. work for more general rings? For example UFDs?
- End goal
- Competitive implementation of the algorithms

One last word

Thank you for your attention!

More information and references:

- Möller's weak GB with signatures

Maria Francis and Thibaut Verron (2018). 'A Signature-based Algorithm for Computing Gröbner Bases over Principal Ideal Domains'. In: ArXiv e-prints. arXiv: 1802.01388 [cs.SC]

- Möller's strong GB with signatures

Maria Francis and Thibaut Verron (2019). 'Signature-based Möller’s Algorithm for strong Gröbner Bases over PIDs'. In: ArXiv e-prints. arXiv: 1901.09586 [cs.SC]

