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Gröbner bases

I Valuable tool for many questions related to polynomial equations
(solving, elimination, dimension of the solutions...)

I Classically used for polynomials over fields
I Some applications with coe�icients in general rings (elimination, combinatorics...)

Many algorithms for fields
I First algorithm: Buchberger (1965)
I Optimizations related to selection strategies: “Normal” (1985), “Sugar” (1991)
I Criteria: Buchberger’s coprime and chain criteria (1979), Gebauer-Möller (1988)
I Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
I Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:
I Möller (1988) for general rings and principal domains,

Kandri-Rodi Kapur (1988) for Euclidean domains...
I Optimizations and general criteria are still available
I What about signatures?

This work: signature-based algorithms for PIDs
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Outline

1. Reminders about Gröbner bases over fields
I Gröbner bases, Buchberger’s algorithm
I Signatures

2. Algorithms for rings
I Adding signatures to Möller’s weak GB algorithm
I Adding signatures to Möller’s strong GB algorithm

3. Proofs and experiments
I Skeleton of the proofs
I Experimental data
I Future work
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Gröbner bases: definitions (R is a Noetherian ring)

Definition (Leading term, monomial, coe�icient)

R ring, A = R[X1, . . . , Xn] with a monomial order <, f =
∑

aiX bi

I Leading term LT(f ) = aiX bi with X bi > X bj if j 6= i
I Leading monomial LM(f ) = X bi

I Leading coe�icient LC(f ) = ai

Definition (Weak/strong Gröbner basis)

G ⊂ a = 〈f1, . . . , fn〉
I G is a weak Gröbner basis ⇐⇒ 〈LT(f ) : f ∈ a〉 = 〈LT(g) : g ∈ G〉
I G is a strong Gröbner basis ⇐⇒ for all f ∈ a, f reduces to 0 modulo G

Equivalent if R is a field
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Gröbner bases: basic constructions (R is a field)

f ∈ A = R[X ],G = {g1, . . . , gs} ⊂ A

Definition (S-polynomial)

T (i) = LT(gi), T (i, j) = lcm(LT(gi), LT(gj))

S-Pol(gi, gj) =
T (i, j)
T (i)

gi −
T (i, j)
T (j)

gj

Definition (Reduction)

If LT(f ) = cX aLT(gi), then f reduces to h = f − cX ag modulo G.

We use the same word for the transitive closure of the relation.

Buchberger’s criterion

G is a (strong) Gröbner basis ⇐⇒ for all i, j ∈ {1, . . . , s}, S-Pol(gi, gj) reduces to 0 modulo G.
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Buchberger’s algorithm (R is a field)

Gröbner basis

f1, . . . , fm

e1, . . . , em

S-pol

Reduction6=0
S(i, j)S(i, j)S(i, j)

∅
=0

gi

gj

(Strong) S-polynomial:

S-Pol =
T (i, j)
LT(gi)

gi −
T (i, j)
LT(gj)

gj

Regular:
T (i, j)
LT(gi)

s(gi) >
T (i, j)
LT(gj)

s(gj)

S(i, j) =
T (i, j)
LT(gi)

s(gi)

(Strong) reduction:

f  h = f − cX aLT(g)

Regular: s(f ) > X as(g)

s(h) = s(f )
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Computing in the free module (R is a field)

I 1st idea: keep track of the representation g =
∑

i qifi for g ∈ 〈f1, . . . , fm〉
[Möller, Mora, Traverso 1992]

I Work in the module Am = Ae1 ⊕ · · · ⊕ Aem with ·̄ : ei 7→ ēi = fi

I Example: S-polynomial: S-Pol(gi, gj) =
T (i, j)
T (i)

gi −
T (i, j)
T (j)

gj

I This computation is expensive!

I 2nd idea: we don’t need the full representation, the largest term might be enough!

[Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

I Define a signature s(g) of g as

s(g) = LT(qj)ej = LT(g) for some g =
m∑
i=1

qiei ∈ Am with ḡ = g =
m∑
i=1

qifi

where qj is the last coef. 6= 0
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Signatures (R is a field)

I Signatures are ordered as “position over term”:

aX bei < a′X b′ej ⇐⇒ i < j or i = j and X b < X b′

I Example: S-polynomial: S-Pol(gi, gj) =
T (i, j)
T (i)

gi −
T (i, j)
T (j)

gj

Up to permutation, two situations:

I
T (i, j)
T (i)

LT(gi) >
T (i, j)
T (j)

LT(gj) → LT(S-Pol(gi, gj)) =
T (i, j)
T (i)

LT(gi)

Regular S-polynomial

I
T (i, j)
T (i)

LT(gi) '
T (i, j)
T (j)

LT(gj) → LT(S-Pol(gi, gj)) ≤ T (i, j)
T (i)

LT(gi)

Non regular S-polynomial: possible signature drop

I Keeping track of the signature is free if we restrict to regular S-pols and reductions!
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I
T (i, j)
T (i)
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T (i)

s(gi)

Regular S-polynomial

I
T (i, j)
T (i)
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s-reductions, s-Gröbner bases (R is a field)

Definition (Signature reductions)

f , g, h ∈ 〈f1, . . . , fm〉 with signatures, such that f reduces to h = f − cX ag

The reduction is
I a s-reduction if X as(g) ≤ s(f ) (i.e. s(h) ≤ s(f ))
I a regular s-reduction if X as(g) � s(f ) (i.e. s(h) = s(f ))

Definition (Signature Gröbner basis)

G = {g1, . . . , gs} ⊂ a = 〈f1, . . . , fm〉 is a (strong) s-Gröbner basis

i� for all f ∈ a, f s-reduces to 0 modulo G.

Key theorem

I A s-Gröbner basis is a Gröbner basis
I Every ideal admits a finite s-Gröbner basis
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Buchberger’s algorithm, with signatures (R is a field)

s-Gröbner basis

f1, . . . , fm

e1, . . . , em

S-pol

Regular
reduction

6=0
S(i, j)S(i, j)S(i, j)

∅
=0

gi, s(gi)

gj

(Strong) S-polynomial:

S-Pol =
T (i, j)
LT(gi)

gi −
T (i, j)
LT(gj)

gj

Regular:
T (i, j)
LT(gi)

s(gi) >
T (i, j)
LT(gj)

s(gj)

S(i, j) =
T (i, j)
LT(gi)

s(gi)

(Strong) reduction:

f  h = f − cX aLT(g)

Regular: s(f ) > X as(g)

s(h) = s(f )
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Consequences of signatures (R is a field)

Key property

Buchberger’s algorithm with signatures computes GB elements with increasing signatures.

Main consequence

Buchberger’s algorithm with signatures is correct and computes a signature GB.

Then we can add criteria...

Singular criterion: eliminate some redundant computations

If s(g) ' s(g′) then a�er regular reduction, LM(g) = LM(g′).

F5 criterion: eliminate Koszul syzygies fifj − fjfi = 0

If s(g) = LT(g′)ej and s(g′) = ?ei for some indices i < j, then g reduces to 0 modulo the
already computed basis.
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Outline

1. Reminders about Gröbner bases over fields
I Gröbner bases, Buchberger’s algorithm
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2. Algorithms for rings
I Adding signatures to Möller’s weak GB algorithm
I Adding signatures to Möller’s strong GB algorithm

3. Proofs and experiments
I Skeleton of the proofs
I Experimental data
I Future work
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Context and main results: what about rings?

Type of rings General rings Principal domains Euclidean domains

Type of GB Weak Strong Strong

Algorithm Möller weak Möller strong Kandri-Rodi Kapur

Techniques
Weak S-pols

Weak reductions

Strong S-pols

Strong reductions

G-pols

Strong S-pols

Strong reductions

G-pols

LC reductions

With signatures [F., V. 2018] (for PIDs) [F., V. 2019] [Eder, Popescu 2017]

Main di�iculty: how to order the signatures with their coe�icients?

I Eder, Popescu 2017: total order using absolute value of the coe�icients
I Impossible to avoid signature drops, signatures can decrease

I This work: partial order disregarding the coe�icients
I No signature drops, signatures don’t decrease (but they may not increase)
I Möller’s weak GB algo.: proved for PIDs
I Möller’s strong GB algo.: signatures also for the G-polynomials
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Towards weak bases: saturated sets and weak S-polynomials

Definition (Saturated set)

Given a basis {g1, . . . , gt}, saturated sets are constructed as follows:

1. Pick J ⊂ {1, . . . t}
2. M(J)← lcm{LM(gj) : j ∈ J}
3. Add to J all j ∈ {1, . . . , t} such that LM(gj) divides M(J)

Definition (Weak S-polynomial)

Let s = max(J), J∗ = J r {s}, and let c 6= 0 an element of 〈LC(gj) : j ∈ J∗〉 : 〈LC(gs)〉.

There exists (bj)j∈J∗ such that LC(gs)c =
∑

j∈J∗ bjLC(gj).

The associated weak S-polynomial is

S-Pol(J; c) = c
M(J)

LM(gs)
gs −

∑
j∈J∗

bj
M(J)

LM(gj)
gj.
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Weak reductions and weak bases (R is a Noetherian ring)

Definition (Weak reduction)

f weakly reduces to h modulo G if there exists J ⊂ {1, . . . , t} such that
I for all j ∈ J, LM(gj) divides LM(f ), say, X ai LM(gj) = LM(f )

I LC(f ) lies in 〈LC(gj) : j ∈ J〉, say, LC(f ) =
∑

j∈J bjLC(gj)
I h = f −

∑
j∈J bjX

ajgj

We use the same word for the transitive closure of the relation.

“Möller’s criterion”
The following statements are equivalent:

I G is a weak Gröbner basis of a = 〈G〉
I 〈LT(G)〉 = 〈LT(a)〉
I For all f in a, f weakly reduces to 0 modulo G
I For all J and c, the weak S-pol S-Pol(J; c) weakly reduces to 0 modulo G



17

Möller’s weak GB algorithm (R is a Noetherian ring)

Weak GB

f1, . . . , fm

e1, . . . , em

Weak S-pol

Weak reduction6=0
S(J)S(J)S(J)

∅
=0

GJ = {gj : j ∈ J}

gs

[Möller 1988]

[F, V 2018]

Weak S-polynomial:

S-Pol = c M(J)
LM(gs)

gs −
∑

bj
M(J)

LM(gj)
gj

Regular: ∀ j, M(J)
LM(gs)

s(gs) >
M(J)

LM(gj)
s(gj)

S(J) = c
M(i, j)
LM(gi)

s(gi)

Weak reduction:

f  h = f −
∑

ciX aigi

Regular: ∀ i, s(f ) > X ai s(gi)

s(h) = s(f )

Signatures s do not decrease.
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Regular saturated sets (R is a Noetherian ring)

Definition (Saturated set)

Given a basis {g1, . . . , gs}, saturated sets are constructed as follows:

1. Pick J ⊂ {1, . . . s}
2. M(J)← lcm{LM(gj) : j ∈ J}
3. Add to J all j ∈ {1, . . . , s} such that LM(gj) divides M(J)

The signature of a saturated set is

S(J) = max

(
M(J)

LM(gi)
s(gi)

)
i∈J

A regular saturated set is constructed such that this max is reached only once, at s ∈ J.

Then
s(S-Pol(J; s; c)) = cS(J)
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Möller’s weak GB algorithm, with signatures (R is a Principal Ideal Domain)

Weak s-GB

f1, . . . , fm

e1, . . . , em

Weak S-pol

Regular
weak reduction

6=0
S(J)S(J)S(J)

∅
=0

GJ = {gj : j ∈ J}

gs, s(gs)

[Möller 1988]
[F, V 2018]

Weak S-polynomial:

S-Pol = c M(J)
LM(gs)

gs −
∑

bj
M(J)

LM(gj)
gj

Regular: ∀ j, M(J)
LM(gs)

s(gs) >
M(J)

LM(gj)
s(gj)

S(J) = c
M(i, j)
LM(gi)

s(gi)

Weak reduction:

f  h = f −
∑

ciX aigi

Regular: ∀ i, s(f ) > X ai s(gi)

s(h) = s(f )

Signatures s do not decrease.
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From weak to strong (1/3) (R is a PID)

Weak GB

f1, . . . , fm

e1, . . . , em

Weak S-pol

Weak reduction6=0
S(i, j)S(i, j)

S(i, j)

∅
=0

{gj : j ∈ J}
gi

gj

G-pol Strong GB

s(?)

σ(?)

σ(?)

“Completion”

Weak S-pols and reductions:

Same as in Möller’s weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

h = G-Pol = u lcm(...)
LM(f ) f + v lcm(...)

LM(g) g

σ(h) = max( Xγ

Xα s(f ), Xγ

Xβ σ(g))

σ(h) may be > s(G-Pol(f , g)) !

Signatures (s and σ)
do not decrease.
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The syzygy li�ing theorem (R is a Noetherian ring)

G = {g1, . . . , gs}

Definition
A term-syzygy of G is S =

∑s
i=1 siεi ∈ As , whose syzygy polynomial S̄ =

∑
sigi

satisfies LT(S̄) � max(LT(sigi)).

Syzygy li�ing theorem

The following statements are equivalent:
I G is a (weak/strong) Gröbner basis
I If S is a basis of term-syzygies of G, for all S ∈ S , S̄ (weakly/strongly) red. to 0 mod. G.

I Buchberger’s criterion:
(Strong) S-polynomials form a basis of term-syzygies over a field

I Buchberger’s chain criterion:
Some S-pols can be removed without compromising the basis

I Möller’s criterion:
Weak S-polynomials form a basis of term-syzygies in general



23

Why is life easier with PIDs (1/2)

Principal syzygies / Strong S-polynomials

If R is a principal ring, then principal syzygies (of the form ciX aiεi − cjX ajεj)
form a basis of term syzygies.

Definition (G-polynomials)

From a Bézout relation gcd(LC(f ), LC(g)) = uLC(f ) + vLC(g),

the G-polynomial of f and g is defined as

G-Pol(f , g) = u
lcm(LM(f ), LM(g))

LM(f )
f + v

lcm(LM(f ), LM(g))

LM(g)
g

Completion

The completion C(F ) of F = {f1, . . . , fr} is defined as follows:
I C(∅) = ∅
I C(F ∪ fr+1) = C(F ) ∪ {fr+1} ∪ {G-Pol(h, fr+1) : h ∈ C(F )}

G is a weak Gröbner basis ⇐⇒ C(G) is a strong Gröbner basis.
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From weak to strong (2/3) (R is a PID)

Weak GB

f1, . . . , fm

e1, . . . , em

Strong S-pol

Weak reduction6=0
S(i, j)S(i, j)

S(i, j)

∅
=0

{gj : j ∈ J}
gi

gj

G-pol Strong GB

s(?)

σ(?)

σ(?)

“Completion”

Weak S-pols and reductions:

Same as in Möller’s weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

h = G-Pol = u lcm(...)
LM(f ) f + v lcm(...)

LM(g) g

σ(h) = max( Xγ

Xα s(f ), Xγ

Xβ σ(g))

σ(h) may be > s(G-Pol(f , g)) !

Signatures (s and σ)
do not decrease.
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Why is life easier with PIDs (2/2)

Principal syzygies / Strong S-polynomials

If R is a principal ring, then principal syzygies (of the form ciX aiεi − cjX ajεj)
form a basis of term syzygies.

Definition (G-polynomials)

From a Bézout relation gcd(LC(f ), LC(g)) = uLC(f ) + vLC(g),

the G-polynomial of f and g is defined as

G-Pol(f , g) = u
lcm(LM(f ), LM(g))

LM(f )
f + v

lcm(LM(f ), LM(g))

LM(g)
g

Completion

The completion C(F ) of F = {f1, . . . , fr} is defined as follows:
I C(∅) = ∅
I C(F ∪ fr+1) = C(F ) ∪ {fr+1} ∪ {G-Pol(h, fr+1) : h ∈ C(F )}

G is a weak Gröbner basis ⇐⇒ C(G) is a strong Gröbner basis.
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From weak to strong (3/3) (R is a PID)

Weak GB

f1, . . . , fm

e1, . . . , em

Strong S-pol

Weak reduction6=0
S(i, j)S(i, j)

S(i, j)

∅
=0

{gj : j ∈ J}
gi

gj

G-pol Strong GB

s(?)

σ(?)

σ(?)

“Completion”

Weak S-pols and reductions:

Same as in Möller’s weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

h = G-Pol = u lcm(...)
LM(f ) f + v lcm(...)

LM(g) g

σ(h) = max( Xγ

Xα s(f ), Xγ

Xβ σ(g))

σ(h) may be > s(G-Pol(f , g)) !

Signatures (s and σ)
do not decrease.
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Möller’s strong GB algorithm (R is a PID)

Weak GB

f1, . . . , fm

e1, . . . , em

Strong S-pol

Strong reduction

6=0
S(i, j)S(i, j)

S(i, j)

∅
=0

{gj : j ∈ J}
gi

gj

G-pol Strong GB

s(?)

σ(?)

σ(?)

“Completion”

Weak S-pols and reductions:

Same as in Möller’s weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

h = G-Pol = u lcm(...)
LM(f ) f + v lcm(...)

LM(g) g

σ(h) = max( Xγ

Xα s(f ), Xγ

Xβ σ(g))
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I Gröbner bases, Buchberger’s algorithm
I Signatures

2. Algorithms for rings
I Adding signatures to Möller’s weak GB algorithm
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Tool for the proof: signature version of the li�ing theorem

Definition (Signatures for term-syzygies)

I Signature of S =
∑s

i=1 siεi : s(S) = max{LT(si)s(gi)|si 6= 0}
I S-basis of term-syzygies: basis such that every element can be represented without a

signature drop:

{Σ1, . . . ,Σk} such that for all term-syzygy S, there exists τ1, . . . , τk such that
I S =

∑k
i=1 τiΣi

I s(S) ' max{LT(τi)S(Σi)|τi 6= 0}

Syzygy li�ing theorem, signature version

The following statements are equivalent:
I G is a (weak/strong) s-Gröbner basis
I If S is a S-basis of term-syzygies of G, for all S ∈ S , S̄ (weakly/strongly) red. to 0 mod. G.
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Skeleton of the proof (R is a PID)

1. Reg. weak S-pols s-red. to 0
=⇒ weak S-GB

Möller’s weak GB algorithm
with signatures is correct

[F., V. 2018]

2. Reg. weak S-pols form
a S-basis of term syzygies

3. Reg. strong S-pols form
a S-basis of term syzygies

Weak S-pol rewriting

4. Reg. strong S-pols
not eliminated by the chain crit.
form a S-basis of term syzygies

Chain criterion syz. rewriting

(If T (k) divides T (i, j))

Σ(i, k) = T(i,k)
T(i) Σ(i, k)− T(j,k)

T(j) Σ(j, k)

Möller’s strong GB algorithm
with signatures is correctSignature

li�ing thm

[F., V. 2019]
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Experimental data (1/2)

Toy implementation of the algorithms in Magma:
https://github.com/ThibautVerron/SignatureMoller

Added as pairs,
not S-pols

Added as S-pols,
not reduced

Reduced,
thrown away

Algorithm Pairs S-pols (red) Copr. Chain F5 Sing. 1-sing. 0 red.

Weak, sigs 2227 51 0 0 2125 51 0 0

Strong, no sigs 1191 344 251 596 0 0 0 282

Strong, sigs 488 178 (62) 157 153 115 1 6 0

Katsura-3 system (in Z[X1, ..., X4])

Algorithm Pairs S-pols (red) Copr. Chain F5 Sing. 1-sing. 0 red.

Strong, no sigs 2712 837 759 1116 0 0 0 739

Strong, sigs 1629 603 (206) 509 517 388 9 84 0

Katsura-4 system (in Z[X1, ..., X5])

https://github.com/ThibautVerron/SignatureMoller
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Experimental data (2/2)

Toy implementation of the algorithms in Magma:
https://github.com/ThibautVerron/SignatureMoller

System Möller with sigs Native F4 from Magma

Katsura 3 0.05 s 0.01 s

Katsura 4 0.30 s 0.10 s

Katsura 5 5.71 s 5.74 s

Katsura 6 2055.66 s 251.10 s

Timings

https://github.com/ThibautVerron/SignatureMoller
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Results

and future work

I Signature-based algorithms for GB over principal domains
I Möller’s weak GB algorithm: computes a weak basis, useful as a theoretical tool
I Möller’s strong GB algorithm: computes a strong basis
I In both cases: proof of correctness and termination, signatures do not decrease
I Compatible with signature criteria (+ Buchberger criteria for the strong algo.)

I Toy implementation in Magma, with some first optimizations

I Main bo�lenecks
I Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
I Strong GB algo.: basis growth and coe�icient swell

I Current and future work
I Optimizations to counter those bo�lenecks
I Selection strategies? Degree over Position over Term ordering? F4/F5?
I Does Möller’s weak GB algo. work for more general rings? For example UFDs?

I End goal
I Competitive implementation of the algorithms
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One last word

Thank you for your a�ention!

More information and references:

I Möller’s weak GB with signatures

Maria Francis and Thibaut Verron (2018). ‘A Signature-based Algorithm for Computing Gröbner
Bases over Principal Ideal Domains’. In: ArXiv e-prints. arXiv: 1802.01388 [cs.SC]

I Möller’s strong GB with signatures

Maria Francis and Thibaut Verron (2019). ‘Signature-based Möller’s Algorithm for strong Gröbner
Bases over PIDs’. In: ArXiv e-prints. arXiv: 1901.09586 [cs.SC]

http://arxiv.org/abs/1802.01388
http://arxiv.org/abs/1901.09586
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