Signature-based algorithms for computing Gröbner bases over Principal Ideal Domains

Maria Francis¹, Thibaut Verron²

1. Indian Institute of Technology Hyderabad, Hyderabad, India

2. Institute for Algebra, Johannes Kepler University, Linz, Austria

Séminaire Algebra and Discrete Mathematics, Johannes Kepler University, Linz

21 March 2019

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- Signature-based criteria: F5 (2002), GVW (2010)...

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:

- Möller (1988) for general rings and principal domains, Kandri-Rodi Kapur (1988) for Euclidean domains...
- Optimizations and general criteria are still available
- What about signatures?

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:

- Möller (1988) for general rings and principal domains, Kandri-Rodi Kapur (1988) for Euclidean domains...
- Optimizations and general criteria are still available
- What about signatures?

This work: signature-based algorithms for PIDs

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Definition (Leading term, monomial, coefficient)

R ring, $A = R[X_1, ..., X_n]$ with a monomial order $\langle f = \sum a_i X^{b_i}$

- Leading term $LT(f) = a_i X^{b_i}$ with $X^{b_i} > X^{b_j}$ if $j \neq i$
- Leading monomial $LM(f) = X^{b_i}$
- Leading coefficient LC(f) = a_i

Definition (Weak/strong Gröbner basis)

 $G \subset \mathfrak{a} = \langle f_1, \ldots, f_n \rangle$

- *G* is a weak Gröbner basis $\iff \langle LT(f) : f \in \mathfrak{a} \rangle = \langle LT(g) : g \in G \rangle$
- ► *G* is a strong Gröbner basis \iff for all $f \in \mathfrak{a}, f$ reduces to 0 modulo *G*

Equivalent if *R* is a field

$$f \in A = R[X], G = \{g_1, \ldots, g_s\} \subset A$$

Definition (S-polynomial)

$$T(i) = \mathsf{LT}(g_i), T(i, j) = \mathsf{lcm}(\mathsf{LT}(g_i), \mathsf{LT}(g_j))$$

S-Pol $(g_i, g_j) = \frac{T(i, j)}{T(i)}g_i - \frac{T(i, j)}{T(j)}g_j$

Definition (Reduction)

If
$$LT(f) = cX^a LT(g_i)$$
, then f reduces to $h = f - cX^a g$ modulo G.

We use the same word for the transitive closure of the relation.

Buchberger's criterion

G is a (strong) Gröbner basis \iff for all $i, j \in \{1, ..., s\}$, S-Pol (g_i, g_j) reduces to 0 modulo *G*.

(*R* is a field)

Computing in the free module

- ▶ 1st idea: keep track of the representation $g = \sum_i q_i f_i$ for $g \in \langle f_1, \dots, f_m \rangle$ [Möller, Mora, Traverso 1992]
- Work in the module $A^m = A\mathbf{e}_1 \oplus \cdots \oplus A\mathbf{e}_m$ with $\overline{\cdot} : \mathbf{e}_i \mapsto \overline{\mathbf{e}}_i = f_i$
- Example: S-polynomial: S-Pol $(\mathbf{g}_i, \mathbf{g}_j) = \frac{T(i, j)}{T(i)} \mathbf{g}_i \frac{T(i, j)}{T(i)} \mathbf{g}_j$
- This computation is expensive!
- 2nd idea: we don't need the full representation, the largest term might be enough! [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]
- Define a signature s(g) of g as

$$\mathfrak{s}(g) = \mathsf{LT}(q_j)\mathbf{e}_j = \mathsf{LT}(\mathbf{g}) \text{ for some } \mathbf{g} = \sum_{i=1}^m q_i \mathbf{e}_i \in A^m \text{ with } \mathbf{\bar{g}} = g = \sum_{i=1}^m q_i f_i$$

where q_i is the last coef. $\neq 0$

(*R* is a field)

Signatures

Signatures are ordered as "position over term":

$$aX^b \mathbf{e}_i < a'X^{b'} \mathbf{e}_j \iff i < j \text{ or } i = j \text{ and } X^b < X^{b'}$$

• Example: S-polynomial: S-Pol $(\mathbf{g}_i, \mathbf{g}_j) = \frac{T(i, j)}{T(i)} \mathbf{g}_i - \frac{T(i, j)}{T(j)} \mathbf{g}_j$

Up to permutation, two situations:

$$T(i,j) = \frac{T(i,j)}{T(i)} LT(\mathbf{g}_i) > \frac{T(i,j)}{T(j)} LT(\mathbf{g}_j) \rightarrow LT(S-Pol(\mathbf{g}_i,\mathbf{g}_j)) = \frac{T(i,j)}{T(i)} LT(\mathbf{g}_i)$$

$$T(i,j) = \frac{T(i,j)}{T(i)} LT(\mathbf{g}_i) \simeq \frac{T(i,j)}{T(j)} LT(\mathbf{g}_j) \rightarrow LT(S-Pol(\mathbf{g}_i,\mathbf{g}_j)) \leq \frac{T(i,j)}{T(i)} LT(\mathbf{g}_i)$$

Signatures are ordered as "position over term":

$$aX^{b}\mathbf{e}_{i} < a'X^{b'}\mathbf{e}_{j} \iff i < j \text{ or } i = j \text{ and } X^{b} < X^{b'}$$

• Example: S-polynomial: S-Pol $(\mathbf{g}_i, \mathbf{g}_j) = \frac{T(i, j)}{T(i)} \mathbf{g}_i - \frac{T(i, j)}{T(j)} \mathbf{g}_j$

Up to permutation, two situations:

Regular S-polynomial

•
$$\frac{T(i,j)}{T(i)}\mathfrak{s}(g_i) \simeq \frac{T(i,j)}{T(j)}\mathfrak{s}(g_j) \quad \rightarrow \quad \mathfrak{s}(\operatorname{S-Pol}(g_i,g_j)) \leq \frac{T(i,j)}{T(i)}\mathfrak{s}(g_i)$$

Non regular S-polynomial: possible signature drop

► Keeping track of the signature is free if we restrict to regular S-pols and reductions!

(R is a field)

Definition (Signature reductions)

 $f,g,h\in \langle f_1,\ldots,f_m
angle$ with signatures, such that f reduces to $h=f-cX^ag$ The reduction is

- ► a s-reduction if $X^a \mathfrak{s}(g) \le \mathfrak{s}(f)$ (i.e. $\mathfrak{s}(h) \le \mathfrak{s}(f)$)
- a regular \mathfrak{s} -reduction if $X^a \mathfrak{s}(g) \leq \mathfrak{s}(f)$

 $(i.e. \ \mathfrak{s}(h) \leq \mathfrak{s}(f))$ $(i.e. \ \mathfrak{s}(h) = \mathfrak{s}(f))$

Definition (Signature Gröbner basis)

$$G = \{g_1, \ldots, g_s\} \subset \mathfrak{a} = \langle f_1, \ldots, f_m \rangle$$
 is a (strong) \mathfrak{s} -Gröbner basis

iff for all $f \in \mathfrak{a}, f \mathfrak{s}$ -reduces to 0 modulo G.

Key theorem

- A s-Gröbner basis is a Gröbner basis
- Every ideal admits a finite s-Gröbner basis

Buchberger's algorithm, with signatures

(Strong) S-polynomial:

$$S-Pol = \frac{T(i,j)}{\mathsf{LT}(g_i)}g_i - \frac{T(i,j)}{\mathsf{LT}(g_j)}g_j$$

Regular: $\frac{T(i,j)}{\mathsf{LT}(g_i)}\mathfrak{s}(g_i) > \frac{T(i,j)}{\mathsf{LT}(g_j)}\mathfrak{s}(g_j)$
 $S(i,j) = \frac{T(i,j)}{\mathsf{LT}(g_i)}\mathfrak{s}(g_i)$

(Strong) reduction: $f \rightsquigarrow h = f - cX^a LT(g)$ Regular: $\mathfrak{s}(f) > X^a \mathfrak{s}(g)$ $\mathfrak{s}(h) = \mathfrak{s}(f)$

Key property

Buchberger's algorithm with signatures computes GB elements with increasing signatures.

Main consequence

Buchberger's algorithm with signatures is correct and computes a signature GB.

Then we can add criteria...

Singular criterion: eliminate some redundant computations

If $\mathfrak{s}(g) \simeq \mathfrak{s}(g')$ then after regular reduction, LM(g) = LM(g').

F5 criterion: eliminate Koszul syzygies $f_i f_j - f_j f_i = 0$

If $\mathfrak{s}(g) = LT(g')e_j$ and $\mathfrak{s}(g') = \star e_i$ for some indices i < j, then g reduces to 0 modulo the already computed basis.

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Context and	d main	results:	what	about	rings?	
-------------	--------	----------	------	-------	--------	--

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols Strong reductions G-pols LC reductions

		U	
Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols Strong reductions
			G-pols LC reductions
With signatures			

Context and main results: what about rings?

Main difficulty: how to order the signatures with their coefficients?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols
			Strong reductions
			G-pols
			LC reductions
With signatures			[Eder, Popescu 2017]

Context and main results: what about rings?

Main difficulty: how to order the signatures with their coefficients?

Eder, Popescu 2017: total order using absolute value of the coefficients

Impossible to avoid signature drops, signatures can decrease

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols
			Strong reductions
			G-pols
			LC reductions
With signatures	F., V. 2018] (for PI	Ds) [F., V. 2019]	[Eder, Popescu 2017]

Context and main results: what about rings?

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients
 - Impossible to avoid signature drops, signatures can decrease
- This work: partial order disregarding the coefficients
 - ► No signature drops, signatures don't decrease (but they may not increase)
 - Möller's weak GB algo.: proved for PIDs
 - Möller's strong GB algo.: signatures also for the G-polynomials

Definition (Saturated set)

Given a basis $\{g_1, \ldots, g_t\}$, saturated sets are constructed as follows:

- 1. Pick $J \subset \{1, ..., t\}$
- 2. $M(J) \leftarrow \operatorname{lcm}\{\operatorname{LM}(g_j) : j \in J\}$
- 3. Add to J all $j \in \{1, \ldots, t\}$ such that $LM(g_j)$ divides M(J)

Definition (Weak S-polynomial)

Let $s = \max(J)$, $J^* = J \setminus \{s\}$, and let $c \neq 0$ an element of $(LC(g_j) : j \in J^*) : (LC(g_s))$. There exists $(b_j)_{j \in J^*}$ such that $LC(g_s)c = \sum_{j \in J^*} b_j LC(g_j)$.

The associated weak S-polynomial is

$$\text{S-Pol}(J;c) = c \frac{\mathcal{M}(J)}{\mathsf{LM}(g_s)} g_s - \sum_{j \in J^*} b_j \frac{\mathcal{M}(J)}{\mathsf{LM}(g_j)} g_j.$$

Definition (Weak reduction)

f weakly reduces to *h* modulo *G* if there exists $J \subset \{1, \ldots, t\}$ such that

- ► for all $j \in J$, LM(g_j) divides LM(f), say, X^{a_i} LM(g_j) = LM(f)
- ► LC(f) lies in $(LC(g_j) : j \in J)$, say, LC(f) = $\sum_{j \in J} b_j LC(g_j)$

•
$$h = f - \sum_{j \in J} b_j X^{a_j} g_j$$

We use the same word for the transitive closure of the relation.

"Möller's criterion"

The following statements are equivalent:

- *G* is a weak Gröbner basis of $\mathfrak{a} = \langle G \rangle$
- $\blacktriangleright \langle \mathsf{LT}(G) \rangle = \langle \mathsf{LT}(\mathfrak{a}) \rangle$
- ▶ For all *f* in a, *f* weakly reduces to 0 modulo *G*
- ▶ For all J and c, the weak S-pol S-Pol(J; c) weakly reduces to 0 modulo G

[Möller 1988]

Definition (Saturated set)

Given a basis $\{g_1, \ldots, g_s\}$, saturated sets are constructed as follows:

- 1. Pick $J \subset \{1, ..., s\}$
- 2. $M(J) \leftarrow \operatorname{lcm}\{\operatorname{LM}(g_j) : j \in J\}$
- 3. Add to J all $j \in \{1, \ldots, s\}$ such that $LM(g_j)$ divides M(J)

The signature of a saturated set is

$$S(J) = \max\left(rac{M(J)}{\mathsf{LM}(g_i)}\mathfrak{s}(g_i)
ight)_{i\in J}$$

A regular saturated set is constructed such that this max is reached only once, at $s \in J$. Then

$$\mathfrak{s}(\operatorname{S-Pol}(J; s; c)) = cS(J)$$

[Möller 1988] [F, V 2018] Weak S-polynomial: S-Pol = $c \frac{M(J)}{LM(g_s)} g_s - \sum b_j \frac{M(J)}{LM(g_j)} g_j$ Regular: $\forall j, \frac{M(J)}{LM(g_s)} \mathfrak{s}(g_s) > \frac{M(J)}{LM(g_j)} \mathfrak{s}(g_j)$

$$S(J) = c \frac{M(i,j)}{\mathsf{LM}(g_i)} \mathfrak{s}(g_i)$$

Weak reduction:

$$f \rightsquigarrow h = f - \sum c_i X^{a_i} g_i$$

Regular: $\forall i, \ \mathfrak{s}(f) > X^{a_i} \mathfrak{s}(g_i)$
 $\mathfrak{s}(h) = \mathfrak{s}(f)$

Signatures $\mathfrak s$ do not decrease.

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Weak S-pols and reductions:

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

 $G = \{g_1, \ldots, g_s\}$

Definition

A term-syzygy of G is $S = \sum_{i=1}^{s} s_i \varepsilon_i \in A^s$, whose syzygy polynomial $\overline{S} = \sum s_i g_i$ satisfies $LT(\overline{S}) \leq max(LT(s_i g_i))$.

Syzygy lifting theorem

The following statements are equivalent:

- ► G is a (weak/strong) Gröbner basis
- ▶ If S is a basis of term-syzygies of G, for all $S \in S$, \overline{S} (weakly/strongly) red. to 0 mod. G.
- Buchberger's criterion: (Strong) S-polynomials form a basis of term-syzygies over a field
- Buchberger's chain criterion: Some S-pols can be removed without compromising the basis
- Möller's criterion:

Weak S-polynomials form a basis of term-syzygies in general

Why is life easier with PIDs (1/2)

Principal syzygies / Strong S-polynomials

If *R* is a principal ring, then principal syzygies (of the form $c_i X^{a_i} \varepsilon_i - c_j X^{a_j} \varepsilon_j$) form a basis of term syzygies.

Weak S-pols and reductions:

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

Why is life easier with PIDs (2/2)

Principal syzygies / Strong S-polynomials

If *R* is a principal ring, then principal syzygies (of the form $c_i X^{a_i} \varepsilon_i - c_j X^{a_j} \varepsilon_j$) form a basis of term syzygies.

Definition (G-polynomials)

From a Bézout relation gcd(LC(f), LC(g)) = uLC(f) + vLC(g),

the G-polynomial of f and g is defined as

$$G-Pol(f,g) = u \frac{lcm(LM(f), LM(g))}{LM(f)} f + v \frac{lcm(LM(f), LM(g))}{LM(g)} g$$

Completion

The completion C(F) of $F = \{f_1, \ldots, f_r\}$ is defined as follows:

- $C(\emptyset) = \emptyset$
- $C(F \cup f_{r+1}) = C(F) \cup \{f_{r+1}\} \cup \{G-Pol(h, f_{r+1}) : h \in C(F)\}$

G is a weak Gröbner basis $\iff C(G)$ is a strong Gröbner basis.

Weak S-pols and reductions: Same as in Möller's weak GB Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = \text{G-Pol} = u \frac{\text{lcm}(\dots)}{\text{LM}(f)} f + v \frac{\text{lcm}(\dots)}{\text{LM}(g)} g$$

Same as in Möller's weak GB Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = \text{G-Pol} = u \frac{\text{lcm}(\dots)}{\text{LM}(f)} f + v \frac{\text{lcm}(\dots)}{\text{LM}(g)} g$$

Same as in Möller's weak GB Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = \text{G-Pol} = u \frac{\text{lcm}(\dots)}{\text{LM}(f)} f + v \frac{\text{lcm}(\dots)}{\text{LM}(g)} g$$

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Tool for the proof: signature version of the lifting theorem

Definition (Signatures for term-syzygies)

- Signature of $S = \sum_{i=1}^{s} s_i \varepsilon_i : \mathfrak{s}(S) = \max\{LT(s_i)\mathfrak{s}(g_i) | s_i \neq 0\}$
- S-basis of term-syzygies: basis such that every element can be represented without a signature drop:

 $\{\sum_{1}, \dots, \sum_{k}\} \text{ such that for all term-syzygy } S, \text{ there exists } \tau_{1}, \dots, \tau_{k} \text{ such that} \\ \bullet S = \sum_{i=1}^{k} \tau_{i} \sum_{i} \\ \bullet \mathfrak{s}(S) \simeq \max\{\text{LT}(\tau_{i})S(\Sigma_{i}) | \tau_{i} \neq 0\}$

Syzygy lifting theorem, signature version

The following statements are equivalent:

- ► *G* is a (weak/strong) *s*-Gröbner basis
- ▶ If S is a S-basis of term-syzygies of G, for all $S \in S$, \overline{S} (weakly/strongly) red. to 0 mod. G.

Skeleton of the proof

(R is a PID)

Skeleton of the proof

(R is a PID)

Experimental data (1/2)

Toy implementation of the algorithms in Magma: https://github.com/ThibautVerron/SignatureMoller

			Added as pairs, not S-pols		Added as S-pols, not reduced		Reduced, thrown away	
Algorithm	Pairs	S-pols (red)	Copr.	Chain	F5	Sing.	1-sing.	0 red.
Weak, sigs	2227	51	0	0	2125	51	0	0
Strong, no sigs	1191	344	251	596	0	0	0	282
Strong, sigs	488	178 (62)	157	153	115	1	6	0
Katsura-3 system (in $\mathbb{Z}[X_1,,X_4]$)								

Algorithm	Pairs	S-pols (red)	Copr.	Chain	F5	Sing.	1-sing.	0 red.
Strong, no sigs	2712	837	759	1116	0	0	0	739
Strong, sigs	1629	603 (206)	509	517	388	9	84	0

Katsura-4 system (in $\mathbb{Z}[X_1, ..., X_5]$)

Experimental data (2/2)

Toy implementation of the algorithms in Magma: https://github.com/ThibautVerron/SignatureMoller

System	Möller with sigs	Native F4 from Magma		
Katsura 3	0.05 s	0.01 s		
Katsura 4	0.30 s	0.10 s		
Katsura 5	5.71 s	5.74 s		
Katsura 6	2055.66 s	251.10 s		
Timings				

Results

- Signature-based algorithms for GB over principal domains
 - Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
 - Möller's strong GB algorithm: computes a strong basis
 - ► In both cases: proof of correctness and termination, signatures do not decrease
 - Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- > Toy implementation in Magma, with some first optimizations

- Signature-based algorithms for GB over principal domains
 - Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
 - Möller's strong GB algorithm: computes a strong basis
 - ► In both cases: proof of correctness and termination, signatures do not decrease
 - Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- > Toy implementation in Magma, with some first optimizations
- Main bottlenecks
 - Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
 - Strong GB algo.: basis growth and coefficient swell

- Signature-based algorithms for GB over principal domains
 - Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
 - Möller's strong GB algorithm: computes a strong basis
 - ► In both cases: proof of correctness and termination, signatures do not decrease
 - Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- > Toy implementation in Magma, with some first optimizations
- Main bottlenecks
 - Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
 - Strong GB algo.: basis growth and coefficient swell
- Current and future work
 - Optimizations to counter those bottlenecks
 - Selection strategies? Degree over Position over Term ordering? F4/F5?
 - Does Möller's weak GB algo. work for more general rings? For example UFDs?
- End goal
 - Competitive implementation of the algorithms

Thank you for your attention!

More information and references:

Möller's weak GB with signatures

Maria Francis and Thibaut Verron (2018). 'A Signature-based Algorithm for Computing Gröbner Bases over Principal Ideal Domains'. In: *ArXiv e-prints.* arXiv: 1802.01388 [cs.SC]

Möller's strong GB with signatures

Maria Francis and Thibaut Verron (2019). 'Signature-based Möller's Algorithm for strong Gröbner Bases over PIDs'. In: ArXiv e-prints. arXiv: 1901.09586 [cs.SC]