Signature-based Möller's algorithm for strong Gröbner bases over PIDs

Maria Francis ${ }^{1}$, Thibaut Verron ${ }^{2}$

1. Indian Institute of Technology Hyderabad, Hyderabad, India
2. Institute for Algebra, Johannes Kepler University, Linz, Austria

Journées Nationales de Calcul Formel, Luminy, 5 février 2019

Gröbner bases

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Definition (Leading term, monomial, coefficient)

R ring, $A=R\left[X_{1}, \ldots, X_{n}\right]$ with a monomial order $<, f=\sum a_{i} \mathbf{X}^{b_{i}}$

- Leading term $\operatorname{LT}(f)=a_{i} \mathbf{X}^{b_{i}}$ with $\mathbf{X}^{b_{i}}>\mathbf{X}^{b_{j}}$ if $j \neq i$
- Leading monomial $\operatorname{LM}(f)=\mathbf{X}^{b_{i}}$
- Leading coefficient $\operatorname{LC}(f)=a_{i}$

Definition (Weak/strong Gröbner basis)

$G \subset I=\left\langle f_{1}, \ldots, f_{n}\right\rangle$

- G is a weak Gröbner basis $\Longleftrightarrow\langle\operatorname{LT}(f): f \in I\rangle=\langle\operatorname{LT}(g): g \in G\rangle$
- G is a strong Gröbner basis \Longleftrightarrow for all $f \in I, f$ reduces to 0 modulo G

Equivalent if R is a field

Buchberger's algorithm

(Strong) S-polynomial:

$$
\begin{aligned}
& T(i, j)=\operatorname{Icm}\left(\operatorname{LT}\left(g_{i}\right), \operatorname{LT}\left(g_{j}\right)\right) \\
& \operatorname{S-Pol}\left(g_{i}, g_{j}\right)=\frac{T(i, j)}{\mathrm{LT}\left(g_{i}\right)} g_{i}-\frac{T(i, j)}{\mathrm{LT}\left(g_{j}\right)} g_{j}
\end{aligned}
$$

(Strong) reduction:
$f \in A, g \in G$ s.t. $\operatorname{LT}(f)=c \mathbf{X}^{a} \mathrm{LT}(g)$
$f \rightsquigarrow h=f-c \mathbf{X}^{a} \operatorname{LT}(g)$ (and repeat)

Signatures

[Faugère 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

- Idea: keep track of the representation $g=\sum_{i} q_{i} f_{i}$ for $g \in\left\langle f_{1}, \ldots, f_{m}\right\rangle$
- Work in the module $A^{m}=A e_{1} \oplus \cdots \oplus A e_{m}$
- The algorithm could keep track of the full representation in the module...

But it is expensive!

- Instead define a signature $\mathfrak{s}(g)$ of g as

- Signatures are ordered by
- Keeping track of the signature is free if we restrict to regular S-pols and reductions!

Signatures

[Faugère 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

- Idea: keep track of the representation $g=\sum_{i} q_{i} f_{i}$ for $g \in\left\langle f_{1}, \ldots, f_{m}\right\rangle$
- Work in the module $A^{m}=A e_{1} \oplus \cdots \oplus A e_{m}$
- The algorithm could keep track of the full representation in the module...

But it is expensive!

- Instead define a signature $\mathfrak{s}(g)$ of g as

$$
\mathfrak{s}(g)=\operatorname{LT}\left(q_{j}\right) e_{j} \text { for some representation } g=\sum_{i=1}^{m} q_{i} f_{i}, q_{j} \text { being the last non-zero coef. }
$$

- Signatures are ordered by

$$
a \mathbf{X}^{b} e_{i}<a^{\prime} \mathbf{X}^{b^{\prime}} e_{j} \Longleftrightarrow i<j \text { or } i=j \text { and } \mathbf{X}^{b}<\mathbf{X}^{b^{\prime}}
$$

- Keeping track of the signature is free if we restrict to regular S-pols and reductions!

Buchberger's algorithm, with signatures

(Strong) S-polynomial:

$$
\begin{aligned}
& T(i, j)=\operatorname{Icm}\left(\operatorname{LT}\left(g_{i}\right), \operatorname{LT}\left(g_{j}\right)\right) \\
& \text { S-Pol }\left(g_{i}, g_{j}\right)=\frac{T(i, j)}{\operatorname{LT}\left(g_{i}\right)} g_{i}-\frac{T(i, j)}{\operatorname{LT}\left(g_{j}\right)} g_{j} \\
& \text { Regular: } \frac{T(i, j)}{\operatorname{LT}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)>\frac{T(i, j)}{\operatorname{LT}\left(g_{j}\right)} \mathfrak{s}\left(g_{j}\right) \\
& \qquad S(i, j)=\frac{T(i, j)}{\operatorname{LT}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)
\end{aligned}
$$

(Strong) reduction:
$f \in A, g \in G$ s.t. $\operatorname{LT}(f)=c \mathbf{X}^{a} \mathrm{LT}(g)$
$f \rightsquigarrow h=f-c \mathbf{X}^{a} \operatorname{LT}(g)$ (and repeat)
Regular: $\mathfrak{s}(f)>\mathbf{X}^{a} \mathfrak{s}(g)$

$$
\mathfrak{s}(h)=\mathfrak{s}(f)
$$

Consequences of signatures

Key property

Buchberger's algorithm with signatures computes $G B$ elements with increasing signatures.

Main consequence

Buchberger's algorithm with signatures is correct!

Then we can add criteria...
Singular criterion: eliminate some redundant computations
If $\mathfrak{s}(g) \simeq \mathfrak{s}\left(g^{\prime}\right)$ then after regular reduction, $\mathrm{LM}(g)=\operatorname{LM}\left(g^{\prime}\right)$.

F5 criterion: eliminate Koszul syzygies $f_{i} f_{j}-f_{j} f_{i}=0$
If $\mathfrak{s}(g)=\operatorname{LT}\left(g^{\prime}\right) e_{j}$ and $\mathfrak{s}\left(g^{\prime}\right)=\star e_{i}$ for some indices $i<j$, then g reduces to 0 modulo the already computed basis.

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	LC reductions

- Eder, Popescu 2017: total order using absolute value of the coefficients \rightarrow Impossible to avoid signature drops, signatures can decrease
- F, V 2018: partial order disregarding the coefficients

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	LC reductions
With signatures			

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients \rightarrow Impossible to avoid signature drops, signatures can decrease
- F, V 2018: partial order disregarding the coefficients

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	
With signatures			LC reductions
			Eder, Popescu 2017

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients
\rightarrow Impossible to avoid signature drops, signatures can decrease
- F, V 2018: partial order disregarding the coefficients

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	
			LC reductions
With signatures	F, V 2018 (for PIDs)		Eder, Popescu 2017

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients
\rightarrow Impossible to avoid signature drops, signatures can decrease
- F, V 2018: partial order disregarding the coefficients
\rightarrow No signature drops, signatures don't decrease (but they may not increase)

Context and main results: what about rings?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur
		Strong S-pols	Strong S-pols
Techniques	Weak S-pols	Strong reductions	Strong reductions
	Weak reductions	G-pols	
			LC reductions
With signatures	F, V 2018 (for PIDs)	This work	Eder, Popescu 2017

Main difficulty: how to order the signatures with their coefficients?

- Eder, Popescu 2017: total order using absolute value of the coefficients
\rightarrow Impossible to avoid signature drops, signatures can decrease
- F, V 2018: partial order disregarding the coefficients
\rightarrow No signature drops, signatures don't decrease (but they may not increase)
- This work: same technique and results for Möller's strong GB algorithm

Möller's weak GB algorithm

Weak S-polynomial:
$M(J)=\operatorname{Icm}\left(L M\left(g_{j}\right): j \in J\right)$
$\mathrm{S}-\mathrm{Pol}\left(G_{j}\right)=c \frac{M(J)}{\operatorname{LM}\left(g_{s}\right)} g_{s}-\sum b_{j} \frac{M(J)}{\operatorname{LM}\left(g_{j}\right)} g_{j}$

Weak reduction:
$f \in A, g_{1}, \ldots, g_{k} \in G$ s.t.

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\mathrm{LM}(f)=\mathbf{X}^{a_{i}} \operatorname{LT}\left(g_{i}\right) \\
\operatorname{LC}(f)=\sum c_{i} \mathrm{LC}\left(g_{i}\right)
\end{array}\right. \\
& f \rightsquigarrow h=f-\sum c_{i} \mathbf{X}^{a_{i}} g_{i} \\
& \text { (and repeat) }
\end{aligned}
$$

Möller's weak GB algorithm, with signatures (R is a Principal Ideal Domain)

Weak S-polynomial:
$M(J)=\operatorname{lcm}\left(\mathrm{LM}\left(g_{j}\right): j \in J\right)$
$\mathrm{S}-\mathrm{Pol}\left(G_{j}\right)=c \frac{M(J)}{\operatorname{LM}\left(g_{s}\right)} g_{s}-\sum b_{j} \frac{M(J)}{\operatorname{LM}\left(g_{j}\right)} g_{j}$
Regular: $\forall j, \frac{M(J)}{\operatorname{LM}\left(g_{s}\right)} \mathfrak{s}\left(g_{s}\right)>\frac{M(J)}{\operatorname{LM}\left(g_{j}\right)} \mathfrak{s}\left(g_{j}\right)$

$$
S(J)=c \frac{M(i, j)}{\operatorname{LM}\left(g_{i}\right)} \mathfrak{s}\left(g_{i}\right)
$$

Weak reduction:
$f \in A, g_{1}, \ldots, g_{k} \in G$ s.t.

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathrm{LM}(f)=\mathbf{X}^{a_{i}} \operatorname{LT}\left(g_{i}\right) \\
\operatorname{LC}(f)=\sum c_{i} \operatorname{LC}\left(g_{i}\right)
\end{array}\right. \\
f \rightsquigarrow h=f-\sum c_{i} \mathbf{X}^{a_{i}} g_{i}
\end{gathered}
$$

[Möller 1988]
[F, V 2018]
(and repeat)
Regular: $\forall i, \mathfrak{s}(f)>\mathbf{X}^{a_{i}} \mathfrak{s}\left(g_{i}\right)$

$$
\mathfrak{s}(h)=\mathfrak{s}(f)
$$

From weak to strong

(R is a PID)

Weak S-pols and reductions:
Same as in Möller's weak GB

Strong S-pols and reductions:
Same as in Buchberger

From weak to strong

From weak to strong

Möller's strong GB algorithm

(R is a PID)

Möller's strong GB algorithm, with signatures

Möller's strong GB algorithm, with signatures

Möller's strong GB algorithm, with signatures

Results

- Signature-based variant of Möller's strong GB algorithm
- Computes strong \mathfrak{s}-Gröbner bases over principal domains
- Signatures (even σ) do not decrease throughout the algorithm
- Proof of correctness and termination
- Compatible with Buchberger's criteria and signature criteria
- Implemented and tested in Magma

Experimental data

Toy implementation of the algorithm in Magma: https://github.com/ThibautVerron/SignatureMoller

Algorithm	Pairs	S-pols	Coprime	Chain	F5	Sing.	1-sing.	0 red.
Weak, sigs	2227	51	0	0	2125	51	0	0
Strong, no sigs	1191	344	251	596	0	0	0	282
Strong, sigs	472	178	157	153	115	1	6	0
Katsura-3 system (in $\left.\mathbb{Z}\left[X_{1}, \ldots, X_{4}\right]\right)$								

Algorithm	Pairs	S-pols	Coprime	Chain	F5	Sing.	1-sing.	0 red.
Strong, no sigs	2712	837	759	1116	0	0	0	739
Strong, sigs	1594	603	509	517	388	9	84	0

Katsura-4 system (in $\mathbb{Z}\left[X_{1}, \ldots, X_{5}\right]$)

Results and future work

- Signature-based variant of Möller's strong GB algorithm
- Computes strong \mathfrak{s}-Gröbner bases over principal domains
- Signatures (even σ) do not decrease throughout the algorithm
- Proof of correctness and termination
- Compatible with Buchberger's criteria and signature criteria
- Implemented and tested in Magma
- Main bottlenecks: basis growth and coefficient swell
- Next steps, work on those problems:
- For basis growth: more inclusive singular criterion?
- For coefficient swell: further optimizations over Euclidean rings?
- Lichtblau / Kandri-Rodi, Kapur's idea : Euclidean reduction of leading coefficients

Results and future work

- Signature-based variant of Möller's strong GB algorithm
- Computes strong \mathfrak{s}-Gröbner bases over principal domains
- Signatures (even σ) do not decrease throughout the algorithm
- Proof of correctness and termination
- Compatible with Buchberger's criteria and signature criteria
- Implemented and tested in Magma
- Main bottlenecks: basis growth and coefficient swell
- Next steps, work on those problems:
- For basis growth: more inclusive singular criterion?
- For coefficient swell: further optimizations over Euclidean rings?
- Lichtblau / Kandri-Rodi, Kapur's idea : Euclidean reduction of leading coefficients

Thank you for your attention!

More information and references:

- Möller's weak GB with signatures - Maria Francis and Thibaut Verron (2018). 'A Signature-based Algorithm for Computing Gröbner Bases over Principal Ideal Domains'. In: ArXiv e-prints. arXiv: 1802.01388 [cs.SC]
- Möller's strong GB with signatures - Maria Francis and Thibaut Verron (2019). ‘Signature-based Möller's Algorithm for strong Gröbner Bases over PIDs'. In: ArXiv e-prints. arXiv: 1901.09586 [cs.SC]

