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Let K be a field equipped with a valuation. Tropical varieties over 
K can be defined with a theory of Gröbner bases taking into 
account the valuation of K . Because of the use of the valuation, 
the theory of tropical Gröbner bases has proved to provide settings 
for computations over polynomial rings over a p-adic field that are 
more stable than that of classical Gröbner bases.
Beforehand, these strategies were only available for homogeneous 
polynomials. In this article, we extend the F5 strategy to a new 
definition of tropical Gröbner bases in an affine setting. We also 
provide a competitor with an adaptation of the F4 strategy to 
tropical Gröbner bases computations.
We provide numerical examples to illustrate time-complexity and 
p-adic stability of this tropical F5 algorithm. We also illustrate 
its merits as a first step before an FGLM algorithm to compute 
(classical) lex bases over p-adics.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Tropical geometry as we understand it has not yet reached half a century of age. It has nevertheless 
spawned significant applications to very various domains, from algebraic geometry to combinatorics, 
computer science, economics, non-archimedean geometry (see Maclagan and Sturmfels, 2015; Ein-
siedler et al., 2006) and even attempts at proving the Riemann hypothesis (see Connes, 2015).
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Effective computation over tropical varieties makes decisive use of Gröbner bases. Since Chan and 
Maclagan’s definition of tropical Gröbner bases taking into account the valuation in Chan (2013), Chan 
and Maclagan (2019), computations of tropical Gröbner bases are available over fields with trivial or 
non-trivial valuation, but only in the context of homogeneous ideals.

On the other hand, for classical Gröbner bases, numerous algorithms have been developed allowing 
for more and more efficient computations. The latest generation of algorithms for computing Gröbner 
bases is the family of signature-based algorithms, which keep track of where the polynomials come 
from in order to anticipate useless reductions. This idea was initiated in Algorithm F5 (Faugère, 2002), 
and has since then been widely studied and generalized (Bardet et al., 2014; Eder and Faugère, 2017).

Most of those algorithms, including the original F5 algorithm, are specifically designed for homo-
geneous systems, and adapting them to affine (or inhomogeneous) systems requires special care (see 
Eder, 2013).

An F5 algorithm computing tropical Gröbner bases without any trivial reduction to 0, inspired by 
the classical F5 algorithm, has been described in Vaccon and Yokoyama (2017). The goal of this paper 
is to extend the definition of tropical Gröbner bases to inhomogeneous ideals, and describe ways to 
adapt the F5 algorithm in this new setting.

The core motivation is the following. It has been proved in Vaccon (2014, 2017) that computing 
tropical Gröbner bases, taking into account the valuation, is more stable for polynomial ideals over a 
p-adic field than classical Gröbner bases.

Thus, an affine variant of tropical Gröbner bases is highly desirable to handle non-homogeneous 
ideals over p-adics. For classical Gröbner bases, it is always possible to homogenize the input ideal, 
compute a homogeneous Gröbner basis, and dehomogenize the result. This technique is not always 
optimal, because the algorithm may end up reaching a higher degree than needed, computing points 
at infinity of the system, but it always gives a correct result and, in the case of signature Gröbner basis 
algorithms, is able to eliminate useless reductions. However, in a tropical setting, terms are ordered 
with a tropical term order, taking into account the valuation of the coefficients. As far as we know, 
there is no way to dehomogenize a system in a way that would preserve the tropical term order. 
Indeed, no tropical term order can be an elimination order.

Moreover, the FGLM algorithm can be adapted to the tropical case (see Chap. 9 of Vaccon, 2015), 
making it possible to compute a lexicographical (classical) Gröbner basis from a tropical one, paving 
the way to a complete strategy to solve polynomial systems of dimension zero over Qp , applying first 
an F5 algorithm and then an adaptation of the FGLM algorithm to go from a tropical Gröbner basis to 
a classical Gröbner basis.

We provide numerical data to estimate the loss in precision for the computation of a lex Gröbner 
basis using a tropical F5 algorithm followed by an FGLM algorithm, in an affine setting.

Another classical strategy to compute Gröbner bases is Faugère’s F4 algorithm (Faugère, 1999). We 
provide a competitor to the F5 strategy with a tropical adaptation of F4, along with numerical data to 
compare their respective merits.

Up to our knowledge, this is the first study of an F4 algorithm in a tropical context. Regarding 
to computation at finite precision, there is a strong motivation for developing F4 algorithms along 
with F5 algorithms. In F4 algorithms, there is considerably more freedom in the choice of pivots 
during reduction. With more choices of reductors, a trade-off between speed and loss of precision is 
possible.

1.1. Related works

A canonical reference for an introduction to computational tropical algebraic geometry is the book 
of Maclagan and Sturmfels (2015).

The computation of tropical varieties over Q with trivial valuation is available in the Gfan package 
by Anders Jensen (2017), by using standard Gröbner bases computations. Chan and Maclagan (2019)
have developed a Buchberger algorithm to compute tropical Gröbner bases for homogeneous input 
polynomials (using a special division algorithm). Following their work, still for homogeneous poly-
nomials, a Matrix-F5 algorithm has been proposed in Vaccon (2017) and a Tropical F5 algorithm in 
Vaccon and Yokoyama (2017). Markwig and Ren have provided a completely different technique of 
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computation using projection of standard bases in Markwig and Ren (2016), again only for homoge-
neous input polynomials.

In the classical Gröbner basis setting, many techniques have been studied to make the computa-
tion of Gröbner bases more efficient. In particular, Buchberber’s algorithm is frequently made more 
efficient by using the sugar-degree (see Giovini et al., 1991; Bigatti et al., 2011) instead of the actual 
degree for selecting the next pair to reduce. This technique was a precursor of modern signature 
techniques, in the sense that the sugar-degree of a polynomial is exactly the degree of its signature. 
General signature-based algorithms for computing classical Gröbner bases of inhomogeneous ideals 
have been extensively studied in Eder (2013).

A shorter version of this article has been published in the Proceedings of the 43rd International
Symposium on Symbolic and Algebraic Computation (ISSAC 2018) with Vaccon et al. (2018). The main 
additions are the exposition of the results and proofs in Section 3 and 4, which have been improved 
and extended, and a new section with Section 7, introducing an F4 algorithm to compute tropical GB.

1.2. Specificities of computating tropical GB

The computation of tropical GB, even by a Buchberger-style algorithm, is not as straightforward as 
for classical Gröbner bases. One way to understand it is the following: even for homogeneous ideals, 
there is no equivalence between tropical Gröbner bases and row-echelon linear bases at every degree. 
Indeed, we can remark that G = ( f1, f2) = (x + y, 2x + y) is a tropical GB over Q[x, y] with 2-adic 
valuation, w = [0, 0] and grevlex ordering: the leading term of the first polynomial being x and that of 
the second being y. Nevertheless, the corresponding 2 ×2 matrix in the vector space of homogeneous 
polynomials of degree 1 is not under tropical row-echelon form.

As a consequence, reduction of a polynomial by a tropical GB is not easy. For example, if we try 
to apply the classical algorithm of division to reduce x by G , the sequence of remainders would be 
−y, 2x, −2y, 4x, −4y, 8x, . . . and, while this sequence converges to zero, the division algorithm does 
not terminate.

In Chan (2013), Chan and Maclagan (2019), Chan and Maclagan relied on a variant of Mora’s tan-
gent cone algorithm to obtain an effective division algorithm. In Vaccon (2017), Vaccon and Yokoyama 
(2017), the authors relied on linear algebra and the computation of (tropical) row-echelon form. In 
this article, we extend their method to the computation of tropical Gröbner bases in an affine setting, 
through an F5 algorithm.

1.3. Main idea and results

Extending the tropical F5 algorithm to inhomogeneous inputs poses two difficulties. First, as men-
tioned, tropical Gröbner bases used to be only defined and computed for homogeneous systems. Even 
barebones algorithms such as Buchberger’s algorithm are not available for inhomogeneous systems. 
The second problem is a general problem of signature Gröbner bases with inhomogeneous input. The 
idea of signature algorithms is to compute polynomials with increasing signatures, and the F5 crite-
rion detects trivial reductions to 0 by matching candidate signatures with existing leading terms. For 
homogeneous ideals, the degree of the signature of a polynomial and the degree of the polynomial 
itself are correlated. This is what makes the F5 criterion applicable.

The paper (Eder, 2013) has shown that Algorithm F5, using the position over term ordering on 
the signatures, has to reach a tradeoff between eliminating all reductions to 0 and performing other 
useless reductions.

More precisely, let f1, . . . , fm be homogeneous polynomials with coefficients in a field with valu-
ation K , and define Ik,d the vector space of polynomials in 〈 f1, . . . , fk〉 with degree at most d. With 
the usual computational strategy, the algorithm computes a basis of I1,1, then I2,1, and so on until 
Im,1, and then I1,2, and so on. In a lot of situations ideals with more generators have a Gröbner basis 
with lower degree (Bardet et al., 2004), and this strategy ensures that the algorithm does not reach a 
degree higher than needed.

However, the same algorithm for affine system will, at each step, merely compute a set of polyno-
mials in each Ik,d . This set needs not be a generating set because of degree falls. To obtain a basis 
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instead, one has to proceed up to some Ik,δ with δ ≥ d. When δ > d, some polynomials will be miss-
ing for the F5 criterion in degree less than δ, and the corresponding trivial reductions to 0 will not 
be eliminated.

In this paper, we show that the tropical F5 algorithm (Vaccon and Yokoyama, 2017) works in 
an affine setting, and we characterize those trivial reductions to 0 which are eliminated by the F5 
criterion. In particular, we show that the Macaulay matrices built at each step of the computations 
are Macaulay matrices of all polynomials with a given sugar-degree.

Compared to Vaccon and Yokoyama (2017), the overall presentation of the F5 algorithms is clari-
fied. It can now be summarized as the following strategy: filtration, signature, F5 elimination criterion, 
Buchberger-F5 criterion and finally the F5 algorithm.

Theorem 1.1. Given an ideal I generated by a set of (non-necessarily homogeneous) polynomials f1, . . . , fm ∈
K [X1, . . . , Xn], the Tropical F5 algorithm (Algorithm 3) computes a tropical Gröbner basis of I , without reduc-
ing to 0 any trivial tame syzygy (Definition 3.1).

We also examine an incremental affine version of the homogeneous tropical F5-algorithm and 
an affine tropical F4, and we compare their performances on several examples. Even in a non-
homogeneous setting, the loss in precision of the tropical F5 algorithm remains satisfyingly low.

1.4. Organization of the paper

Section 2 introduces notations and nonhomogeneous tropical Gröbner bases. Section 3 then in-
troduces the filtration on ideals necessary for F5 algorithms in this context. Section 4 provides a 
Buchberger-F5 criterion on which Section 5 elaborates a first tropical F5 algorithm. Section 6 briefly 
presents another variant of the F5 algorithm to compute nonhomogeneous tropical Gröbner bases, 
and Section 7 introduces a tropical adaptation of the F4 algorithm. Finally, Section 8 displays nu-
merical results related to the precision behavior and time-complexity of all the algorithms we have 
described.
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2. Affine tropical GB

2.1. Notations

Let k be a field with valuation val. The polynomial ring k[X1, . . . , Xn] will be denoted by A. Let T
be the set of monomials of A. For u = (u1, . . . , un) ∈Zn≥0, we write xu for Xu1

1 . . . Xun
n and | f | for the 

degree of f ∈ A. In As , (ei)
s
i=1 is the canonical basis.

The matrix of a list of polynomials written in a basis of monomials is called a Macaulay matrix.
Given a mapping φ : U → V , Im(φ) denotes the image of φ. For a matrix M , Rows(M) is the list of 

its rows, and Im(M) denotes the left-image of M , i.e., Im(M) = span(Rows(M). For w ∈ Im(val)n ⊂Rn

and ≤1 a monomial order on A, we define ≤ a tropical term order as in the following definition:

Definition 2.1. Given a, b ∈ k∗ and xα and xβ two monomials in A, we write axα < bxβ if:

• |xα | < |xβ |, or
• |xα | = |xβ |, and val(a) + w · α > val(b) + w · β , or val(a) + w · α = val(b) + w · β and xα <1 xβ .

For u of valuation 0, we write axα =≤ uaxα . Accordingly, axα ≤ bxβ if axα < bxβ or axα =≤ bxβ .
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Throughout this article, we are interested in computing a tropical Gröbner basis of I = 〈 f1, . . . , f s〉
for some given f1, . . . , f s ∈ A (ordered increasingly by degree).

2.2. Tropical GB

A tropical term order provides an order on the terms of the polynomials f ∈ A.

Definition 2.2. For f ∈ A, we define LT ( f ) to be the biggest term of f . We define LM( f ) to be the 
monomial corresponding to LT ( f ) and LC( f ) the corresponding coefficient.

We define LM(I) to be the monomial ideal generated by the monomials LM( f ) for f ∈ I .

We can then naturally define what is a tropical Gröbner basis (tropical GB for short):

Definition 2.3. G ⊂ I is a tropical GB of I if span(LM(g) for g ∈ G) = LM(I).

2.3. Relation to definitions in other works

We can remark that for homogeneous polynomials our definitions coincide with those given in 
Vaccon and Yokoyama (2017).

Still for homogeneous polynomials, our definition of LM( f ) coincides with that of lm( f ) in the 
article by Chan and Maclagan (2019), similarly our LC( f ) and their lc( f ) coincides, and our LT ( f )
equals to the product lc( f ) × lm( f ), and hence, we compute the same tropical Gröbner bases. None of 
them should be mistaken with their inw( f ) which lives in a residue ring and not in the polynomial 
ring A.

Remark 2.11 of Chan and Maclagan (2019) warns against a direct generalization of their definition 
to the affine setting, with the fact that f = (x + 2x2) ∈ 〈x〉, LM( f ) generates LM(〈x〉) but f do not 
generate 〈x〉.

One reason why such a problem do not occur in our setting is the fact that we take first the degree 
into account.

While this choice is meaningful for our goal of solving polynomial systems over Qp , it is not 
enough by itself if, in a tropical setting, one wants to recover the initial terms of an ideal defined 
without taking into account the degree of the monomials.

If one is interested in Gröbner bases computation where one takes into account the valuation of 
the coefficients and not the degree of the monomials, we refer to the theory of Gröbner bases over 
Tate algebras in Caruso et al. (2019).

3. Filtration and S-GB

3.1. Definition and elimination criterion

One of the main ingredients for F5 algorithms is the definition of a vector space filtration of the 
ideal I . It is defined from the initial polynomials F = ( f1, . . . , f s) generating I . For simplicity, we 
assume that they are ordered by increasing degree.

First, we define an order on the monomials of the vector space As . To that intent, we highlight 
some monomials which appear as leading monomial of a syzygy.

Definition 3.1. Let (a1, . . . , as) ∈ As and i ∈ {1, . . . , s} be such that:

1.
∑

j a j f j = 0.
2. ai 
= 0 and a j = 0 for j > i.
3. for all j < i, |a j f j| ≤ |ai f i |.

We call such a syzygy a tame syzygy and we define LM(ai)ei to be its leading monomial. We 
define LM(T S yz(F )) as the module in As generated by the leading monomials of the tame syzygies. 
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Trivial tame syzygies are the tame syzygies that are also trivial, i.e., in the module generated by the 
f ie j − f jei .

The F5 criterion that we use in this article is designed to recognize some of the tame syzygies and 
use this knowledge to avoid useless reduction to zero of some polynomials. It is the main motivation 
for defining a filtration on the vector space As .

For our definition, we need a monomial ordering ≤m on A. Any such order ≤m is possible, and 
≤m need not be related to ≤1 and ≤.

We can then define a total order on the monomials of As .

Definition 3.2. We write that xαei ≤sign xβe j if:

1. if i < j, or
2. if i = j and |xα f i | < |xβ f j|, or
3. if i = j and |xα f i | = |xβ f j|, and

• xαei /∈ LM(T S yz(F )) and xβe j ∈ LM(T S yz(F )), or
• both xαei, xβe j ∈ LM(T S yz(F )) and xα ≤m xβ , or
• both xαei, xβe j /∈ LM(T S yz(F )) and xα ≤m xβ .

Remark 3.3. To clarify, we have defined so far 4 different orders:

• the order <1 is an order on the monomials of A;
• the order < is an order on the terms of A, which is compatible with the tropical structure, and 

uses <1 to break ties;
• the order <m is an order on the monomials of A;
• the order <sign is an order on the monomials of As , which uses <m to break ties.

The orders <1 and <m need not be related, because they are only used for breaking ties when com-
paring objects which are not related: tropical terms in A and monomials in As .

In practice, the order <m is only used to break ties at points where the actual order does not 
matter. As such, it can be any monomial order.

Remark 3.4. The order <sign defined here may not satisfy Convention 2.1 (a) in Eder and Faugère 
(2017): it may happen that xα <1 xβ or xα < xβ , and yet that xαei >sign xβei . Namely, it will happen if 
xβei /∈ LM(T S yz(F )) and xαei ∈ LM(T S yz(F )), or if both lie in or out of LM(T S yz(F )) and xβ <m xα .

This convention, in a tropical setting, leads to further problems, since terms are ordered differently 
than monomials.

However, the reason for that assumption in Eder and Faugère (2017), as well as in most signature-
based works in a classical setting, is to ensure that one can read the leading term of syzygies from 
their signature, for the F5 elimination criterion. In our scenario, the last clause of Definition 3.2
serves this purpose, and allows us to prove the F5 elimination criterion in a tropical setting (Proposi-
tion 3.13).

Definition 3.5. We consider the vector space

I≤signxαei := Span({xβ f j, s.t. xβe j ≤sign xαei})
and the vector space I<signxαei defined accordingly. We define I = ⋃

↑xαei
I≤signxαei as an increasing 

vector space filtration of I .

We then have a very natural definition of signature. In the literature, this notion of signature is 
sometimes called minimal signature.
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Definition 3.6. For f ∈ I , the smallest xαei such that f ∈ I≤signxαei is called the signature of f and 
noted S( f ).

Example 3.7. Let F = (x2 y + 1, x3 + 1, y3 − x, y3 − y) ∈ Q2[x, y] with w = (0, 0). Let ≤m and ≤1 be 
the graded lexicographical ordering. Then S(x − y) = ye2, as x − y = x × (x2 y + 1) − y × (x3 + 1), even 
though x − y = −1 × (y3 − x) + 1 × (y3 − y).

We shall also need the notion of sugar-degree, as introduced and explored in Giovini et al. (1991), 
Bigatti et al. (2011).

Definition 3.8. We define |xαei | := |xα f i | to be the sugar-degree of xαei .

For the purpose of Algorithm 3, we design a filtration compatible with the sugar-degree.

Definition 3.9. We consider the vector space

I≤d = Span({xβ f j, s.t. |xβe j| ≤ d})
We then define, for xαei with sugar-degree d, the vector space I≤d

≤signxαei
= Span({xβ f j, s.t. xβe j ≤sign

xαei and |xβ f j | ≤ d}).

I = ⋃
↑d I≤d is also a vector space filtration. I≤d can itself be filtrated by the I≤d

≤signxαei
. We have a 

compatible notion of signature:

Definition 3.10. For d ∈ Z>0 and f ∈ I≤d , the smallest xαei such that f ∈ I≤d
≤signxαei

is called the 
d-signature of f and noted Sd( f ).

Remark 3.11. Sd( f ) can be different from S( f ) for small d, but given an f , all Sd( f ) are equal when 
d is large. Moreover, for any f ∈ I≤d , S( f ) ≤sign Sd( f ).

Example 3.12. We set F = (x2 y + 1, x3 + 1, y3 − x, y3 − y) ∈Q2[x, y] as in Example 3.7. Then S3(x −
y) = e4 as x − y = −1 × (y3 − x) + 1 × (y3 − y), whereas S4(x − y) = ye2 = S(x − y) since x − y =
x × (x2 y + 1) − y × (x3 + 1).

The main motivation for defining the vector spaces I≤d
≤signxαei

is their finite dimension. Their com-

patibility with the sugar-degree allows the F5 algorithm to compute only one Macaulay matrix per 
sugar-degree d.

The goal of the F5 criterion is to recognize some xαei such that the filtration is constant at 
I≤d
≤signxαei

. As a consequence, this knowledge allows to skip some calculation as, because of this con-

stancy, they will not provide any new leading monomial. We can then state a first version of the F5 
elimination criterion:

Proposition 3.13 (Faugère (2002)). If xα is such that xαei ∈ LM(T S yz(F )), d ≥ |xα f i |, then the filtration is 
constant at I≤d

≤signxαei
. Such an xαei can be characterized using the following statement. If xα ∈ LM(I≤d

≤signxβ e j
)

for some xβ and j such that |xβ f j | ≤ |xα |, then xαei ∈ LM(T S yz(F )) for any i > j. A partial converse is 
possible: if xαei ∈ LM(T S yz(F )) is the leading monomial of a trivial tame syzygy, then there exists some xβ

and j such that |xβ f j| ≤ |xα | and xα ∈ LM(I≤d
≤signxβ e j

).

Proof. For the first part, we can write (xα + g) f i = ∑
j<i a j f j , with LT (g) < xα and for all j < i, 

|a j f j | ≤ |xα f i |. Then:
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xα f i = (−g) f i +
i−1∑
j=1

a j f j .

By linear algebra and a complete reduction using as pivot the xβe j ∈ LM(T S yz(F )), we can assume 
that gei has no monomial in LM(T S yz(F )) and obtain: xα f i ∈ I≤d

<signxαei
, and therefore, the filtration is 

constant at I≤d
≤signxαei

.

For the characterization, we can first write xα + g = ∑
k≤ j ak fk , with LT (g) < xα and for all k ≤ j, 

|ak fk| ≤ |xβ f j | ≤ |xα |. Then (xα + g) f i − ∑
k≤ j(ak fi) fk = 0 and we do have |xα f i | ≥ |(ak fi) fk| for all 

k ≤ j. The partial converse statement is clear using the fact that trivial syzygies of leading monomial 
xαei are such that xα ∈ LM(〈 f1, . . . , f i−1〉). �

In concrete terms, during the computation of a Gröbner basis, we can omit any appearance of 
any xα f i such that xαei ∈ LM(T S yz(F )) and d ≥ |xα f i |. We can recognize such a polynomial using 
the second part of the proposition. This will be used to eliminate unnecessary S-polynomials. For 
example, using the notations of 3.12, I≤6

<signx2 ye2
= I≤6

≤signx2 ye2
, and we can avoid any appearance of 

x2 yf2 in our computations.
If all the f i ’s are homogeneous, this criterion coincides with the usual F5 elimination criterion, as 

for example stated in Vaccon and Yokoyama (2017), which eliminates all trivial reductions to zero 
in the course of the algorithm. For affine polynomials, the F5 criterion only eliminates those trivial 
reductions which are tame.

3.2. Tropical S-GB

In order to take advantage of the F5 elimination criterion to compute tropical Gröbner bases, we 
focus on the computation of tropical Gröbner bases which are compatible with the filtration: tropical 
S-GB. We first need the definition of reductions compatible with the filtration and the corresponding 
irreducible polynomials.

Definition 3.14 (Regular S-reduction). Let e, g ∈ I , h ∈ I . We say that e regular S-reduces to g with h, 
e →h

S
g, if there are t ∈ T and α ∈ k∗ such that:

• e − αth = g , and either g = 0 or LT (g) < LT (e), LM(g) 
= LM(e).
• S(th) <sign S(e).

We should remark that in the previous definition, we ask for the condition LM(g) 
= LM(e) so 
as to ensure that the leading monomial of e is eliminated. For example, reducing x2 by x + y into 
2x2 + xy would never be acceptable.

We can naturally define then what is an regular S-irreducible polynomial.

Definition 3.15 (Regular S-irreducible polynomial). We say that g ∈ I is regular S-irreducible if there is 
no h ∈ I which regular S-reduces g . If there is no ambiguity, we might simply call g irreducible.

Example 3.16. We use F = (x2 y +1, x3 +1, y3 −x, y3 − y) ∈Q2[x, y] as in Example 3.7. Then x3 y + y =
y × (x3 + 1) regular S-reduces to −x + y, which is irreducible, and its signature is ye2.

Definition 3.17 (Tropical S-Gröbner basis). We say that G ⊂ I , a set of regular S-irreducible poly-
nomials, is a tropical S-Gröbner basis (or tropical S-GB, or just S-GB for short when there is no 
ambiguity) of I , if for each regular S-irreducible polynomial h ∈ I , there exist g ∈ G and t ∈ T such 
that LM(tg) = LM(h) and t S(g) = S(h).

Definition 3.18. Definitions 3.14, 3.15 and 3.17 have natural analogues when one restricts to the vector 
space I≤d and Sd with regular Sd-reduction, regular Sd-irreducible polynomial and tropical Sd-GB. 
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These definitions also extends naturally when one restricts to the vector spaces I≤sign xαei or I≤d≤signxαei
, 

providing respectively S-GB up to signature xαei and Sd-GB up to d-signature xαei .

Example 3.19. We use F = (x2 y + 1, x3 + 1, y3 − x, y3 − y) ∈ Q2[x, y] as in Example 3.7. Then G =
(x2 y + 1, x3 + 1, x − y, y3 − 1, y − 1), with respective signatures (e1, e2, ye2, xy2e2, e3, e4), is a tropical 
S-GB of I .

Proposition 3.20. If G is a tropical S-Gröbner basis, then for any nonzero h ∈ I , there exist g ∈ G and t ∈ T
such that:

• LM(tg) = LM(h)

• S(tg) = t S(g) = S(h) if h is irreducible, and S(tg) = t S(g) <sign S(h) otherwise.

Hence, there is an S-reductor for h in G when h is not irreducible.

Proof. For h irreducible, the result is simply a consequence of the definition of a tropical S-GB. When 
h is regular S-reducible, it means that it can be reduced by h2 a polynomial with same leading term 
but such that S(h2) <sign S(h). If h2 is irreducible, we are done. Otherwise, there exists h3 with same 
leading term and such that S(h3) <sign S(h2), and so on. A consequence of Definition 3.2 is that 
there is no strictly decreasing sequence of monomials for ≤sign . Consequently, after a finite number of 
iterations, we find h′ with same leading term as h, irreducible and such that S(h′) <sign S(h). We can 
then apply the definition of a tropical S-GB to conclude. �
Corollary 3.21. If G is a tropical S-Gröbner basis, then G is a tropical Gröbner basis of I , for <.

As a consequence, computing a tropical S-GB provides a tropical GB, and we can use the F5 
elimination criterion 3.13 to our advantage when computing these tropical S-GB. Moreover, we also 
have the following finiteness result:

Proposition 3.22. Every tropical S-Gröbner basis contains a finite tropical S-Gröbner basis.

Proof. It is a property of the structure of monomial ideals, and the proof in the classical case from 
Arri and Perry (2011, Prop. 14), using Dickson’s lemma, can directly be transposed to the tropical 
setting. �
3.3. Linear algebra and existence

For xα ∈ T and 1 ≤ i ≤ n, let us denote by Mac≤signxαei (F ) the Macaulay matrix of the polynomials 
xβ f j such that xβe j ≤ xαei , ordered increasingly for the order on the xβe j ’s. One can perform a 
tropical LUP algorithm on Mac≤d(F ) (see Algo. 2 for more information1) and obtain all the leading 
monomials in I≤signxαei . This can be (theoretically) performed for all xαei to obtain the existence of an 
S-GB of I .

3.4. Singular reduction

If one allows large inequality in the signature condition of Definition 3.14, one gets the notion of 
S-reduction.

1 We can summarize that the tropical LUP algorithm is an adaptation of a row-echelon form computation to the tropical 
setting so that one can read the leading monomials in the tropical sense from the rows of the reduced matrix.
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Definition 3.23 (S-reduction). Let e, g ∈ I , h ∈ I . We say that e S-reduces to g with h, e →h
S

g, if 
there are t ∈ T and α ∈ k∗ such that:

• e − αth = g , and either g = 0 or LT (g) < LT (e), LM(g) 
= LM(e).
• S(th) ≤sign S(e).

A S-reduction which is not regular, i.e., with S(th) = S(e), is called a singular S-reduction.

As a consequence, S-GB have the following generating property.

Proposition 3.24. If G is an S-GB, then any f ∈ I can be reduced to 0 using S-reductions by multiples of 
elements of G.

3.5. More on signatures

We define � to be the set of signatures.
Thanks to Proposition 3.13, not all xαei can be a signature:

Remark 3.25. If xαei ∈ LM(T S yz(F )) then xαei /∈ �.

We provide three lemmata to understand the compatibility of � with basic operations on polyno-
mials.

Lemma 3.26. If f , g ∈ I are such that S( f ) = S(g) and LM( f ) 
= LM(g), then there exist b ∈ k∗ such that 
S( f + bg) < S( f ) and f + bg 
= 0.

If one takes the point of view of linear algebra, the proof is direct. This Lemma has a direct 
consequence on regular S-irreducible polynomials.

Lemma 3.27. All regular S-irreducible polynomials of a given signature share the same leading monomial.

We finally state one last lemma about the compatibility of signatures with multiplication.

Lemma 3.28. If g ∈ I and τ ∈ T then S(τ g) ≤sign τ S(g). If moreover τ S(g) ∈ �, then S(τ g) = τ S(g) and 
for all μ ∈ T such that μ divides τ , S(μg) = μS(g).

Proof. The first part is direct. For the second part, one can show that it is possible to write that 
τ g = h +r for some h ∈ I of signature τ S(g), irreducible, and r ∈ I<signτ S(g) and conclude that S(τ g) =
τ S(g).

For the last statement, assume that there exists a μ ∈ T dividing τ such that S(μg) <sign μS(g). 
Then S(τ g) = S( τ

μμg) ≤sign
τ
μ S( μg) <sign

τ
μμS(g) = τ S(g), which is a contradiction. �

Lemma 3.29. The previous lemmata, 3.26, 3.27, 3.28 are also true if one uses Sd-signature instead of signa-
tures when restricting to I≤d.

4. Buchberger-F5 criterion

In this section, we explain a criterion, the Buchberger-F5 criterion, on which we build our F5 
algorithm to compute tropical S-Gröbner bases. It is an analogue of the Buchberger criterion which 
includes the F5 elimination criterion.

We need a slightly different notion of S-pairs, called here normal pairs, before we can state the 
Buchberger-F5 criterion.
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Definition 4.1 (Normal pair). Given g1, g2 ∈ I , let Spol(g1, g2) = u1 g1 − u2 g2 be the S-polynomial of 
g1 and g2, with for i ∈ {1, 2}, ui = lcm(LM(g1),LM(g2))

LT (gi)
. We say that (g1, g2) is a normal pair if:

1. the gi ’s are regular S-irreducible polynomials.
2. S(ui gi) = LM(ui)S(gi) for i = 1, 2.
3. S(u1 g1) 
= S(u2 g2).

We define accordingly d-normal pairs in I≤d .

Theorem 4.2 (Buchberger-F5 criterion). Suppose that G is a finite set of regular S-irreducible polynomials of 
I = 〈 f1, . . . , f s〉 such that:

1. for all i ∈ �1, s�, there exists g ∈ G such that S(g) = ei .
2. for any g1, g2 ∈ G such that (g1, g2) is a normal pair, there exists g ∈ G and t ∈ T such that tg is regular 

S-irreducible and t S(g) = S(tg) = S(Spol(g1, g2)).

Then G is a S-Gröbner basis of I . The analogue result using d-normal pairs to recognize an Sd-GB in I≤d is 
also true.

Remark 4.3. The converse of this result is clear.

Theorem 4.2 is an analogue of the Buchberger criterion for tropical S-Gröbner bases. To prove 
it, we adapt the classical proof of the Buchberger criterion and the proof of the tropical Buchberger 
algorithm of Chan and Maclagan (Algorithm 2.9 of Chan, 2013). First we need two lemmata.

Lemma 4.4. Let xα, xβ, xγ , xδ ∈ T and P , Q ∈ A be such that LM(xα P ) = LM(xβ Q ) = xγ and xδ =
lcm(LM(P ), LM(Q )). Then

Spol(xα P , xβ Q ) = xγ −δ Spol(P , Q ).

Proof. Exercise 8 in Section 2.6 of Cox et al. (2015). �
Lemma 4.5. Let G be an S-Gröbner basis of I up to some signature σ . Let h ∈ I , be such that S(h) ≤sign σ . 
Then there exist r ∈N , g1, . . . , gr ∈ G, Q 1, . . . , Q r ∈ A such that for all i and xα a monomial of Q i , S(xα gi) =
xα S(gi) ≤sign S(h) and LT (Q i gi) ≤ LT (h), the xα S(gi)’s are all distinct and non-zero, and, finally, we have

h =
r∑

i=1

Q i gi .

Proof. It is clear by linear algebra. One can form a Macaulay matrix whose rows correspond to 
polynomials τ g with τ ∈ T , g ∈ G such that S(τ g) = τ S(g) ≤sign S(h). Only one row is possible per 
non-zero signature, and each monomial in LM(I≤signσ ) is reached as leading term by only one row. It 
is then enough to add a row corresponding to h at the bottom of this matrix and perform a tropical 
LUP form computation (see Algorithm 2) to read the Q i ’s on the reduction of h. �
Proof of Theorem 4.2. We prove the main result by induction on the signature. We follow the order 
≤sign for the induction. It is clear for σ = e1. It is also clear that if we have an S-GB up to <sign ei
then we have an S-GB up to ≤sign ei . We write the elements of G as g1, . . . , gr for some r ∈Z>0.

Let us assume that G is an S-GB up to signature <sign σ for some signature σ and let us prove it 
is a S-GB up to ≤sign σ . We can assume that all g ∈ G satisfy LC(g) = 1. Let P ∈ I be irreducible, with 
LC(P ) = 1 and such that S(P ) = σ . We prove that there is τ ∈ T , g ∈ G such that LM(P ) = LM(τ g)

and S(τ g) = τ S(g) = σ .
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Our first assumption for G implies that there exist at least one g ∈ G and some τ ∈ T such that 
τ S(g) = S(P ) = σ .

If LM(τ g) = LM(P ) we are done. Otherwise, by Lemma 3.26, there exists some b ∈ k∗ such that 
S(P + bτ g) = σ ′ for some σ ′ <sign σ .

We can apply Lemma 4.5 to P + bτ g and obtain that there exist h1, . . . , hr ∈ A, such that P =∑r
i=1 hi gi , and for all i, and xγ monomial of hi , the xγ S(gi) = S(xγ gi) ≤sign σ are all distincts. We 

remark that LT (P ) ≤ maxi(LT (gihi)). We denote by mi := LT (gihi).
Among all such possible ways of writing P as 

∑r
i=1 hi gi , we define β as the minimum of the 

possible values of maxi(LT (gihi))’s. Such a β exists thanks to Lemma 2.10 in Chan and Maclagan 
(2019) (whose adaptation to the non-homogeneous setting is straightforward). We write xu = LM(β).

If LT (P ) =≤ β , then we are done. Indeed, there is then some i and τ in the terms of hi such that 
LM(τ gi) = LM(P ) and S(τ gi) = τ S(gi) ≤sign σ .

We now show that LT (P ) < β leads to a contradiction.
We can renumber the gi ’s so that, for some d:

• β =≤ m1 =≤ · · · =≤ md .
• β > mi for i > d.

We can assume that among the set of possible (h1, . . . , hr) that reach β , we take one such that 
this d is minimal. Since LT (P ) < β , we have d ≥ 2.

We can write (using the fact that LC(g1) = LC(g2) = 1):

Spol(g1, g2) = lcm(LM(g1), LM(g2))

LM(g1)
g1 − lcm(LM(g1), LM(g2)

LM(g2)
g2.

By construction, LM(h1)S(g1) 
= LM(h2)S(g2). By Lemma 4.4, there exists a term μ such that 
μ lcm(LM(g1),LM(g2))

LM(gi)
= LM(hi) for i ∈ {1, 2}. Using Lemma 3.28, we get that (g1, g2) is a normal pair.

If S(Spol(g1, g2)) = σ , by the second property of the F5 criterion, we are done. Indeed, it pro-
vides us with some t0 and g0 such that t0 g0 is regular S-irreducible with signature σ , and as all 
regular S-irreducible polynomials of a given signature share the same leading monomial, thanks to 
Lemma 3.27, we have with t0 and g0 a satisfying τ and g .

Otherwise, S(Spol(g1, g2)) <sign σ . Moreover, let

L = LC(h1 g1)
xu

lcm(LM(g1), LM(g2))
.

Then we have S(L · Spol(g1, g2)) ≤sign σ thanks to Lemma 4.4. Using the same construction as before 
with the second assumption of the F5 criterion and Lemmata 3.26 and 4.5, we obtain some h′

i ’s 
such that L · Spol(g1, g2) = ∑r

i=1 h′
i gi , LT (h′

i gi) ≤ LT (L · Spol(g1, g2)) < β for all i. Furthermore, the 
signatures S(xα gi) = xα S(gi) for i ∈ {1, . . . , r} and xα in the support of h′

i are all distinct.
We then get:

P =
r∑

i=1

hi gi,

=
r∑

i=1

hi gi − L · Spol(g1, g2) +
r∑

i=1

h′
i gi,

=
(

h1 − LC(h1 g1)
xu

LM(g1)
+ h′

1

)
g1

+
(

h2 + LC(h1 g1)
xu

LM(g2)
+ h′

2

)
g2 +

r∑(
hi + h′

i

)
gi,
i=3
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=:
r∑

i=1

h̃i gi,

where the ̃hi ’s are defined naturally.
By construction, LT (̃h1 g1) < LT (h1 g1) = β and LT (̃hi gi) ≤ β for i ≤ d and LT (̃hi gi) < β for i > d.
As a consequence, we have obtained a new expression for f with either maxi(LT (̃hi gi)) < β or this 

term attained strictly less than d times, which is in either case a contradiction with their definitions 
as minima. So LT (P ) =≤ β , which concludes the proof of the main result. It is then direct to adapt 
the previous proof to the case of an Sd-GB. �

This theorem holds also for S-GB (or Sd-GB) up to a given signature. We have the following 
variant for compatibility with sugar-degree:

Proposition 4.6. Suppose that d ∈Z>0 , and G is a finite set of polynomials of I such that:

1. Any g ∈ G is regular Sd-irreducible in I≤d.
2. For all g1, g2 ∈ G we have g1, g2 ∈ I≤d along with Spol(g1, g2) and both sides of the S-pair for g1 and g2 .
3. For all i ∈ �1, s�, there exists g ∈ G such that Sd(g) = ei .
4. for any g1, g2 ∈ G such that (g1, g2) is a d-normal pair, there exists g ∈ G and t ∈ T such that tg is regular 

Sd-irreducible and t Sd(g) = Sd(tg) = Sd(Spol(g1, g2)).

Then G is an S-Gröbner basis of I .

Proof. Using Theorem 4.2, it is clear that such a G is an Sd-GB.
It remains to prove that G is then an S-GB.
A first remark if σ is a signature then for any f ∈ I≤d , if Sd( f ) = σ then S( f ) = σ . It is a conse-

quence of Remark 3.11.
A second remark is that if f ∈ I≤d is such that Sd( f ) ≤sign σ , then S( f ) ≤sign σ .
One can then use the same proof on induction on σ as for Theorem 4.2 except for the decom-

position of L Spol(g1, g2) in signature ≤sign σ in terms of the gi ’s. If S(L Spol(g1, g2)) <sign σ , then 
it is true by induction. Otherwise, S(L Spol(g1, g2)) = σ , and as (g1, g2) is a d-normal pair, then 
Sd(L Spol(g1, g2)) = σ by the first remark. One can then use the Sd-GB property, and the second 
remark. Given the decomposition, all arguments are the same. �
Remark 4.7. When going from Sd to S, one should be aware that signatures can drop, even for 
regular Sd-irreducible polynomials. For instance, looking back to Example 3.12, x − y is regular 
Sd-irreducible, with Sd(x − y) = e4 when d = 3. Then, x − y is also regular S-irreducible, but of 
signature ye2. If instead, we had taken a small variation with F = [x2 y + 1, x3 + 1, y3 + x, y3 + y], 
then e4 is not even a signature. It is an S3-signature but disappears in sugar-degree 4 as y3 + y =
−x × (x2 y + 1) + y × (x3 + 1) + (y3 + x), and the signature of y3 + y is e3.

Fortunately, Proposition 4.6 is enough to tell when d is big enough for an Sd-GB to be an S-GB 
(even though signatures might still drop going from Sd to S).

5. F5 algorithm

In this section, we present our F5 algorithm. To this intent, we need to discuss some crucial algo-
rithmic points: how to recognize with which pairs to proceed and how to build the Macaulay matrices 
and reduce them.

The main algorithm is Algorithm 3 (on page 147), and will be presented in the last part of this 
section. Two key subfunctions are the Symbolic Preprocessing algorithm, used to build the Macaulay 
matrices processed by the main algorithm and given as Algorithm 1 (on page 146) and the Tropical 
LUP algorithm, used to reduce those matrices, and given as Algorithm 2 (on page 146).

We recommend that the reader first take a look at the main algorithm, Algorithm 3 on page 147, 
in order to get a global idea before reading linearly this Section.
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5.1. Admissible pairs and guessed signatures

It is not possible to check the second condition in the Definition 4.1 in advance in an F5 algorithm. 
Indeed, one needs an S-Gröbner basis up to the corresponding signature to be able to certify it. To 
circumvent this issue, we use the weaker notion of admissible pair.

Definition 5.1 (d-Admissible pair). Given g1, g2 ∈ I≤d , let Spol(g1, g2) = u1 g1 − u2 g2 be the S-polyno-
mial of g1 and g2. We have

ui = lcm(LM(g1), LM(g2))

LT (gi)
.

We say that (g1, g2) is a d-admissible pair if:

1. LM(ui)Sd(gi) = xα
i e ji /∈ LM(T S yz).

2. LM(u1)Sd(g1) 
= LM(u2)Sd(g2).

To certify that a set is an Sd-GB, handling d-admissible pairs instead of d-normal pairs is harm-
less. Indeed, d-normal pairs in I≤d are contained inside the d-admissible pairs. Whether a pair is 
d-admissible can be checked easily before proceeding to reduction using the second part of the F5 
elimination criterion (Proposition 3.13).

During the execution of the algorithm, when a polynomial xα g is processed, it is at first not 
possible to know what is its signature. Algorithm 3 (on page 147) has computed Sd(g) beforehand. 
Thanks to the F5 elimination criterion (Proposition 3.13), we can detect some of the xα g such that 
S(xα g) 
= xα S(g) and eliminate them. For the processed polynomials, we use xα Sd(g) as a guessed 
signature in the algorithm. Once an S-GB up to signature <sign xα Sd(g) is computed, we have the 
following alternative. First case: Sd(xα g) <sign xα Sd(g) and xα g reduces to zero (by the computed 
Sd-GB up to d-signature <sign xα Sd(g)) using possibly singular reduction (as in Subsection 3.4). The 
guessed signature was wrong but it is harmless as the polynomial is useless anyway. Second case: 
Sd(xα g) = xα Sd(g), and then the guessed signature is certified. Once the criterion of Proposition 4.6
is satisfied, all signatures are certified.

What happens when we can obtain f with signature Sd( f ) = xαei in degree d, and Sd+1( f ) =
xβe j <sign xαei in degree d + 1? Thanks to the way Algorithm 1 (on page 146) handles polynomials, 
always looking for smallest signature available, f and its multiples will then be built using only the 
second way. The first way of writing will at most appear so as to be reduced by the second one.

For instance, if we look back at Example 3.12, (e4, x − y) will only be used in sugar-degree 3. In 
sugar-degree 4 and more, it is (ye2, x − y) that will appear. (e4, x − y) may only appear in sugar-degree 
4 to be reduced to 0 by (ye2, x − y).

5.2. Symbolic preprocessing and rewritten criterion

One of the main parts of the F5 algorithm, Algorithm 3 (on page 147), is the Symbolic Prepro-
cessing: Algorithm 1 on page 146. From the current set of S-pairs, sugar-degree d, and the current 
Sd−1-GB, it produces a Macaulay matrix. One can read on the tropical reduction of this matrix new 
polynomials to append to the current basis to obtain an Sd-GB. It mostly consists of detecting which 
pairs are admissible and selecting a (complete) set of reductors.

A special part of the algorithm is the use of Rewritten techniques (due to Faugère, 2002).
The idea is the following. Once a polynomial has passed the F5 elimination criterion and is set to 

appear in a Macaulay matrix, it can be replaced by any other multiple of an element of G of the same 
d-signature. Indeed, assuming correctness of the algorithm without any rewriting technique, if one of 
them, h, is of d-signature xαei , the algorithm computes a tropical S-Gröbner basis up to d-signature 
<sign xαei . Hence, h can be replaced by any other polynomial of same signature: it would be reduced 
to the same polynomial. By induction, one can prove that all of them can be replaced at the same 
time. We also remark that this is still valid for replacing a row of a given guessed d-signature by 
another of the same guessed d-signature.
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Algorithm 1: Symbolic-Preprocessing-Rewritten.

input : P , a set of d − 1-admissible pairs of sugar-degree d and G such that G ∩ I≤d−1 is an Sd−1-GB
output: A Macaulay matrix
for Q polynomial in P do

Replace Q in P by the polynomial (uS(g), u × g) with g latest added to G reaching the same guessed signature ;
C ← the set of the monomials of the polynomials in P ;
U ← the polynomials of P with their signature, except only one polynomial is taken by guessed signature ;
D ← ∅ ;
while C 
= D do

m ← max(C \ D) ;
D ← D ∪ {m} ;
V ← ∅ ;
for g ∈ G do

if LM(g) | m then
V ← V ∪ {(g, m

LM(g)
)} ;

(g, δ) ← the element of V with δ × g of smallest guessed signature not already in the signatures of U, with 
tie-breaking by taking minimal δ (for ≤m) ;
U ← U ∪ {δ × g} ;
C ← C ∪ {monomials of δ × g} ;

M ← the polynomials of U , written in a Macaulay matrix and ordered by increasing guessed signature ;
Return M ;

Algorithm 2: The tropical LUP algorithm.
input : M , a Macaulay matrix of degree d in A, with nrow rows and ncol columns, and mon a list of monomials indexing 

the columns of M .
output: M̃ , the U of the tropical LUP-form of M
M̃ ← M ;
if ncol = 1 or nrow = 0 or M has no non-zero entry then

Return M̃ ;
else

for i = 1 to nrow do
Find j such that M̃i, j has the greatest term M̃i, j xmon j for ≤ of the row i;
Swap the columns 1 and j of M̃ , and the 1 and j entries of mon;
By pivoting with the first row, eliminates the coefficients of the other rows on the first column;
Proceed recursively on the submatrix M̃i≥2, j≥2;

Return M̃;

One efficient way is to replace a polynomial t × g by the polynomial xβh (h ∈ G) of same (guessed) 
d-signature t Sd(g) such that xβ has smallest degree.2 It actually leads to a substantial reduction of 
the running time of the F5 algorithm. Taking the sparsest available polynomial is another possibility.

5.3. Linear algebra

To reduce the Macaulay matrices while respecting the signatures, we use the following tropical 
LUP algorithm from Vaccon (2017): Algorithm 2 on page 146. If the rows correspond to polynomials 
ordered by increasing signature, the algorithm computes a row-reduction of the matrix, respecting the 
signatures and the tropical ordering, and such that each resulting non-zero row has a different leading 
monomial. As a consequence, we get on the resulting matrix all the leading monomials in the vector 
space generated by the rows of the initial matrix.

Example 5.2. We provide here a small example to illustrate the tropical LUP algorithm.

2 Indeed, such an h can be considered as one of the most reduced possible.
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Algorithm 3: A complete F5 algorithm.
input : f1, . . . , f s polynomials, ordered by degree
output: A tropical S-GB G of 〈 f1, . . . , f s〉
G ← {(ei , f i) for i in �1, s�} ;
B ← {S-pairs of G} ; d ← 1 ;
while B 
= ∅ do

if there is i s.t. | f i | = d then
Replace the occurrence of f i in G by its reduction modulo G ∩ 〈 f1, . . . , f i−1〉;

P receives the pop of the d − 1-admissible pairs in B of sugar-degree d. Suppress from B the others of 
sugar-degree d;
Write them in a Macaulay matrix Md , along with their regular Sd-reductors obtained from G (one per signature) 
by Symbolic-Preprocessing-Rewritten(P , G) (Algorithm 1);
Apply Algorithm 2 to compute the U in the tropical LUP form of M (no choice of pivot) ;
Add to G all the polynomials obtained from M̃ that provide new leading monomial up to their d-signature ;
Add to B the corresponding new d-admissible pairs ;
d ← d + 1 ;

Return G ;

We start with the following Macaulay matrix, over Q3[x, y] with w = (0, 0), and ≤m and ≤1 are 
the graded lexicographical ordering.

x4 x3 y y4 x2 xy y2

ye3 1 3

x2e3 1 9 3

ye4 3 9 9

e5 9 9 3 1 9
.

The xαei ’s are the signatures of the polynomials corresponding to the rows that are given as entry 
of the algorithm. In this case, mon is [x4, x3 y, y4, x2, xy, y2].

The output of the tropical LUP algorithm is then the following matrix.

x4 x2 x3 y xy y4 y2

ye3 1 3

x2e3 1 9 3

ye4 9 9 9

e5 −35 0 −18
.

5.4. A complete algorithm

We now provide with Algorithm 3 on page 147 a complete version of an F5 algorithm which uses 
Buchberger-F5 criterion and all the techniques introduced in this section.

Theorem 5.3. Algorithm 3 (on page 147) computes an S-GB of I . It avoids trivial tame syzygies.

Proof. It relies on Theorem 4.2 and then Proposition 4.6. The proof is by induction on the sugar-
degree, then i, then the xαei . One first proves that at the end of the main while loop any guessed 
signature is correct, or its row has reduced to zero, and then that Sd-GB are computed, signature 
by signature. One can then apply 4.6 on the output to conclude. Termination is a consequence of 
correctness and Proposition 3.22. For the syzygies, it is a direct consequence of the second part of 
Proposition 3.13. �
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Remark 5.4. Condition 1 of 4.2 and 3 of 4.6 is not satisfied when for some i, f i ∈ 〈 f1, . . . , f i−1〉. This 
is harmless as: 1. As soon as it is found by computation, no signature in ei will appear anymore. 2. 
The Buchberger-F5 criterion can be applied omitting f i .

6. Iterative F5

In this section, we present briefly another way of extending the F5 algorithm to the affine setting: 
a completely iterative way in the initial polynomials. The idea is to compute tropical Gröbner bases 
for 〈 f1〉 , 〈 f1, f2〉 , . . . , 〈 f1, . . . , f s〉.

This corresponds to using the position over term ordering on the signatures, or in terms of filtra-
tion, to the following filtration on As:

Definition 6.1. We write that xαei ≤incr xβe j if:

1. if i < j.
2. if i = j and |xα f i | < |xβ f j|.
3. if i = j and |xα f i | = |xβ f j|, and

• xα /∈ LM(Ii−1) and xβ ∈ LM(Ii−1), or
• both xα, xβ ∈ LM(Ii−1) and xα ≤ xβ , or
• both xα, xβ /∈ LM(Ii−1) and xα ≤ xβ .

Proposition 6.2 (Faugère (2002)). If xα ∈ LM(Ii−1), then the filtration is constant at I≤xαei .

Proof. We can write xα + g = ∑
j<i a j f j , with for all j a j ∈ I , and g ∈ I with no monomial in 

LM(Ii−1). Then: xα f i = (−g) f i + ∑i−1
j=1(a j f i) f j , and the filtration is constant at I≤xαei . �

It is then possible to state a Buchberger-F5 criterion and provide an adapted F5 algorithm. The two 
algorithms will then differ in the following way.

1. For a given xα and ei , the vector space I<incr xαei is much bigger in the iterative setting, often of 
infinite dimension. Thus, polynomials of signature xαei can be more deeply reduced.

2. More syzygies can be avoided in the iterative setting.
3. However, many more matrices are to be produced: one for each i and each necessary degree. 

Construction of the matrices is not mutualised by degree anymore.

7. The F4 approach

Another way to compute tropical Gröbner bases for affine polynomials is to adapt Faugère’s F4 
algorithm (Faugère, 1999).

Roughly, the F4 algorithm is an adaptation of Buchberger’s algorithm such that all S-polynomials 
of a given degree are processed and reduced together in a big Macaulay matrix, along with their 
reducers. The algorithm carries on the computation until there is no S-polynomials to reduce.

In a tropical setting, we have adapted the so-called “normal strategy” of F4 using the tropical LUP 
algorithm to reduce the Macaulay matrices.

For simplicity of exposition, we have only used Algorithm 2 to reduce the Macaulay matrices.
Nevertheless, so-called tropical row-echelon forms (Algorithm 3.2.2 and 3.7.3 of Vaccon, 2017) 

are also possible. This enables a trade-off between speed, thoroughness of the reduction and loss in 
precision. Indeed, contrary to the F5 strategy where one has to reduce with respect to signatures, any 
reasonable strategy of reduction is possible.

In this section, we present the algorithm, along with proof of correctness and termination.
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Algorithm 4: F4-Symbolic-Preprocessing.
input : P , a list of pairs of elements of A, G a list of elements in A.
output: A Macaulay matrix
C ← the set of the monomials of the polynomials in P ;
U ← the polynomials of P ;
D ← ∅ ;
while C 
= D do

m ← max(C \ D) ;
D ← D ∪ {m} ;
V ← ∅ ;
for g ∈ G do

if LM(g) | m then
V ← V ∪ {(g, m

LM(g)
)} ;

(g, δ) ← the element (g, δ) of V with δ × g of biggest leading term, with tie-breaking by taking minimal δ (for ≤) ;
U ← U ∪ {δ × g} ;
C ← C ∪ {monomials of δ × g} ;

M ← the polynomials of U , written in a Macaulay matrix ;
Return M ;

Algorithm 5: Tropical polynomial reduction.
input : f ∈ A, G a list of elements in A.
output: f̃ a reduction of f by G .
M ← F4-Symbolic-Preprocessing({ f } , G) ;
Swap rows of M so that f corresponds to the last row of M ;
M̃ ← Tropical-LUP(M);

f̃ ← last row of M̃ ;

Return f̃ ;

7.1. Buchberger criterion and reduction

Defining algorithm for reduction in a tropical setting is not straightforward. A classical example 
comes from trying to use a naive adaptation of the classical polynomial reduction algorithm to reduce 
x by the family G = (x + y, y + 2x), in Q2[x, y] with w = (0, 0). Even though G is a minimal Gröbner 
basis, the corresponding algorithm would not terminate, going through all the 2nx’s and −2n y’s as 
intermediate polynomials to reduce.

Yet, we need an algorithm for reduction so as to state a Buchberger criterion, on which the correct-
ness of F4 is based. As in Vaccon (2017), Vaccon and Yokoyama (2017), this issue can be circumvented 
using matrix reduction.

We begin by adapting the Symbolic-Preprocessing algorithm, removing any call for signatures. The 
corresponding version is presented in Algorithm 4 on page 149.

Algorithm 4 allows us to construct matrices on which we can perform reduction. Algorithm 5
on page 149 is then built upon it. It is used to define the reduction of a polynomial by a family 
of polynomials. It will then be used only for theoretical purpose as a way to provide a Buchberger 
criterion for termination of F4.

Proposition 7.1 (Buchberger’s criterion). G is a tropical Gröbner basis of 〈G〉 if and only if every S-polynomial 
of G reduces to zero using Algorithm 5.

Proof. We already have the Buchberger-F5 criterion, Theorem 4.2. It is clear that Buchberger’s crite-
rion can be obtained as a weak variant of the Buchberger-F5 criterion, getting rid of the signatures. �
7.2. An algorithm and its proof

We can now present a Tropical F4 Algorithm with Algorithm 6 on page 150.
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Algorithm 6: A tropical F4 algorithm.
input : f1, . . . , f s in A
output: A tropical GB G of 〈 f1, . . . , f s〉
G ← ( f1, . . . , f s) ;
B ← {pairs of G} ;
while B 
= ∅ do

d ← the smallest degree of an lcm of leading terms in a pair of B ;
P receives the pop of the pairs of degree d in B;
Write them in a Macaulay matrix M , along with their reductors obtained by F4-Symbolic-Preprocessing(P , G)

(Algorithm 4);
Apply Algorithm 2 to compute M̃ the row-echelon form of M ;
Add to G all the polynomials obtained from M̃ that provide leading monomials not in 〈{LM(g) for g ∈ G}〉;
Add to B the corresponding new pairs ;

Return G ;

Proposition 7.2. The Tropical F4 algorithm, Algorithm 6 terminates and computes a tropical GB of I .

Proof. If Algorithm 6 does not terminate for some initial ( f1, . . . , f s), it means that there is an in-
finite sequence of polynomials (hi)i∈N that are added to G . Indeed, otherwise, the algorithm would 
terminate as it would run out of S-pairs.

For those hi to be added in the algorithm, they have to provide an LM(hi) not already in the 
monomial ideal 〈LM(g), g ∈ G〉 for the current G . This would mean an infinite number of generator 
in a monomial ideal, which is a contradiction. Hence the algorithm terminates.

As for correctness, it is an application of the Buchberger criterion. After every turn in the while
loop, all already processed S-polynomial of an S-pair reduce to 0 by G . Hence, after termination, it is 
the case for all the S-pairs of G and we can apply Buchberger’s criterion. �
7.3. Linear algebra and reduction

The call for Algorithm 2 in Algorithm 6 can be replaced by a call to Algorithm 3.2.2 of Vaccon 
(2017). When dealing with coefficients only known at finite precision, it allows the usage at each step 
of the best pivot available, providing a better stability.

Remark 7.3. If the input polynomials are homogeneous, the weight is w = [0, . . . , 0] and one uses Al-
gorithm 3.2.2 of Vaccon (2017), then one can show that the following behavior regarding to precision 
in a p-adic setting happens: loss in precision due to divisions do not accumulate.

This is not the case for affine polynomials, but one can still expect the loss in precision to often 
be moderate in practice.

8. Numerical experiments

A toy implementation of our algorithms in SageMath (2018) is available on https://gist .github .
com /TristanVaccon. We have gathered some numerical results in the following arrays. Timings are in 
seconds of CPU time.3

8.1. Benchmarks

Here, the base field is Q with 2-adic valuation. We have applied the tropical F5 algorithm, Algo-
rithm 3, an iterative tropical F5, and a tropical F4 algorithm on the Katsura n and Cyclic n systems for 
varying n. Dots mean no conclusion within dozen hours.

3 Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6 GHz and 16 GB of RAM.

https://gist.github.com/TristanVaccon
https://gist.github.com/TristanVaccon
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w=[0,. . . ,0] Katsura 4 5 6 7 Cyclic 4 5 6
Trop F5 .16 1.2 1371 • 0.4 21 •
Iterative trop F5 0.3 1.9 1172 • 0.4 21 •
Trop F4 .5 5 30 • 1.7 112 •
w = [(−2)i−1] Katsura 4 5 6 7 Cyclic 4 5 6
Trop F5 0.15 0.8 17 • 0.18 11 •
Iterative trop F5 0.18 1.1 20 • 0.18 11 •
Trop F4 0.2 1.7 15 • 1 65 •

8.2. Tropical F5 + FGLM

For a given p, we take three polynomials with random coefficients in Zp (using the Haar measure) 
in Qp[x, y, z] of degree 2 ≤ d1 ≤ d2 ≤ d3 ≤ 4. We first compute a tropical Gröbner basis for the weight 
w = [0, 0, 0]4 and the grevlex monomial ordering, and then apply an FGLM algorithm (tropical to 
classical as in Chapter 9 of Vaccon, 2015) to obtain a lex GB. For any given choice of di ’s, we repeat 
the experiment 50 times. Coefficients of the initial polynomials are all given at some high-enough 
precision O (pN ) for no precision issue to appear.5 We can not provide a certificate on the leading 
monomials of the output basis though: we can not prove that no non-zero coefficient has been taken 
for zero due to the lack of precision in a way that impacts the computation.

Results are compiled in the following arrays.
Firstly, an array for timings given as couples: average of the timings for the tropical F5 part and 

for the FGLM part, with D = d1 + d2 + d3 − 2, the Macaulay bound. We add that for p = 2, 3, there is 
often a huge standard deviation on the timings of the F5 part.

D = 4 5 6 7 8 9
p = 2 .7 0.2 2.5 0.5 18 2.3 300 11 50 37 145 138
3 .8 .2 .9 .5 4 2 9 11 16 37 80 144
101 0.3 .2 .5 .5 1 2 3 10 4.6 37 11 150
65519 .4 .2 .6 .6 1.3 2.6 3.5 11 5 39 10 132

Coefficients of the output tropical GB or classical GB are known at individual precision O (pN−m). 
We compute the total mean and max on those m’s on the obtained GB. Results are compiled in the 
following array as couples of mean and max. The first array is for the F5 part and the second for the 
precision on the final result.

D = 4 5 6 7 8 9
p = 2 1.3 13 1.3 13 1.3 14 1.5 13 1.4 17 1.3 15
3 .6 6 .7 8 .7 7 .6 7 .6 7 .6 10
101 0 1 0 1 0 1 0 2 0 2 0 1
65519 0 0 0 0 0 1 0 0 0 0 0 0

D = 4 5 6 7 8 9
p = 2 8 71 17 170 58 393 167 913 290 1600 570 3900
3 5 38 13 114 27 230 81 640 167 1600 430 3100
101 .2 11 0 2 1.3 80 4 210 8 407 0 2
65519 0 0 0 0 0 0 0 0 0 0 0 0

Most of the loss in precision appears in the FGLM part. In comparison, the F5 part is quite stable, 
and hence, our goal is achieved.

4 Efficiency of this choice regarding to the loss in precision was studied in the extended version of Vaccon, 2017.
5 By precision issue, we mean for example a loss in precision such that it is not possible to determine which term is the 

leading term, due to some terms of the form O (pn)xα . We refer the interested reader to the Section 4 of Vaccon (2017).
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