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ABSTRACT
Let K be a �eld equipped with a valuation. Tropical varieties over K
can be de�ned with a theory of Gröbner bases taking into account

the valuation of K . Because of the use of the valuation, the theory

of tropical Gröbner bases has proved to provide se�ings for com-

putations over polynomial rings over a p-adic �eld that are more

stable than that of classical Gröbner bases.

Beforehand, these strategies were only available for homoge-

neous polynomials. In this article, we extend the F5 strategy to a

new de�nition of tropical Gröbner bases in an a�ne se�ing.

We provide numerical examples to illustrate time-complexity

and p-adic stability of this tropical F5 algorithm. We also illustrate

its merits as a �rst step before an FGLM algorithm to compute

(classical) lex bases over p-adics.
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1 INTRODUCTION
Tropical geometry as we understand it has not yet reached half a

century of age. It has nevertheless spawned signi�cant applications

to very various domains, from algebraic geometry to combina-

torics, computer science, economics, non-archimedean geometry

(see [MS15], [EKL06]) and even a�empts at proving the Riemann

hypothesis (see [C15]).

E�ective computation over tropical varieties make decisive use

of Gröbner bases. Since Chan and Maclagan’s de�nition of tropical

Gröbner bases taking into account the valuation in [C13, CM13],

computations of tropical Gröbner bases are available over �elds
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with trivial or non-trivial valuation, but only in a context of homo-

geneous ideals.

On the other hand, for classical Gröbner bases, numerous algo-

rithms have been developed allowing for more and more e�cient

computations. �e latest generation of algorithms for computing

Gröbner bases is the family of signature-based algorithms, which

keep track of where the polynomials come from in order to an-

ticipate useless reductions. �is idea was initiated in Algorithm

F5 [F02], and has since then been widely studied and generalized

([BFS14, EF17]).

Most of those algorithms, including the original F5 algorithm,

are speci�cally designed for homogeneous systems, and adapting

them to a�ne (or inhomogeneous) systems requires special care

(see [E13]).

An F5 algorithm computing tropical Gröbner bases without any

trivial reduction to 0, inspired by the classical F5 algorithm, has

been described in [VY17]. �e goal of this paper is to extend the

de�nition of tropical Gröbner bases to inhomogeneous ideals, and

describe ways to adapt the F5 algorithm in this new se�ing.

�e core motivation is the following. It has been proved [V15]

that computing tropical Gröbner bases, taking into account the

valuation, is more stable for polynomial ideals over a p-adic �eld

than classical Gröbner bases.

�us, an a�ne variant of tropical Gröbner bases is highly desir-

able to handle non-homogeneous ideals over p-adics. For classical

Gröbner bases, it is always possible to homogenize the input ideal,

compute a homogeneous Gröbner basis, and dehomogenize the

result. �is technique is not always optimal, because the algorithm

may end up reaching a higher degree than needed, computing

points at in�nity of the system, but it always gives a correct result

and, in the case of signature Gröbner basis algorithms, is able to

eliminate useless reductions. However, in a tropical se�ing, terms

are ordered with a tropical term order, taking into account the val-

uation of the coe�cients. As far as we know it, there is no way to

dehomogenize a system in a way that would preserve the tropical

term order. Indeed, no tropical term order can be an elimination

order.

Moreover, the FGLM algorithm can be adapted to the tropical

case (see Chap. 9 of [V*]), making it possible to compute a lexico-

graphical (classical) Gröbner basis from a tropical one. We provide

numerical data to estimate the loss in precision for the computation

of a lex Gröbner basis using a tropical F5 algorithm followed by an

FGLM algorithm, in an a�ne se�ing.

1.1 Related works
A canonical reference for an introduction to computational tropical

algebraic geometry is the book of Maclagan and Sturmfels [MS15].

�e computation of tropical varieties over Q with trivial valua-

tion is available in the Gfan package by Anders Jensen (see [Gfan]),

by using standard Gröbner bases computations. Chan and Macla-

gan have developed in [CM13] a Buchberger algorithm to compute



tropical Gröbner bases for homogeneous entry polynomials (us-

ing a special division algorithm). Following their work, still for

homogeneous polynomials, a Matrix-F5 algorithm has been pro-

posed in [V15] and a Tropical F5 algorithm in [VY17]. Markwig

and Ren have provided a completely di�erent technique of compu-

tation using projection of standard bases in [MY16], again only for

homogeneous entry polynomials.

In the classical Gröbner basis se�ing, many techniques have

been studied to make the computation of Gröbner bases more ef-

�cient. In particular, Buchberber’s algorithm is frequently made

more e�cient by using the sugar-degree (see [GMNRT91, BCM11])

instead of the actual degree for selecting the next pair to reduce.

�is technique was a precursor of modern signature techniques,

in the sense that the sugar-degree of a polynomial is exactly the

degree of its signature. General signature-based algorithms for

computing classical Gröbner bases of inhomogeneous ideals have

been extensively studied in [E13].

1.2 Speci�cities of computating tropical GB
�e computation of tropical GB, even by a Buchberger-style algo-

rithm, is not as straightforward as for classical Gröbner bases. One

way to understand this is the following: even for homogeneous

ideals, there is no equivalence between tropical Gröbner bases and

row-echelon linear bases at every degree. Indeed,we can remark

that (f1, f2) = (x + y, 2x + y) is a tropical GB over Q[x ,y] with

2-adic valuation, w = [0, 0] and grevlex ordering. Nevertheless, the

corresponding 2 × 2 matrix in the vector space of homogeneous

polynomials of degree 2 is not under tropical row-echelon form.

As a consequence, reduction of a polynomial by a tropical GB is

not easy. In [C13, CM13], Chan and Maclagan relied on a variant

of Mora’s tangent cone algorithm to obtain a division algorithm. In

[V15, VY17], the authors relied on linear algebra and the computa-

tion of (tropical) row-echelon form. In this article, we extend their

method to the computation of tropical Gröbner bases in an a�ne

se�ing, through an F5 algorithm.

1.3 Main idea and results
Extending the tropical F5 algorithm to inhomogeneous inputs poses

two di�culties. First, as mentioned, tropical Gröbner bases used

to be only de�ned and computed for homogeneous systems. Even

barebones algorithms such as Buchberger’s algorithm are not avail-

able for inhomogeneous systems. �e second problem is a general

problem of signature Gröbner bases with inhomogeneous input.

�e idea of signature algorithms is to compute polynomials with

increasing signatures, and the F5 criterion detects trivial reductions

to 0 by matching candidate signatures with existing leading terms.

For homogeneous ideals, the degree of the signature of a polyno-

mial and the degree of the polynomial itself are correlated. �is is

what makes the F5 criterion applicable.

�e survey paper [E13] has shown that Algorithm F5, using

the position over term ordering on the signatures, has to reach a

tradeo� between eliminating all reductions to 0 and performing

other useless reductions.

More precisely, let f1, . . . , fm be homogeneous polynomials with

coe�cients in a �eld with valuation K , and de�ne Ik,d the vector

space of polynomials in 〈f1, . . . , fk 〉 with degree at most d . With

the usual computational strategy, the algorithm computes a basis

of I1,1, then I2,1, and so on until Im,1, and then I1,2, and so on.

In a lot of situations [BFS04] ideals with more generators have a

Gröbner basis with lower degree, and this strategy ensures that the

algorithm does not reach a degree higher than needed.

However, the same algorithm for a�ne system will, at each step,

merely compute a set of polynomials in each Ik,d . �is set needs

not be a generating set because of degree falls. To obtain a basis

instead, one has to proceed up to some Ik,δ with δ ≥ d . When

δ > d , some polynomials will be missing for the F5 criterion in

degree less than δ , and the corresponding trivial reductions to 0

will not be eliminated.

In this paper, we show that the tropical F5 algorithm [VY17]

works in an a�ne se�ing, and we characterize those trivial reduc-

tions to 0 which are eliminated by the F5 criterion. In particular,

we show that the Macaulay matrices built at each step of the com-

putations are Macaulay matrices of all polynomials with a given

sugar-degree.
Compared to [VY17], the overall presentation of the F5 algo-

rithms is clari�ed. It can now be summarized as the following

strategy: �ltration, signature, F5 elimination criterion, Buchberger-

F5 criterion and �nally the F5 algorithm.

Theorem 1.1. Given a set of (non-necessarily homogeneous) poly-
nomials f1, . . . , fm ∈ K[X1, . . . ,Xn ], the Tropical F5 algorithm (Al-
gorithm 3) computes a tropical Gröbner basis of I , without reducing
to 0 any trivial tame syzygy (Def. 3.1).

We also examine an incremental a�ne version of the homo-

geneous tropical F5-algorithm and an a�ne tropical F4, and we

compare their performances on several examples. Even in a non-

homogeneous se�ing, the loss in precision of the tropical F5 algo-

rithm remains satisfyingly low.

1.4 Organization of the paper
Section 2 introduces notations and nonhomogeneous tropical Gröbner

bases. Section 3 then introduces the �ltration on ideals necessary

for F5 algorithms in this context. Section 4 is devoted to provide

a Buchberger-F5 criterion on which Section 5 elaborates a �rst

tropical F5 algorithm. Section 6 brie�y presents other methods

for the computation of nonhomogeneous tropical Gröbner bases.

Finally, Section 7 displays numerical results related to the preci-

sion behaviour and time-complexity of the algorithms we have

described.
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2 AFFINE TROPICAL GB
2.1 Notations
Letk be a �eld with valuationval .�e polynomial ringk[X1, . . . ,Xn ]
will be denoted by A. Let T be the set of monomials of A. For

u = (u1, . . . ,un ) ∈ Zn≥0
, we write xu for Xu1

1
. . .Xun

n and | f | for

the degree of f ∈ A. In As , (ei )si=1
is the canonical basis.

�e matrix of a list of polynomials wri�en in a basis of monomials

is called a Macaulay matrix.

Given a mapping ϕ : U → V , Im(ϕ) denotes the image of ϕ . For a

matrixM,Rows(M) is the list of its rows, and Im(M) denotes the le�-

image of M (i.e. Im(M) = span(Rows(M)). For w ∈ Im(val)n ⊂ Rn
and ≤1 a monomial order on A, we de�ne ≤ a tropical term order

as in the following de�nition:



De�nition 2.1. Given a,b ∈ k∗ and xα and xβ two monomials in

A, we write axα < bxβ if:

• |xα | < |xβ |, or

• |xα | = |xβ |, andval(a)+w ·α > val(b)+w · β , orval(a)+
w · α = val(b) +w · β and xα <1 xβ .

For u of valuation 0, we write axα =≤ uaxα . Accordingly, axα ≤
bxβ if axα < bxβ or axα =≤ bxβ .

�roughout this article, we are interested in computing a tropical

Gröbner basis of I = 〈f1, . . . , fs 〉 for some given f1, . . . , fs ∈ A
(ordered increasingly by degree).

2.2 Tropical GB
A tropical term order provides an order on the terms of the polyno-

mials f ∈ A.

De�nition 2.2. For f ∈ A, we de�ne LT (f ) to be the biggest term

of f .We de�ne LM(f ) to be the monomial corresponding to LT (f )
and LC(f ) the corresponding coe�cient.

We de�ne LM(I ) to be the monomial ideal generated by the

monomials LM(f ) for f ∈ I .

We can then naturally de�ne what is a tropical Gröbner basis

(tropical GB for short):

De�nition 2.3. G ⊂ I is a tropical GB of I if span(LM(д) for д ∈
G) = LM(I ).

We can remark that for homogeneous polynomials this de�nition

coincide with that given in [VY17].

3 FILTRATION ANDS-GB
3.1 De�nition and elimination criterion
One of the main ingredient for F5 algorithms is the de�nition of

a vector space �ltration of the ideal I . It is de�ned from the ini-

tial polynomials F = (f1, . . . , fs ) generating I . For simplicity, we

assume that they are ordered by increasing degree.

First, we extend ≤ to the monomials of the vector space As . To

that intent, we highlight some monomials that appear as leading

monomial of a syzygy.

De�nition 3.1. Let (a1, . . . ,as ) ∈ As and i ∈ {1, . . . , s} be such

that: (1)

∑
j aj fj = 0. (2) ai , 0 and aj = 0 for j > i . (3) for all j < i,

|aj fj | ≤ |ai fi |.
We call such a syzygy a tame syzygy and we de�ne LM(ai )ei to

be its leading monomial. We de�ne LM(TSyz(F )) as the module

in As generated by the leading monomials of the tame syzygies.

Trivial tame syzygies are the tame syzygies that are also trivial (i.e.
in the module generated by the fiej − fjei ).

�e F5 criterion that we use in this article is designed to recognize

some of the tame syzygies and use this knowledge to avoid useless

reduction to zero of some polynomials. It is the main motivation

for de�ning a �ltration on the vector space As .We use a degree-

re�ning monomial ordering ≤m on A.1 We de�ne a total order on

the monomials of As .

De�nition 3.2. We write that xα ei ≤siдn xβej if:

(1) if i < j, or

(2) if i = j and |xα fi | < |xβ fj |, or

1≤m is not necessarily related to ≤1 and ≤.

(3) if i = j and |xα fi | = |xβ fj |, and

• xα < LM(TSyz(F )) and xβ ∈ LM(TSyz(F )), or

• both xα ,xβ ∈ LM(TSyz(F )) and xα ≤m xβ , or

• both xα ,xβ < LM(TSyz(F )) and xα ≤m xβ .

De�nition 3.3. We consider the vector space

I≤siдnxα ei := Span({xβ fj , s.t. xβej ≤siдn xα ei })
and the vector space I<siдnxα ei de�ned accordingly. We de�ne

I =
⋃
↑xα ei I≤siдnxα ei as an increasing vector space �ltration of I .

We then have a very natural de�nition of signature. In li�erature,

this notion of signature is sometimes called minimal signature.

De�nition 3.4. For f ∈ I , the smallestxα ei such that f ∈ I≤siдnxα ei
is called the signature of f and noted S(f ).

�e degree |xα fi | is called the sugar-degree of xα ei .
2

For the

purpose of Algorithm 3, we design a �ltration compatible with the

sugar-degree.

De�nition 3.5. We consider the vector space

I ≤d = Span({xβ fj , s.t. |xβej | ≤ d})
We then de�ne, for xα ei with sugar-degree d , the vector space

I ≤d≤siдnxα ei = Span({xβ fj , s.t. xβej ≤siдn xα ei and |xβ fj | ≤ d}).

I =
⋃
↑d I
≤d

is also a vector space �ltration. I ≤d can itself

be �ltrated by the I ≤d≤siдnxα ei . We have a compatible notion of

signature:

De�nition 3.6. For d ∈ Z>0 and f ∈ I ≤d , the smallest xα ei such

that f ∈ I ≤d≤siдnxα ei is called the d-signature of f and noted Sd (f ).

We remark that Sd (f ) can be di�erent from S(f ) for small f , but

all Sd (f ) are equal when d is large.

�e main motivation for de�ning the vector spaces I ≤d≤siдnxα ei
is their �nite dimension. �eir compatibility with the sugar-degree

allows the F5 algorithm to compute only one Macaulay matrix by

sugar-degree d .
�e goal of the F5 criterion is to recognize some xα ei such that

the �ltration is constant at I ≤d≤siдnxα ei . As a consequence, this

knowledge allows to skip some calculation as, because of this con-

stancy, they will not provide any new leading monomial. We can

then state a �rst version of the F5 elimination criterion:

Proposition 3.7 ([F02]). If xα is such that xα ei ∈ LM(Tsyz(F )),
d ≥ |xα fi |, then the �ltration is constant at I ≤d≤siдnxα ei . If x

α ∈
LM(I ≤d≤siдnx β ej ) for some xβ and j such that |xβ fj | ≤ |xα |, then
xα ei ∈ LM(Tsyz(F )) for any i > j .

Proof. For the �rst part, we can write (xα + д)fi =
∑
j<i aj fj ,

with LT (д) < xα and for all j < i, |aj fj | ≤ |xα fi |. �en:

xα fi = (−д)fi +
i−1∑
j=1

aj fj .

By linear algebra and a complete reduction using as pivot the

xβej ∈ LM(Tsyz(F )), we can assume that д has no monomial in

2
Sugar-degree has been introduced and explored in [GMNRT91, BCM11].



LM(TSyz(F )) and obtain: xα fi ∈ I ≤d<xα ei
, and therefore, the �ltra-

tion is constant at I ≤d≤xα ei .
For the second part, we can write xα + д =

∑
k≤j ak fk , with

LT (д) < xα and for all k ≤ j, |aj fj | ≤ |xβ fj | ≤ |xα |. �en

(xα +д)fi −
∑
k≤j (ak fi )fk = 0 and we do have |xα fi | ≥ |(ak fi )fk |

for all k ≤ j . �

If all the fi ’s are homogeneous, this coincides with the usual

F5 elimination criterion, as for example stated in [VY17], which

eliminates all trivial reductions to zero in the course of the algorithm.

For a�ne polynomials, the F5 criterion only eliminates those trivial

reductions which are tame.

3.2 TropicalS-GB
In order to take advantage of the F5 elimination criterion to compute

tropical Gröbner bases, we focus on the computation of tropical

Gröbner bases which are compatible with the �ltration: tropical

S-GB. We �rst need the de�nition of reductions compatible with

the �ltration and the corresponding irreducible polynomials.

De�nition 3.8 (S-reduction). Let e,д ∈ I , h ∈ I . We say that e

S-reduces to д with h, e →h
S
д, if there are t ∈ T and α ∈ k∗ such

that:

• LT (д) < LT (e), LM(д) , LM(e) and e − αth = д and

• S(th) <siдn S(e).
It is then natural to de�ne what is anS-irreducible polynomial.

De�nition 3.9 (S-irreducible polynomial). We say that д ∈ I is

S-irreducible if there is no h ∈ I whichS-reduces д. If there is no

ambiguity, we might omit theS − .
De�nition 3.10 (Tropical S-Gröbner basis). We say that G ⊂
I , a set of S-irreducible polynomials, is a tropical S-Gröbner
basis (or tropicalS−GB, or justS−GB for short when there is no

ambiguity) of I with respect to a given tropical term order, if for

eachS-irreducible polynomial h ∈ I , there exist д ∈ G and t ∈ T
such that LM(tд) = LM(h) and tS(д) = S(h).
De�nition 3.11. De�nitions 3.8, 3.9 and 3.10 have natural ana-

logues when one restricts to the vector space I ≤d and Sd with

Sd -reduction,Sd -irreducible polynomial and tropicalSd -GB.

Proposition 3.12. IfG is a tropicalS-Gröbner basis, then for any
nonzero h ∈ I , there exist д ∈ G and t ∈ T such that:

• LM(tд) = LM(h)
• S(tд) = tS(д) = S(h) ifh is irreducible, and S(tд) = tS(д) <siдn

S(h) otherwise.
Hence, there is anS-reductor for h in G when h is not irreducible.

Corollary 3.13. If G is a tropicalS-Gröbner basis, then G is a
tropical Gröbner basis of I , for < .

As a consequence computing a tropicalS-GB provides a tropical

GB, and we can use the F5 elimination criterion 3.7 to our advantage

when computing these tropicalS-GB. Moreover, we also have the

following �niteness result:

Proposition 3.14. Every tropicalS-Gröbner basis contains a �-
nite tropicalS-Gröbner basis.

Proof. We refer to the proof of Proposition 14 of [AP]. It uses

an adapted Dickson’s Lemma and since it is mostly a question of

monomial ideals, the transposition to the tropical se�ing is direct.

�

3.3 Linear algebra and existence
For xα ∈ T and 1 ≤ i ≤ n, let us denote by Mac≤siдnxα ei (F ) the

Macaulay matrix of the polynomials xβ fj such that xβ fj ≤ xα fi ,

ordered increasingly for the order on the xβej ’s. One can perform

a tropical LUP algorithm on Mac≤d (F ) (see Algo. 2) and obtain all

the leading monomials in I≤siдnxα ei . �is can be (theoretically)

performed for all xα ei to obtain the existence of anS-GB of I .

3.4 More on signatures
We de�ne Σ to be the set of signatures.

�anks to Proposition 3.7, not all xα ei can be a signature:

Remark 3.15. If xα ei ∈ LM(TSyz(F )) then xα ei < Σ.

We provide two lemmata to understand the compatibility of Σ
with basic operations on polynomials.

Lemma 3.16. If f ,д ∈ I are such that S(f ) = S(д) and LM(f ) ,
LM(д), then there exist a,b ∈ k∗ such that S(af + bд) < S(f ) and
af + bд , 0.

If one takes the point of view of linear algebra, the proof is direct.

Lemma 3.17. If д ∈ I and τ ∈ T then S(τд) ≤ τS(д). If moreover
τS(д) ∈ Σ, then S(τд) = τS(д) and for all µ ∈ T such that µ divides
τ , S(µд) = µS(д).

Proof. �e �rst part is direct. For the second part, one can

show that it is possible to write that τд = h + r for some h ∈ I of

signature τS(д), irreducible, and r ∈ I<siдnτ S (д) and conclude that

S(τд) = τS(д).
For the last statement, assume that there exists a µ ∈ T dividing

τ such that S(µд) < µS(д). �en S(τд) = S( τµ µд) ≤
τ
µ S(µд) <

τ
µ µS(д) = τS(д), which is a contradiction. �

4 BUCHBERGER-F5 CRITERION
In this section, we explain a criterion, the Buchberger-F5 criterion,

on which we build our F5 algorithm to compute tropicalS-Gröbner

bases. It is an analogue of the Buchberger criterion which includes

the F5 elimination criterion.

We need a slightly di�erent notion of S-pairs, called here normal

pairs and can then state the Buchberger-F5 criterion.

De�nition 4.1 (Normal pair). Given д1,д2 ∈ I , let Spol(д1,д2) =
u1д1 − u2д2 be the S-polynomial of д1 and д2, with for i ∈ {1, 2},
ui =

lcm(LM (д1),LM (д2))
LT (дi ) .We say that (д1,д2) is a normal pair if:

(1) the дi ’s areS-irreducible polynomials.

(2) S(uiдi ) = LM(ui )S(дi ) for i = 1, 2.
(3) S(u1д1) , S(u2д2).

We de�ne accordingly d-normal pairs in I ≤d .

Theorem 4.2 (Buchberger-F5 criterion). Suppose thatG is a
�nite set ofS-irreducible polynomials of I = 〈f1, . . . , fs 〉 such that:

(1) for all ∀i ∈ J1, sK, there exists д ∈ G such that S(д) = ei .
(2) for any д1,д2 ∈ G such that (д1,д2) is a normal pair, there

exists д ∈ G and t ∈ T such that tд is S-irreducible and
tS(д) = S(tд) = S(Spol(д1,д2)).

�enG is aS-Gröbner basis of I .�e analogue result using d-normal
pairs to recognize anSd -GB in I ≤d is also true.

Remark 4.3. �e converse of this result is clear.



�eorem 4.2 is an analogue of the Buchberger criterion for trop-

icalS-Gröbner bases. To prove it, we adapt the classical proof of

the Buchberger criterion and the proof of the tropical Buchberger

algorithm of Chan and Maclagan (Algorithm 2.9 of [C13]). We need

two lemmata, the �rst one being elementary.

Lemma 4.4. Let xα ,xβ ,xγ ,xδ ∈ T and P ,Q ∈ A be such that
LM(xαP) = LM(xβQ) = xγ and xδ = lcm(LM(P),LM(Q)).�en

Spol(xαP ,xβQ) = xγ−δ Spol(P ,Q).

Lemma 4.5. Let G be anS-Gröbner basis of I up to some signa-
ture σ . Let h ∈ I , be such that S(h) ≤ σ . �en there exist r ∈ N,
д1, . . . ,дr ∈ G, Q1, . . . ,Qr ∈ A such that for all i and xα a mono-
mial of Qi , S(xαдi ) = xαS(дi ) ≤ S(h) and LT (Qiдi ) ≤ LT (h), the
xαS(дi )’s are all distinct and non-zero, and, �nally, we have

h =
r∑
i=1

Qiдi .

Proof. It is clear by linear algebra. One can form a Macaulay

matrix whose rows correspond to polynomials cτд with τ ∈ T , c ∈
k∗,д ∈ G such that S(τд) = τS(д) ≤ S(h). Only one row is possible

per non-zero signature, and each monomial in LM(I≤σ ) is reached

as leading term by only one row. It is then enough to stack h at the

bo�om of this matrix and perform a tropical LUP form computation

(see Algorithm 2) to read the Qi ’s on the reduction of h. �

PROOF of Theorem 4.2. We prove the main result by induction

on the signature. We follow the order ≤siдn for the induction. It is

clear for σ = e1 and also for the fact we can pass from anS-GB up

to <siдn ei to ≤siдn ei .We write the elements of G as д1, . . . ,дr
for some r ∈ Z>0.

Let us assume that G is an S-GB up to signature <siдn σ for

some signature σ and let us prove it is aS-GB up to ≤siдn σ .We

can assume that all д ∈ G satisfy LC(д) = 1. Let P ∈ I be irreducible,

with LC(P) = 1 and such that S(P) = σ . We prove that there is

τ ∈ T ,д ∈ G such that LM(P) = LM(τд) and S(τд) = τS(д) = σ .
Our �rst assumption for G implies that there exist at least one

д ∈ G and some τ ∈ T such that τS(д) = S(P) = σ .
If LM(τд) =≤ LM(P) we are done. Otherwise, by Lemma 3.16,

there exist some a,b ∈ k∗ such that S(aP + bτд) = σ ′ for some

σ ′ <siдn σ .

We can apply Lemma 4.5 to aP + bτд and obtain that there exist

h1, . . . ,hr ∈ A, such that P =
∑r
i=1

hiдi , and for all i, and xγ

monomial of hi , the xγ S(дi ) = S(xγдi ) ≤siдn σ are all distincts.

We remark that LT (P) ≤ maxi (LT (дihi )). We denote by mi :=

LT (дihi ).
Among all such possible ways of writing P as

∑r
i=1

hiдi , we de-

�ne β as the minimum of the maxi (LT (дihi ))’s. Such a β exists

thanks to Lemma 2.10 in [CM13] (adaptation to the non-homogeneous

se�ing is for free). We write xu = LM(β).
If LT (P) =≤ β , then we are done. Indeed, there is then some i

and τ in the terms of hi such that LM(τдi ) = LM(P) and S(τдi ) =
τS(дi ) ≤siдn σ .

We now show that LT (P) < β leads to a contradiction.

We can renumber the дi ’s so that:

• β =≤ m1 =≤ · · · =≤ md .

• β > mi for i > d .

We can assume that among the set of possible (h1, . . . ,hr ) that

reaches β , we take one such that this d is minimal.

Since LT (P) < β, then we have d ≥ 2.
We can write

Spol(д1,д2) = LC(д2)
lcm(LM(д1),LM(д2))

LM(д1)
д1

− LC(д1)
lcm(LM(д1),LM(д2)

LM(д2)
д2.

By construction, LM(h1)S(д1) , LM(h2)S(д2), so (LM(h1)д1,LM(h2д2)
is a normal pair. By Lemma 4.4, there exists a term µ such that

µ
lcm(LM (д1),LM (д2))

LM (дi ) = LM(hi ) for i ∈ {1, 2}. So by Lemma 3.17,

(д1,д2) is a normal pair as well.

If S(Spol(д1,д2)) = σ , by the second property of the F5 criterion,

we are done.

Otherwise, S(Spol(д1,д2)) <siдn σ . Moreover, let

L =
LC(h1д1)

LC(д1)LC(д2)
xu

lcm(LM(д1),LM(д2))
.

�en we have S(L·Spol(д1,д2)) ≤siдn σ thanks to Lemma 4.4. Using

the same construction as before with the �rst assumption of the F5

criterion and Lemmata 3.16 and 4.5, we obtain some h′i ’s such that

L · Spol(д1,д2) =
∑r
i=1

h′iдi , LT (h
′
iдi ) ≤ LT (L · Spol(д1,д2)) < β

for all i . Furthermore, the signatures S(xαдi ) = xαS(дi ) for i ∈
{1, . . . , r } and xα in the support of h′i are all distincts.

We then get:

P =
r∑
i=1

hiдi ,

=

r∑
i=1

hiдi − L · Spol(д1,д2) +
r∑
i=1

h′iдi ,

=

(
h1 −

LC(h1д1)
LC(д1)

xu

LM(д1)
+ h′

1

)
д1

+

(
h2 −

LC(h1д1)
LC(д2)

xu

LM(д2)
+ h′

2

)
д2 +

r∑
i=3

(
hi + h

′
i
)
дi ,

=:

r∑
i=1

h̃iдi ,

where the h̃i ’s are de�ned naturally.

By construction, LT (h̃1д1) < LT (h1д1) = β and LT (h̃i ) ≤ β for

i ≤ d and LT (h̃i ) < β for i > d .
As a consequence, we have obtained a new expression for f with

either maxi (LT (h̃i )) < β or this term a�ained stricly less than d
times, which is in either case a contradiction with their de�nitions

as minima. So LT (P) =≤ β, which concludes the proof of the main

result. It is then direct to adapt the previous proof to the case of an

Sd -GB. �

�is theorem holds also forS-GB (orSd -GB) up to a given signa-

ture. We have the following variant as a corollary for compatibility

with sugar-degree:

Proposition 4.6. Suppose that d ∈ Z>0, and G is a �nite set of
polynomials of I such that:

(1) Any д ∈ G isSd -irreducible in I ≤d .
(2) For all д1,д2 ∈ G we have д1,д2 and Spol(д1,д2) in I ≤d .
(3) For all i ∈ J1, sK, there exists д ∈ G such that Sd (д) = ei .



(4) for any д1,д2 ∈ G such that (д1,д2) is a d-normal pair, there
exists д ∈ G and t ∈ T such that tд is Sd -irreducible and
tSd (д) = Sd (tд) = Sd (Spol(д1,д2)).

�en G is anS-Gröbner basis of I .

5 F5 ALGORITHM
In this section, we present our F5 algorithm. To this intent, we need

to discuss some crucial algorithmic points: how to recognize with

which pairs to proceed and how to build the Macaulay matrices

and reduce them. Some algorithms are on the following page.

5.1 Admissible pairs and guessed signatures
�e second condition in the De�nition 4.1 of normal pairs is not

possible to check in advance in an F5 algorithm. One needs an

S-Gröbner basis up to the corresponding signature to be able to

certify it. To circumvent this issue, we use the weaker notion of

admissible pair.

De�nition 5.1 (d-Admissible pair). Givenд1,д2 ∈ I ≤d , let Spol(д1,д2) =
u1д1 − u2д2 be the S-polynomial of д1 and д2.We have

ui =
lcm(LM(д1),LM(д2))

LT (дi )
.

We say that (д1,д2) is a d-admissible pair if:

(1) LM(ui )Sd (дi ) = xαi eji < LM(TSyz).
(2) LM(u1)Sd (д1) , LM(u2)Sd (д2).

To certify that a set is an Sd -GB, handling d-admissible pairs

instead of d-normal pairs is harmless. Indeed, d-normal pairs in

I ≤d are contained inside the d-admissible pairs. Whether a pair is

d-admissible can be checked easily before proceeding to reduction.

During the execution of the algorithm, when a polynomial xαд
is processed, it is at �rst not possible to know what is its signature.

Algorithm 3 has computed Sd (д) beforehand. �anks to the F5 elim-

ination criterion (Prop 3.7), we can detect some of the xαд such that

S(xαд) , xαS(д) and eliminate them. For the processed polynomi-

als, we use xαSd (д) as a guessed signature in the algorithm. Once

anS-GB up to signature < xαSd (д) is computed, we have the fol-

lowing alternative. First case: Sd (xαд) < xαSd (д) and xαд reduces

to zero (by the computedSd -GB up to d-signature < xαSd (д)). �e

guessed signature was wrong but it is harmless as the polynomial

is useless anyway. Second case: Sd (xαд) = xαSd (д), and then the

guessed signature is certi�ed. Once the criterion of Proposition 4.6

is satis�ed, all signatures are certi�ed.

What happens when we can obtain f with signature Sd (f ) =
xα ei in degree d , and Sd+1

(f ) = xβej <siдn xα ei in degree d +
1? �anks to the way Algorithm 1 handles polynomials, always

looking for smallest signature available, f and its multiples will

then be built using only the second way. �e �rst way of writing

will at most appear so as to be reduced by the second one.

5.2 Symbolic Preprocessing and Rewritten
criterion

One of the main parts of the F5 algorithm 3 is the Symbolic Prepro-

cessing : Algorithm 1. From the current set of S-pairs, sugar-degree

d , and the currentSd−1
-GB, it produces a Macaulay matrix. One

can read on the tropical reduction of this matrix new polynomials to

append to the current basis to obtain anSd -GB. It mostly consists

of detecting which pairs are admissible and selecting a (complete)

set of reductors.

A special part of the algorithm is the use of Rewri�en techniques

(due to Faugère (see [F02])).

�e idea is the following. Once a polynomial has passed the F5

elimination criterion and is set to appear in a Macaulay matrix, it

can be replaced by any other multiple of an element of G of the

same d-signature. Indeed, assuming correctness of the algorithm

without any rewriting technique, if one of them, h, is of d-signature

xα ei , the algorithm computes a tropical S-Gröbner basis up to

d-signature <siдn xα ei . Hence, h can be replaced by any other

polynomial of same signature: it would be reduced to the same

polynomial. By induction, one can prove that all of them can be

replaced at the same time. We also remark that this is still valid for

replacing a row of a given guessed d-signature by another of the

same guessed d-signature.

One e�cient way is to replace a polynomial t × д by the poly-

nomial xβh (h ∈ G) of same (guessed) d-signature tSd (д) such that

xβ has smallest degree.
3

Taking the sparsest available is another

possibility. It actually leads to a substantial reduction of the running

time of the F5 algorithm.

Algorithm 1: Symbolic-Preprocessing-Rewri�en

input :P , a set of d − 1-admissible pairs of sugar-degree d

and G such that G ∩ I ≤d−1
is anSd−1

-GB

output :A Macaulay matrix of degree d

1 for Q polynomial in P do
2 Replace Q in P by the polynomial (uS(д),u × д) with д

latest added to G reaching the same guessed

signature ;

3 C ← the set of the monomials of the polynomials in P ;

4 U ← the polynomials of P with their signature, except

only one polynomial is taken by guessed signature ;

5 D ← ∅ ;

6 while C , D do
7 m ← max(C \ D) ;

8 D ← D ∪ {m} ;

9 V ← ∅ ;

10 for д ∈ G do
11 if LM(д) | m then
12 V ← V ∪ {(д, m

LM (д) )} ;

13 (д,δ ) ← the element of V with δ × д of smallest

guessed signature not already in the signatures of U,

with tie-breaking by taking minimal δ (for degree

then for ≤siдn ) ;

14 U ← U ∪ {δ × д} ;

15 C ← C ∪ {monomials of δ × д} ;

16 M ← the polynomials of U , wri�en in a Macaulay matrix

and ordered by increasing guessed signature ;

17 ReturnM ;

3
Indeed, such an h can be considered as one of the most reduced possible.



5.3 Linear algebra
To reduce the Macaulay matrices while respecting the signatures,

we use the following tropical LUP algorithm from [V15]: Algo-

rithm 2. If the rows correspond to polynomials ordered by in-

creasing signature, it computes a row-reduction, respecting the

signatures with each non-zero row with a di�erent leading mono-

mial.

Algorithm 2: �e tropical LUP algorithm

input :M , a Macaulay matrix of degree d in A, with nrow
rows and ncol columns, andmon a list of

monomials indexing the columns of M .

output :M̃ , the U of the tropical LUP-form of M

1 M̃ ← M ;

2 if ncol = 1 or nrow = 0 orM has no non-zero entry then
3 Return M̃ ;

4 else
5 for i = 1 to nrow do
6 Find j such that M̃i, j has the greatest term

M̃i, jx
monj

for ≤ of the row i;

7 Swap the columns 1 and j of M̃ , and the 1 and j

entries ofmon;

8 By pivoting with the �rst row, eliminates the

coe�cients of the other rows on the �rst column;

9 Proceed recursively on the submatrix M̃i≥2, j≥2;

10 Return M̃ ;

5.4 A Complete Algorithm
We now provide with Algorithm 3 a complete version of an F5

algorithm wich uses Buchberger-F5 criterion and all the techniques

introduced in this section.

Theorem 5.2. Algorithm 3 computes anS-GB of I . It avoids trivial
tame syzigies.

Proof. It relies on �eorem 4.2 and then Proposition 4.6. �e

proof is by induction on the sugar-degree, then i , then the xα ei .
One �rst proves that at the end of the main while loop any guessed

signature is correct, or its row has reduced to zero, and then that

Sd -GB are computed, signature by signature. One can then apply

4.6 on the output to conclude. Termination is a consequence of

correctness and Prop. 3.14. For the syzygies, it is a consequence

of Prop. 3.7 and the fact that trivial syzygies of leading monomial

xα ei are such that xα ∈ LM(〈f1, . . . , fi−1〉). �

Remark 5.3. Condition 1 of 4.2 and 3 of 4.6 is not satis�ed when

for some i, fi ∈ 〈f1, . . . , fi−1〉 .�is is harmless as: (1) As soon as

it is found by computation, no signature in ei will appear anymore.

(2) �e Buchberger-F5 criterion can be applied omi�ing fi .

6 OTHER ALGORITHMS
6.1 Iterative F5
In this subsection, we present brie�y another way of extending the

F5 algorithm to the a�ne se�ing: a completely iterative way in the

initial polynomials. �e idea is to compute tropical Gröbner bases

for 〈f1〉 , 〈f1, f2〉 , . . . , 〈f1, . . . , fs 〉 .

Algorithm 3: A complete F5 algorithm

input : f1, . . . , fs polynomials, ordered by degree

output :A tropicalS-GB G of 〈f1, . . . , fs 〉
1 G ← {(ei , fi ) for i in J1, sK} ;

2 B ← {S-pairs of G} ; d ← 1 ;

3 while B , ∅ do
4 if there is i s.t. | fi | = d then
5 Replace the occurence of fi in G by its reduction

modulo G ∩ 〈f1, . . . , fi−1〉 ;

6 P receives the pop of the d − 1-admissible pairs in B
of sugar-degree d . Suppress from B the others of

sugar-degree d ;

7 Write them in a Macaulay matrix Md , along with their

Sd -reductors obtained from G (one per signature) by

Symbolic-Preprocessing-Rewritten(P ,G)
(Algorithm 1);

8 Apply Algorithm 2 to compute the U in the tropical

LUP form of M (no choice of pivot) ;

9 Add to G all the polynomials obtained from M̃ that

provide new leading monomial up to their

d-signature ;

10 Add to B the corresponding new d-admissible pairs ;

11 d ← d + 1 ;

12 Return G ;

�is corresponds to using the position over term ordering on

the signatures, or in terms of �ltration, to the following �ltration

on As :

De�nition 6.1. We write that xα ei ≤incr xβej if:

(1) if i < j .
(2) if i = j and |xα fi | < |xβ fj |.
(3) if i = j and |xα fi | = |xβ fj |, and

• xα < LM(Ii−1) and xβ ∈ LM(Ii−1), or

• both xα ,xβ ∈ LM(Ii−1) and xα ≤ xβ , or

• both xα ,xβ < LM(Ii−1) and xα ≤ xβ .

Proposition 6.2 ([F02]). If xα ∈ LM(Ii−1), then the �ltration is
constant at

I≤xα ei .

Proof. We can write xα + д =
∑
j<i aj fj , with for all j aj ∈ I ,

and д ∈ I with no monomial in LM(Ii−1).�en: xα fi = (−д)fi +∑i−1

j=1
(aj fi )fj , and the �ltration is constant at I≤xα ei . �

It is then possible to state a Buchberger-F5 criterion and provide

an adapted F5 algorithm. �e two algorithms will then di�er in the

following way. 1. For a given xα and ei , the vector space I<xα ei
is much bigger in the iterative se�ing, o�en of in�nite dimension.

�us, polynomials of signature xα ei can be more deeply reduced. 2.
More syzygies can be avoided in the iterative se�ing. 3. However,

many more matrices are to be produced: one for each i and each

necessary degree. Construction of the matrices is not mutualised

by degree anymore.



6.2 F4
Another way to compute tropical Gröbner bases for a�ne polyno-

mials is to adapt Faugère’s F4 algorithm [F99]

Roughly, the F4 algorithm is an adaptation of Buchberger’s algo-

rithm such that: all S-polynomials of a given degree are processed

and reduced together in a big Macaulay matrix, along with their

reducers. �e algorithm carries on the computation until there is

no S-polynomials to reduce.

In a tropical se�ing, we have adapted the so-called ”normal strat-

egy” of F4 using the tropical LUP algorithm to reduce the Macaulay

matrices. We have used Algorithm 2 to reduce the Macaulay ma-

trices. So-called tropical row-echelon forms (Algorithm 3.2.2 and

3.7.3 of [V15]) are also possible, enabling a trade-o� between speed,

thoroughness of the reduction and loss in precision.

7 NUMERICAL EXPERIMENTS
A toy implementation of our algorithms in Sagemath [Sage] is avail-

able on h�ps://gist.github.com/TristanVaccon. We have gathered

some numerical results in the following arrays. Timings are in

seconds of CPU time.
4

7.1 Benchmarks
Here, the base �eld is Q with 2-adic valuation. We have applied

the tropical F5 algorithm, Algorithm 3, an iterative tropical F5, and

a tropical F4 algorithm on the Katsura n and Cyclic n systems for

varying n. Dots mean no conclusion in decent time.

w=[0,. . . ,0] Katsura 4 5 6 7 Cyclic 4 5 6

Trop F5 .16 1.2 1371 • 0.4 21 •

Iterative trop F5 0.3 1.9 1172 • 0.4 21 •

Trop F4 .5 5 30 • 1.7 112 •

w = [(−2)i−1] Katsura 4 5 6 7 Cyclic 4 5 6

Trop F5 0.15 0.8 17 • 0.18 11 •

Iterative trop F5 0.18 1.1 20 • 0.18 11 •

Trop F4 0.2 1.7 15 • 1 65 •

7.2 Trop. F5+FGLM
For a given p, we take three polynomials with random coe�cients

in Zp (using the Haar measure) in Qp [x ,y, z] of degree 2 ≤ d1 ≤
d2 ≤ d3 ≤ 4. We �rst compute a tropical Gröbner basis for the

weight w = [0, 0, 0]5 and the grevlex monomial ordering, and then

apply an FGLM algorithm (tropical to classical as in Chapter 9 of

[V*]) to obtain a lex GB. For any given choice of di ’s, we repeat the

experiment 50 times. Coe�cients of the initial polynomials are all

given at some high-enough precision O(pN ) for no precision issue

to appear. We can not provide a certi�cate on the monomials of the

output basis though. Results are compiled in the following arrays.

Firstly, an array for timings given as couples: average of the

timings for the tropical F5 part and for the FGLM part, with D =
d1+d2+d3−2, the Macaulay bound. We add that for p = 2, 3, there

is o�en a huge standard deviation on the timings of the F5 part.

D = 4 5 6 7 8 9

p = 2 .7 0.2 2.5 0.5 18 2.3 300 11 50 37 145 138

3 .8 .2 .9 .5 4 2 9 11 16 37 80 144

101 0.3 .2 .5 .5 1 2 3 10 4.6 37 11 150

65519 .4 .2 .6 .6 1.3 2.6 3.5 11 5 39 10 132

4
Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6GHz and 16 GB

of RAM.

5
E�ciency of this choice regarding to the loss in precision was studied in the extended

version of [V15]

Coe�cients of the output tropical GB or classical GB are known

at individual precision O(pN−m ).We compute the total mean and

max on those m’s on the obtained GB. Results are compiled in the

following array as couples of mean and max. �e �rst array is for

the F5 part and the second for the precision on the �nal result.

D = 4 5 6 7 8 9

p = 2 1.3 13 1.3 13 1.3 14 1.5 13 1.4 17 1.3 15

3 .6 6 .7 8 .7 7 .6 7 .6 7 .6 10

101 0 1 0 1 0 1 0 2 0 2 0 1

65519 0 0 0 0 0 1 0 0 0 0 0 0

D = 4 5 6 7 8 9

p = 2 8 71 17 170 58 393 167 913 290 1600 570 3900

3 5 38 13 114 27 230 81 640 167 1600 430 3100

101 .2 11 0 2 1.3 80 4 210 8 407 0 2

65519 0 0 0 0 0 0 0 0 0 0 0 0

Most of the loss in precision appears in the FGLM part. In compari-

son, the F5 part is quite stable, and hence, our goal is achieved.
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