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Context: the “Guess & Prove” technique

Problem: given the definition of a sequence (un)n∈N, decide whether...
I ... the power series

∑∞
i=0 unt

n is algebraic?
I ... the sequence (un)n∈N satisfies a D-finite recurrence formula?
I ... the power series

∑∞
i=0 unt

n satisfies a D-finite di�erential equation?

The “Guess & Prove” approach:

1. Compute a lot of initial terms (u0, . . . , uN), N ∈ N
2. Guess a polynomial/recurrence/di�erential relation satisfied by this data

3. Prove that this relation is satisfied by the sequence as a whole
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Guessing equations

The guessing machinery:
I Several algorithms: linear algebra, Hermite-Padé approximation
I We want to build and solve an overdetermined system to keep bad solutions away
I The size of the equations that we can guess depends on:

I the type of equation that we want
I how much data we have

Key question: if I want to guess an equation of a given type, with a given order and degree...

How many data points do I need?
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Number of data points required for guessing an algebraic relation
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Number of data points required for guessing a recurrence relation
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Number of data points required for guessing a recurrence relation
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Number of data points required for guessing a di�erential relation
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Number of data points required for guessing a di�erential relation
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Summary: formulas for the number of guessing points necessary

Type Equation Minimal data length

D-finite recurrence
r∑

i=0

(
d∑

j=0

ai,jn
j

)
un+i = 0

D-finite di�erential
r∑

i=0

(
d∑

j=0

ai,jt
j

)
F (j)(t) = 0

Algebraic
r∑

i=0

(
d∑

j=0

ai,jt
j

)
F (t)i = 0

(d + 1)(r + 1) + r

= (d + 2)(r + 1)− 1

(d + 1)(r + 1)
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What happens if the system is interlaced with zeroes?

If instead of considering u = (u0 u1 u2 . . . ),

we consider v = (u0 0 . . . 0 u1 0 . . . 0 u2 . . . )...

I We get more data for free !
I But the equations that we want to find become larger.

Of course, we expect that the equations will grow as fast or faster than the data!

Is it the case?
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Algebraic equations (1)

Before A�er

F (t) = f0 + f1t + . . . G(t) = f0 +

k − 1︷ ︸︸ ︷
0 + · · ·+ 0+f1tk + . . .

= F (tk)

N data points kN data points

d∑
i=0

Pi(t)F (t)
i = 0

d∑
i=0

Pi(t
k)G(t)i = 0

Degree: d Degree: kd

Order: r Order: r

(r + 1)(d + 1) (r + 1)(kd + 1)

= kd(r + 1) + r + 1
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Algebraic equations (2)

How many points do we need / have ?

0
k

1 2 3
0

(r + 1)(d + 1)

N

(r + 1)(kd + 1)

kN

I (r + 1)(d + 1) ≤ N : enough, nothing to do
I (r + 1)(d + 1) > N > (r + 1)(d + 1)− (r + 1): enough for some k > 1 !
I (r + 1)(d + 1)− (r + 1) ≥ N : not enough, nothing to do
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Algebraic equations (2)
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Algebraic equations (2)

How many points do we need / have ?
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Algebraic equations (2)
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Recurrence relations (1)

Before A�er

u = (u0 u1 u2 . . . ) v = (u0

k − 1︷ ︸︸ ︷
0 . . . 0 u1 0 . . . 0 u2 . . . )

N data points kN data points

d∑
i=0

Pi(n)S
i(u) = 0

d∑
i=0

Pi(kn)S
ki(v) = 0

Degree: d Degree: d

Order: r Order: kr

(r + 1)(d + 2)− 1 (kr + 1)(d + 2)− 1

= kr(d + 2) + d + 1
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Recurrence relations (2)

How many points do we need / have ?

0
k

1 2 3
0

(r + 1)(d + 2)− 1

N

(kr + 1)(d + 2)− 1

kN

I (r + 1)(d + 2)− 1 ≤ N : enough, nothing to do
I (r + 1)(d + 2)− 1 > N > (r + 1)(d + 2)− (d + 1): enough for some k > 1 !
I (r + 1)(d + 2)− (d + 1) ≥ N : not enough, nothing to do
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Recurrence relations (2)

How many points do we need / have ?
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Recurrence relations (2)
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Recurrence relations (2)
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Recurrence relations (2)

How many points do we need / have ?
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Di�erential relations (1)

Before A�er

F (t) = f0 + f1t + . . . G(t) = f0 +

k − 1︷ ︸︸ ︷
0 + · · ·+ 0+f1tk + . . .

= F (tk)

N data points kN data points

d∑
i=0

Pi(t)F
(i)(t) = 0

d∑
i=0

Qi(t)G
(i)(t) = 0

Degree: d Degree: kd + (k − 1)r

Order: r Order: r

(r + 1)(d + 2)− 1 (r + 1)(d + (k − 1)r + 2)− 1

= k(d + r)(r + 1)−(r + 1)(r − 2)− 1︸ ︷︷ ︸
≤ 0

G(t) = F (tk)

G′(t) = ktk−1F ′(tk)

...

G(r)(t) = •tr(k−1)F (r)(tk)

+ . . .



14

Di�erential relations (2)

How many points do we need / have ?

0
k

1 2 3
0

(r + 1)(d + 2)− 1

N

(r + 1)(kd + (k − 1)r + 2)− 1kN

I (r + 1)(d + 2)− 1 ≤ N : enough, nothing to do
I (r + 1)(d + 2)− 1 > N : not enough, nothing to do
I But it is usually a good idea to ensure that k = 1!
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Di�erential relations (2)

How many points do we need / have ?
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Di�erential relations (2)

How many points do we need / have ?

0
k

1 2 3
0

(r + 1)(d + 2)− 1

N

(r + 1)(kd + (k − 1)r + 2)− 1

kN

I (r + 1)(d + 2)− 1 ≤ N : enough, nothing to do
I (r + 1)(d + 2)− 1 > N : not enough, nothing to do
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Di�erential relations (2)

How many points do we need / have ?

0
k

1 2 3
0

(r + 1)(2d + r + 2)− 1

N = 2N ′

N ′ = (r + 1)(d + 2)− 1

(r + 1)(kd + (k − 1)r + 2)− 1

kN

I (r + 1)(d + 2)− 1 ≤ N : enough, nothing to do
I (r + 1)(d + 2)− 1 > N : not enough, nothing to do
I But it is usually a good idea to ensure that k = 1!
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Conclusion and questions

Did we magically create data?
I Maybe not, if we force the algorithm to require less data, it still works
I The algorithm had enough data from the start but did not know it?

Consequences:
I Existing implementations can take advantage of this fact to gain a few points
I Must take into account the cost (space and time) of building and solving a larger system
I Actually if they detect such a structure, they can remove the zeroes unconditionally
I But this will never yield a lot of free data

Best case scenario:
I N is small (∼ a few hundreds)
I Finding the equation would just require N + 2 terms
I Data is very expensive, even for just 2 more terms
I Does it ever happen?

Thank you for your a�ention!
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