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Context: the “Guess & Prove” technique

Problem: given the definition of a sequence (un)nqen, decide whether...
> ... the power series ) unt" is algebraic?
> ... the sequence (u,)nen satisfies a D-finite recurrence formula?

> ... the power series >~ unt" satisfies a D-finite differential equation?

The “Guess & Prove” approach:
1. Compute a lot of initial terms (uo, ...,un), N € N
2. Guess a polynomial/recurrence/differential relation satisfied by this data

3. Prove that this relation is satisfied by the sequence as a whole



Guessing equations

The guessing machinery:
> Several algorithms: linear algebra, Hermite-Padé approximation

> We want to build and solve an overdetermined system to keep bad solutions away
> The size of the equations that we can guess depends on:

> the type of equation that we want
> how much data we have

Key question: if | want to guess an equation of a given type, with a given order and degree...

How many data points do | need?
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Number of data points required for guessing a recurrence relation
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Summary: formulas for the number of guessing points necessary

Type Equation Minimal data length
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What happens if the system is interlaced with zeroes?

If instead of considering u = (uy u7 uy...),

we consider v = (up uy Uy )

> We get more data for free !

> But the equations that we want to find become larger.

Of course, we expect that the equations will grow as fast or faster than the data!

Is it the case?
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Recurrence relations (1)
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Differential relations (1)

Before After
k—1
F(ty=f+fit+... G(t)=fo + +HAth 4
= F(tk) s
G(t) = F(1")
N data points kN data points G (t) = ki TF ()
d d .
> P(tFO(t) =0 S Q)G (t) =0 | gO(t) = eV EI(1ky
= =0 +...
Degree: d Degree: kd + (k — 1)r <—J

Order: r

(r+1)(d+2)—1

Order: r

(r+1)(d+ (k—1)r+2)—1

=k(d+r)(r+1)—(r+1)

—~

r—2)—1

IN

0




Differential relations (2)
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Differential relations (2)

How many points do we need / have ?
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> But it is usually a good idea to ensure that k = 1!
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Thank you for your attention!



