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Introduction and notations

Gröbner bases

I Valuable tool for many questions related to polynomial equations (resolution,

elimination, dimension of the solutions...)

I Classically used for polynomials over fields

I Some applications with coe�icients in general rings (elimination, combinatorics...)

Definition (Leading term, monomial, coe�icient)

R ring, A = R[X1, . . . , Xn] with a monomial order <, f =
∑

ai Xbi

I Leading term LT(f ) = ai Xbi
with Xbi > Xbj

if j 6= i
I Leading monomial LM(f ) = Xbi

I Leading coe�icient LC(f ) = ai
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Definitions for fields

For now R = K is a field.

Definition (reduction)

f reduces to h mod G if there exists g ∈ G and aXb
such that

I LT(f ) = aXb
LT(g)

I h = f − aXbg

By extension, f reduces to h mod G if there exists a chain of such reductions from f to h.

Definition (Gröbner basis)

I ⊂ A ideal, a Gröbner basis of I is a finite set G ⊂ I such that

I ∀ f ∈ I, f reduces to 0 mod G

or equivalently

I 〈LT(f ) : f ∈ I〉 = 〈LT(g) : g ∈ G〉
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Buchberger’s algorithm

I Input: F = (f1, . . . , fm) ⊂ K[X1, . . . , Xn]

I Output: G Gröbner basis of 〈F 〉

1. G ← {fi : i ∈ {1, . . . ,m}}
2. P ← pairs of elements of G

3. while P is not empty do

4. Pick (i, j) from P
5. M(i, j)← lcm(LM(gi), LM(gj))

6. p← S-Pol(gi, gj) =
M(i,j)
LM(gi)

gi − M(i,j)
LM(gj)

gj (S-polynomial)

7. r ← Reduce(p,G)

8. if r 6= 0 then

9. Update G and P using r

10. return G
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Signature improvements

[Faugère 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

I Idea: keep track of the representation g =
∑

i qifi for g ∈ 〈f1, . . . , fm〉
I The algorithm could keep track of the full representation... but it is expensive

I Instead define a signature s(g) of g as

s(g) = LT(qj)ej for some representation g =
m∑

i=1

qifi , qj being the last non-zero coef.

I Signatures are ordered by

aXbei < a′ Xb′ej ⇐⇒ i < j or i = j and Xb < Xb′

I If we never add together two elements with similar signature (regular S-polynomials)

and only reduce by polynomials with smaller signature (regular reductions),

then keeping track of the signature is free!

I Example: signature of a regular S-polynomial, S-Pol(gi, gj) =
M(i,j)
LM(gi)

gi − M(i,j)
LM(gj)

gj :

s(S-Pol(gi, gj)) = S(i, j) = max

(
M(i, j)
LM(gi)

s(gi),
M(i, j)
LM(gj)

s(gj)

)
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Buchberger’s algorithm with signatures

I Input: F = (f1, . . . , fm) ⊂ K[X1, . . . , Xn]

I Output: G Gröbner basis of 〈F 〉

1. G ← {fi with signature ei : i ∈ {1, . . . ,m}}
2. P ← (regular) pairs of elements of G

3. while P is not empty do

4. Pick (i, j) from P with smallest signature S(i, j)

5. M(i, j)← lcm(LM(gi), LM(gj))

6. p← S-Pol(gi, gj) =
M(i,j)
LM(gi)

gi − M(i,j)
LM(gj)

gj (S-polynomial)

7. r ← Regular-Reduce(p,G)

8. if r 6= 0 then

9. Update G and P using r with signature s(r) = S(i, j)

10. return G
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Features of signatures

Key property

Buchberger’s algorithm with signatures computes GB elements with increasing signatures.

Then we can add criteria...

Singular criterion: eliminate some redundant computations

If s(g) ' s(g′) then a�er regular reduction, LM(g) = LM(g′).

F5 criterion: eliminate Koszul syzygies fifj − fjfi = 0

If s(g) = LT(g′)ej for some g′ ∈ G with s(g′) = ?ei with i < j,
then g reduces to 0 modulo the already computed basis.
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What about signatures for rings?

Main di�iculty: how to order the signatures?

Over fields

aXbei < a′ Xb′ej ⇐⇒ i < j or i = j and Xb < Xb′

is a partial order but we can always normalize

Over rings, we need to take the coe�icients into account.

Over Euclidean rings [Eder, Pfister, Popescu 2017]

I Possible to break ties with the absolute value of the coe�icients

I Problem: signature drops = regular reductions leading to a smaller signature

I The algorithm can detect that it happens and serve as a preprocess

I Impossible to avoid signature drops?

In this work

I We use a partial order on the signatures: don’t break the ties

I Advantages: no signature drops

I Risk: maybe we forbid too many reductions?

I Main result: the algorithm is correct and terminates
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Definitions for rings

Definition (strong and weak reduction)

f strongly reduces to h mod G if there exists g ∈ G and aXb
such that

I LT(f ) = aXb
LT(g)

I h = f − aXbg

f weakly reduces to h mod G if there exists {g1, . . . , gr} ⊂ G, a1 Xb1 , . . . , ar Xbr
such that

I LT(f ) =
∑

aj Xbj
LT(gj)

I h = f −
∑

aj Xbj gj

Definition (strong and weak Gröbner basis)

I ⊂ A ideal, a strong Gröbner basis of I is a finite set G ⊂ I such that

I ∀ f ∈ I, f strongly reduces to 0 mod G

A weak Gröbner basis of I is a finite set G ⊂ I such that

I 〈LT(f ) : f ∈ I〉 = 〈LT(g) : g ∈ G〉
or equivalently

I ∀ f ∈ I, f weakly reduces to 0 mod G
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Strong vs weak Gröbner bases

Strong Gröbner basis Weak Gröbner basis

Exists? Only for PIDs Always

Defines a normal form? Yes Almost

Can test ideal membership? Yes Yes

From strong to weak

If G is a strong Gröbner basis of I, then G is a weak Gröbner basis of I.

From weak to strong

If R is a PID and G is a weak Gröbner basis of I, then a strong Gröbner basis can be obtained

by forming “GCD-polynomials” with elements of G, without any reduction.

Algorithms for strong Gröbner bases:

I Variants of Buchberger [Buchberger 1984 ; Kandri-Rody, Kapur 1988 ; Möller 1988...]

Algorithms for weak Gröbner bases:

I Algorithm for generalized Noetherian rings [Möller 1988]
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Möller’s algorithm for weak Gröbner bases

I Input: F = (f1, . . . , fm) ⊂ R[X1, . . . , Xn]

I Output: G weak Gröbner basis of 〈F 〉

1. G ← {fi : i ∈ {1, . . . ,m}}
2. S ← possible saturated sets

3. while S is not empty do

4. Pick a J from S
6. p← S-Pol(J) =

∑
j∈J ajXbj gj

7. r ← WeaklyReduce(p,G)

8. if r 6= 0 then

9. Update G and S using r

10. return G
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Saturated sets

Definition (Saturated set)

Given a basis {g1, . . . , gs}, saturated sets are constructed as follows:

1. Pick J ⊂ {1, . . . s}
2. M(J)← lcm{LM(gj) : j ∈ J}
3. Add to J all j ∈ {1, . . . , s} such that LM(gj) divides M(J)

Then there exists (ai)i∈J such that the S-polynomial

S-Pol(J) =
∑
i∈J

ai
M(J)

LM(gi)
gi

has leading term < M(J).
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Regular saturated sets and their signatures

Definition (Saturated set)

Given a basis {g1, . . . , gs}, saturated sets are constructed as follows:

1. Pick J ⊂ {1, . . . s}
2. M(J)← lcm{LM(gj) : j ∈ J}
3. Add to J all j ∈ {1, . . . , s} such that LM(gj) divides M(J)

Then there exists (ai)i∈J such that the S-polynomial

S-Pol(J) =
∑
i∈J

ai
M(J)

LM(gi)
gi

has leading term < M(J).

The signature of a saturated set is

S(J) = max

(
ai

M(J)
LM(gi)

s(gi)

)
i∈J

A regular saturated set is constructed such that this max is reached only once.

Then

S(J) = s(S-Pol(J))
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Möller’s algorithm for weak Gröbner bases with signatures

I Input: F = (f1, . . . , fm) ⊂ R[X1, . . . , Xn]

I Output: G weak Gröbner basis of 〈F 〉

1. G ← {fi with signature ei : i ∈ {1, . . . ,m}}
2. S ← possible regular saturated sets

3. while S is not empty do

4. Pick a J from S with smallest signature S(J)

6. p← S-Pol(J) =
∑

j∈J ajXbj gj

7. r ← Regular-WeaklyReduce(p,G)

8. if r 6= 0 then

9. Update G and S using r with signature S(J)

10. return G
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Are we doing the right thing?

By disregarding the coe�icients when comparing the signatures:

I Signature drops cannot happen by definition

I We eliminate more “S-pairs”

I We form more S-polynomials (with smaller J’s)

So... We don’t have signature drops, but maybe we eliminate too much? Or not enough?

Main result

If the coe�icient ring is a PID, then:

I The algorithm terminates

I The algorithm computes a Gröbner basis with non-decreasing signatures

I If the input is a regular sequence, all reductions to zero are eliminated by criteria
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Idea of the proof of correctness

Theorem

Assume that all regular S-polynomials weakly reduce to 0 modulo G,

then all polynomials f ∈ I weakly reduce to 0 modulo G, i.e. G is a weak Gröbner basis of I.

Key lemma

Let p ∈ I with signature s, then there exists g ∈ G such that:

I s = s(p) = aXbs(g) for some a ∈ R, b ∈ Nn
;

I aXbg is regularly weak-reduced modulo G.

Main di�iculty : handling this a !
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Conclusion and future work

What was done

I Proof-of-concept algorithm for computing Gröbner bases with signatures over PIDs

I Proved to be correct and terminate, criteria still work

The future

I Strong Gröbner bases for PIDs: appears to be possible to implement signatures in

Buchberger’s algorithm + optimizations such as Gebauer-Möller’s criteria

I Ge�ing rid of the combinatorical bo�leneck?

I What about other rings? The algorithm can input polynomials in any e�ective ring!

I Fields, PID: done

I UFD : appears to work experimentally!

I What about even more general rings?

I Non UFD, non GCD domain : would require very di�erent proofs

I Rings with divisors of zero : there we cannot even guarranty that

LM(aXbg) = Xb
LM(g)!
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One last word

Thank you for your a�ention!

More information and references:

I Maria Francis and Thibaut Verron (2018). ‘Signature-based Criteria for Möller’s Algorithm for

Computing Gröbner Bases over Principal Ideal Domains’. In: ArXiv e-prints. arXiv: 1802.01388

[cs.SC]

http://arxiv.org/abs/1802.01388
http://arxiv.org/abs/1802.01388

