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Introduction and notations

Grobner bases

> Valuable tool for many questions related to polynomial equations (resolution,
elimination, dimension of the solutions...)

> Classically used for polynomials over fields

> Some applications with coefficients in general rings (elimination, combinatorics...)

Definition (Leading term, monomial, coefficient)

Rring, A= R[Xi, ..., Xa] with a monomial order <, f = > a; V&
> Leading term LT(f) = a; X* with X% > X% if j # i
» Leading monomial LM(f) = X
> Leading coefficient LC(f) = a



Definitions for fields

For now R = K is a field.

Definition (reduction)

f reduces to h mod G if there exists g € G and aX® such that
> LT(f) = aX’LT(g)
> h=f—aX’g

By extension, f reduces to h mod G if there exists a chain of such reductions from f to h.

Definition (Grébner basis)

| C Aideal, a Grobner basis of [ is a finite set G C [ such that
» Vf €, f reduces to 0 mod G

or equivalently

> (LT(f) - fel) =(LT(g) : g€ G)



Buchberger’s algorithm

> Input: F = (fi,...,fm) CK[Xy,..., X]
» Output: G Grébner basis of (F)

G+ {fi:ie{1,...,m}}

—_

2. P < pairs of elements of G

3. while P is not empty do

4. Pick (i, ) from P

5. M(ij)  lem(LM(g), LM(g)

6. p < S-Pol(gi, g) = ff,ﬁf;g’;))g; - ng))gj (S-polynomial)
7. r < Rebuce(p, G)

8. if r # 0 then

9. Update G and P using r

10. return G




Signature improvements

[Faugeére 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

> ldea: keep track of the representation g = >, qifi for g € (fi,..., fm)

> The algorithm could keep track of the full representation... but it is expensive
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Signature improvements

[Faugeére 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

>

>

>

Idea: keep track of the representation g = 3. q;fi for g € (fi,..., fm)
The algorithm could keep track of the full representation... but it is expensive

Instead define a signature s(g) of g as
5(g) = LT(q;)e;j for some representation g = Z qifi, g being the last non-zero coef.
i=1

Signatures are ordered by

b ' yob' S e b 4
aX'ei<a X e < i<jori=jand X° < X

If we never add together two elements with similar signature (regular S-polynomials)
and only reduce by polynomials with smaller signature (regular reductions),
then keeping track of the signature is free!

Example: signature of a regular S-polynomial, S-Pol(g;, gj) = LA:} J)

a(5-Pol(g ) = (1) = max ( e o(e). (e Drote)



Buchberger’s algorithm with signatures

> Input: F = (fi,...,fm) CK[Xy,..., X]
» Output: G Grébner basis of (F)

1. G« {f; with signature ¢; : i € {1,...,m}}
2. P < (regular) pairs of elements of G
3. while P is not empty do

4. Pick (i, j) from P with smallest signature S(i, )

5. M(ij)  lem(LM(g), LM(g)

6. p < S-Pol(gi, g) = ffjf;))g; - ng))gj (S-polynomial)

7 r < RecuLAR-Rebuce(p, G)

8. if r # 0 then

9. Update G and P using r with signature s(r) = 5(i, j)

10. return G




Features of signatures

Key property

Buchberger’s algorithm with signatures computes GB elements with increasing signatures.

Then we can add criteria...
Singular criterion: eliminate some redundant computations

If 5(g) ~ s(g) then after regular reduction, LM(g) = LM(g").

F5 criterion: eliminate Koszul syzygies fifi — fifi = 0

If s(g) = LT(g')e; for some g’ € G with s5(g’) = xe; with i < j,
then g reduces to 0 modulo the already computed basis.



What about signatures for rings?

Main difficulty: how to order the signatures?
Over fields
b 7 yb . . L b b
aX'ei<aX e < i<jori=jand X" < X
is a partial order but we can always normalize
Over rings, we need to take the coefficients into account.

Over Euclidean rings [Eder, Pfister, Popescu 2017]

» Possible to break ties with the absolute value of the coefficients

v

Problem: signature drops = regular reductions leading to a smaller signature

v

The algorithm can detect that it happens and serve as a preprocess

v

Impossible to avoid signature drops?
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v

Problem: signature drops = regular reductions leading to a smaller signature

v

The algorithm can detect that it happens and serve as a preprocess

v

Impossible to avoid signature drops?

In this work

> We use a partial order on the signatures: don’t break the ties

v

Advantages: no signature drops

v

Risk: maybe we forbid too many reductions?

v

Main result: the algorithm is correct and terminates



Definitions for rings

Definition (strong reduction)
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Definitions for rings

Definition (strong and weak reduction)

f strongly reduces to h mod G if there exists g € G and aX® such that
> LT(f) = aX’LT(g)
» h=f — aXtg
f weakly reduces to h mod G if there exists {gi,..., 8} C G, a1 X", ..., a X" such that
> LT(f) = X 4 X LT(g)
> h=f-Y aXg

Definition (strong and weak Grobner basis)

I C Aideal, a strong Grobner basis of / is a finite set G C I such that
» YV f € I, f strongly reduces to 0 mod G

A weak Grobner basis of / is a finite set G C [ such that
> (LT(f):fel) =(LT(g) : g€ G)

or equivalently
» YV f €I, f weakly reduces to 0 mod G



Strong vs weak Grobner bases

‘ Strong Grobner basis ~ Weak Grobner basis

Exists? Only for PIDs Always
Defines a normal form? Yes Almost
Can test ideal membership? Yes Yes

From strong to weak

If G is a strong Grobner basis of /, then G is a weak Grobner basis of /.

From weak to strong
If Ris a PID and G is a weak Grobner basis of /, then a strong Grobner basis can be obtained

by forming “GCD-polynomials” with elements of G, without any reduction.

Algorithms for strong Grobner bases:
> Variants of Buchberger [Buchberger 1984 ; Kandri-Rody, Kapur 1988 ; Méller 1988...]
Algorithms for weak Grobner bases:

> Algorithm for generalized Noetherian rings [Moller 1988]



Moller’s algorithm for weak Grobner bases

> Input: F = (fi,...,fm) C R[Xi,..., Xa]
> Output: G weak Grobner basis of (F)

1. G+ A{fi:ie{1,...,m}}
2. S8 < possible saturated sets

3. while § is not empty do

4. Pick a J from S

6. pS-Pol()) = 32, aX"ig
7 r < WEAKLYREDUCE(p, G)

8 if r#0 then

9 Update G and S using r
0

. return G

—_




Saturated sets

Definition (Saturated set)

Given a basis {g, . . ., g}, saturated sets are constructed as follows:
1. PickJ C {1,...s}
2 MUJ) + lem{LM(g) : j € J}
3. Addto Jallj € {1,...,s} such that LM(g;) divides M(J)

Then there exists (a;)ies such that the S-polynomial

ol = S~ o MY)_
S-Pol(J) ; ,LM(gi)g,

has leading term < M(J).



Regular saturated sets and their signatures

Definition (Saturated set)

Given a basis {g, . . ., &}, saturated sets are constructed as follows:
1. PickJ C {1,...s}
2. M(J) « lem{LM(g)) : j € J}
3. Addto Jallj € {1,...,s} such that LM(g;) divides M(J)

Then there exists (a;)ics such that the S-polynomial

ol = S 2 M)
$-Pol(J) 2@: M)

has leading term < M(J).

The signature of a saturated set is

s() = max (@ ()

i€)
A regular saturated set is constructed such that this max is reached only once.
Then

S(J) = s(S-Pol()))



Moller’s algorithm for weak Grobner bases with signatures

> Input: F = (fi,...,fm) C R[Xi,..., Xa]
> Output: G weak Grobner basis of (F)

1. G < {fi with signature e; : i € {1,...,m}}

2. § < possible regular saturated sets

3. while § is not empty do

4. Pick a J from S with smallest signature S(J)
6. p+S-Pol()) = X2, aX"ig;
7 r <— REGULAR-WEAKLYREDUCE(p, G)

8 if r#0 then

9 Update G and S using r with signature S(J)
0

. return G

—_




Are we doing the right thing?

By disregarding the coefficients when comparing the signatures:
> Signature drops cannot happen by definition
> We eliminate more “S-pairs”
> We form more S-polynomials (with smaller J’s)

So... We don’t have signature drops, but maybe we eliminate too much? Or not enough?

Main result
If the coefficient ring is a PID, then:
> The algorithm terminates
> The algorithm computes a Grobner basis with non-decreasing signatures

> If the input is a regular sequence, all reductions to zero are eliminated by criteria



Idea of the proof of correctness

Theorem

Assume that all regular S-polynomials weakly reduce to 0 modulo G,
then all polynomials f € I weakly reduce to 0 modulo G, i.e. G is a weak Grébner basis of /.

Key lemma

Let p € I with signature s, then there exists g € G such that:
> 5= 5(p) = aX’s(g) for some a € R, b € N";

» aX’g is regularly weak-reduced modulo G.

Main difficulty : handling this a!



Conclusion and future work

What was done
> Proof-of-concept algorithm for computing Grébner bases with signatures over PIDs

» Proved to be correct and terminate, criteria still work
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Conclusion and future work

What was done
> Proof-of-concept algorithm for computing Grébner bases with signatures over PIDs

» Proved to be correct and terminate, criteria still work

The future
» Strong Grobner bases for PIDs: appears to be possible to implement signatures in
Buchberger’s algorithm + optimizations such as Gebauer-Moller’s criteria

> Getting rid of the combinatorical bottleneck?

» What about other rings? The algorithm can input polynomials in any effective ring!
» Fields, PID: done
» UFD : appears to work experimentally!

» What about even more general rings?

» Non UFD, non GCD domain : would require very different proofs
> Rings with divisors of zero : there we cannot even guarranty that

LM(aX’g) = X"LM(g)!



One last word

Thank you for your attention!
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