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ALGEBRAIC-GEOMETRIC TECHNIQUES FOR THE FEEDBACK CLASSIFICATION AND
ROBUSTNESS OF THE OPTIMAL CONTROL OF A PAIR OF BLOCH EQUATIONS WITH

APPLICATION TO MAGNETIC RESONANCE IMAGING ∗

B. BONNARD 1, 2, O. COTS 3, J.-C. FAUGÈRE 4, A. JACQUEMARD 1, J. ROUOT 5,
M. SAFEY EL DIN 4 AND T. VERRON 3

Abstract. The aim of this article is to classify the singular trajectories associated with the optimal control prob-
lems of a pair of controlled Bloch equations. The motivation is to analyze the robustness of the optimal solutions to
the contrast and the time-minimal saturation problem, in magnetic resonance imaging, with respect to the param-
eters and B1-inhomogeneity. For this purpose, we use various computer algebra algorithms and methods to study
solutions of polynomial systems of equations and inequalities which are used for classification issues: Gröbner
basis, cylindrical algebraic decomposition of semi-algebraic sets, Thom’s isotopy lemma.

Résumé. L’objectif de cet article est de classifier les trajectoires singulières associées aux problèmes de contrôle
optimaux d’une paire d’équations de Bloch contrôlées. La motivation est d’analyser la robustesse de la solution
optimale du problème de contraste et de multisaturation en temps minimal, en imagerie par résonance magnétique
nucléaire, par rapport aux paramètres et les inhomogénéités B1. On utilise le calcul symbolique pour étudier les
solutions de systèmes polynomiaux d’équations et d’inéquations dans les problèmes de classification : base de
Gröbner, décomposition algébrique cylindrique des ensembles semi-algébriques et le lemme d’isotopie de Thom.
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1. INTRODUCTION

Optimal control algorithms were introduced in Nuclear Magnetic Resonance (NMR) to improve the control field very
recently [20] and at the end of the nineties, new methods appeared in optimal control of NMR systems both from the
analytical and numerical points of view [33, 48]. More recently, under the impulse of S. Glaser, the combination of geo-
metrical optimal control based on the Maximum Principle [43] and related numerical algorithms (gradient methods [34],
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FIGURE 1. Experimental results: The inner circle
shape sample mimics the deoxygenated blood, where
T1 = 1.3s and T2 = 50ms; the outside moon shape
sample corresponds to the oxygenated blood, where
T1 = 1.3s and T2 = 200ms. (left) Without control,
(right) Optimized contrast.

corpus callosum

brain muscle

FIGURE 2. Contrast
optimization in a in
vivo setting. Species :
brain – parietal muscle

shooting and continuation methods [21]) lead to sophisticated results starting from a complete solution to the time-minimal
saturation of a single spin [38], and applications to the contrast problem in magnetic resonance imagery (MRI), see [6,37].

They are the basis to the numeric computations of robust optimal controls with respect to B0 and B1 inhomogeneities
and were validated vert recently by in vitro (Figure 1) and in vivo experiments [9, 45, 49] (Figure 2).

The mathematical model which very accurately is suitable for analyzing such problems is to consider an ensemble
of spins, each spin being described by a magnetization vector M = (MX ,MY ,MZ) in the laboratory frame 0XY Z whose
evolution satisfies the so-called Bloch equation

dM
dt

= γM∧B+R(M), (1)

where γ is the gyromagnetic ratio, B(t) is the total magnetic field applied to the system which decomposes into

B(t) = B0 +B1(t)

where B0 is a strong constant magnetic field oriented along the Z axis, and B1(t) is the control RF-field in the transverse
(X ,Y )-plane. The R(M) term represents the dissipation, of the form

R(M) =

(
MX

T2
,

MY

T2
,

MZ−M0

T1

)
where M0 is the equilibrium magnetization, which can be normalized to 1 using the rescaling M 7→M/M0, and T1,T2 are
the relaxation parameters which are the chemical signatures of the observed species. The control components are denoted
u(t) =−γBY , v(t) =−γBX and up to a time rescaling, one can impose the control bounds: u2 + v2 = 1.

The Bloch equations can be written in a rotating frame 0xyz with M(t) = S(t)q(t), q = (x,y,z), S(t) = exp(ωtΩz),

Ωz =
[0 −1 0

1 0 0
0 0 0

]
as:

d
dt

x
y
z

=

−1/T2 −∆ω u2
∆ω −1/T2 −u1
u2 u1 −1/T1

x
y
z

+
 0

0
1/T1

 (2)
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where ∆ω = ω0−ω is the resonance offset, ω0 =−γB0 is the resonance frequency and the RF-control field is represented
as {

u2 = ucos(ωt)− vsin(ωt)
u1 = usin(ωt)+ vcos(ωt)

(3)

which preserves the control bound u2
1 +u2

2 ≤ 1.
Finally, in the moving frame the system takes the normalized form

dx
dt

=−Γx−∆ωy+u2z
dy
dt

= ∆ωx−Γy−u1z
dz
dt

= γ(1− z)+u1y−u2z.

(4)

The resonant case is when ∆ω = 0 which will be assumed in the sequel of this article. The system is then written as

dq
dt

= F(q)+u1G1(q)+u2G2(q),u2
1 +u2

2 ≤ 1

Thanks to the symmetry of revolution along the Z axis related to the B0-orientation, in many cases it is physically
relevant to consider the situation with u2 = 0 and the spin system is a 2-dimensional system, with q = (y,z) and it is
simply written as

dq
dt

= F(q)+uG(q),q = (y,z), |u| ≤ 1. (5)

Also note that the Bloch ball |q| ≤ 1 is invariant for the dynamics provided that the parameters satisfy the physical
constraint 2Γ≥ γ ≥ 0.

Our study will concern the following optimal control problems.
First of all, consider a single spin system described by (5). The saturation problem is to drive the magnetization vector

from the north pole of the Bloch ball N = (0,1) to the center O = (0,0). A major result in NMR was to compute the
time-minimal solution, using geometric optimal control based on the maximum principle [36].

According to this principle, a time-minimal solution is given by the equations:

ż = ~HF(z)+u ~HG(z),z = (q, p) (6)

HF and HG being the Hamiltonians p ·F(q) and p ·G(q), and moreover the optimal control is given by the maximization
condition

HF(z)+uHG(z) = max
|v|≤1

HF(z)+ vHG(z) (7)

and it is a concatenation of bang arcs δ+, δ− where u =+1 or u =−1 and the so-called singular arcs ; they are obtained
by solving HG(z(t)) = 0.

A straightforward computation shows that singular arcs are located on the set where G and [G,F ] are colinear and are
formed by the two lines y = 0 (axis of revolution) and z0 =− γ

2(Γ−γ) and the interesting situation is when 2Γ > 3γ so that
this horizontal line intersects the Bloch ball. More precisely, following [36] we recall the following:.

Proposition 1.1. Provided that 2Γ> 3γ , the time-minimal solution to the saturation problem in the experimental situation
is of the form δ+δSHδ B

+δSV where δSV and δSH are vertical and horizontal singular arcs and the intermediate arc δ B
+ is a

bang arc connecting the two lines, called a bridge and is related to the property that the singular control as calculated
along the singular line is such that |uS| → ∞ when y→ 0.

(Note: in experimental situation, the line (δSH) is accessible from the North pole).
All the information about this study is reported on Fig. 4. Note that in the case 2Γ≤ 3γ , the standard inversion sequence

δ+δSV is time-minimal.
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ẏ =−Γy

ż =−γz

FIGURE 3. Dynamics under the con-
trol u≡ 0

0
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FIGURE 4. Time-minimal saturation:
left: 2Γ > 3γ , right: 2Γ≤ 3γ
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FIGURE 5. Algebraic sets involved in saturation singular arcs

In MRI, we attribute to |q| a level of gray such that |q| = 1 corresponds to white while and saturation |q| = 0 to
black. This led to consider the following optimal problems, taking a pair of spins, each governed by (5), with respective
parameters (Γ1,γ2), (Γ2,γ2) and controlled by the same RF-field u (coupling the dynamics).

Problem 1. Saturation of both spins in minimum time. Note that another problem is to saturate a couple of spin systems
with the same parameters but taking into account B1-inhomogeneity and this leads to consider a pair of systems (5):

dq1

dt
= F(q1)+uG(q1)

dq2

dt
= F(q2)+u(1− ε)G(q2)

|u| ≤ 1

where ε is a small rescaling parameter related to the control field inhomogeneity.

Problem 2. The second problem which plays a central role in MRI is the contrast problem. One must separate in a fixed
transfer time t f the contrast between the two species. This amounts to introduce a cost function

c(q(t f )) = α|q1(t f )|2−β |q2(t f )|2

where α , β are weight parameters. The contrast by saturation is to saturate one spin, e.g.spin 1, imposing q1(t f ) = 0
while maximizing |q2(t f )|2.
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Both problems correspond to Mayer problems in optimal control, that is an optimal problem of the form minu(•) c(q(t f ))
subject to q̇=F+uG, |u| ≤ 1, with some prescribed boundary conditions q(t f )∈M, with M the terminal manifold defined
by f (q) = 0. Again the maximum principle described by (6), (7) applies and is complemented by transversality conditions
depending upon the cost function and boundary conditions and written as:

f (q(t f )) = 0, p(t f ) = p0
∂c
∂q

(q(t f ))+δ
∂ f
∂q

(q(t f )), p0 ≤ 0,δ : constant vector (8)

Clearly, the optimal control problems boil down to analyze the so-called singular extremals given by

ż = HF(z)+uHG(z),HG = 0 (9)

where u has to be admissible, that is |u| ≤ 1. o The surface Σ defined by HG(z) = 0 is called the switching surface.
Computation of the singular extremals can be made explicit. If F , G are two vector fields, the Lie bracket is defined with
the convention:

[F,G](q) =
∂F
∂q

(q)G(q)− ∂G
∂q

F(q)

and the Poisson bracket of HF , HG is given by

{HF ,HG}(z) = dHF( ~HG(z)) = p · [F,G](q).

Hence differentiating t 7→ HG(z(t)) = 0, one gets

z ∈ Σ′ : HF(z) = {HF ,HG}(z) = 0 (10)

and the singular control is defined by solving

{{HG,HF},HF}(z)+u{{HG,HF},HG}= 0. (11)

If F , G are real analytic, this defines a meromorphic equation of the form

dz
dt

=
X(z)
g(z)

,z ∈ Σ′. (12)

Since F and G are affine vector fields and depend linearly on the parameters, this leads to algebraic computations
which are presented in this article and performed using computer algebra algorithms. More precisely, they are related to
the following problem.

Find rational invariants with respect to the parameters ((Γ1,γ1),(Γ2,γ2)) related to the classification of solutions of (12).
Clearly this algebraic study is the first step of a computational process to classify the optimal strategies and analyze

their robustness with respect to the physical parameters [7].
The organization of this article is the following. In Section 2, we present based on [3] the geometric frame relating

the classification of singular extremals with the optimal control problems and the action of the feedback group on the
system. They are used to generate rational invariants. The main contribution of this article is presented in Section 3 which
contains the algebraic computation. The algebraic techniques are sketched : Gröbner basis, a cellular decomposition of
semi-algebraic set called cylindrical algebraic decomposition, a fast decision procedure for real root solving polynomial
systems based on the critical point method and real roots classification based on Thom’s isotopy lemma. They are the
computational tools necessary to the algebraic computation in the contrast and multisaturation problems. They are given
in details for one specific problem: the classification of the set of singularities of the determinantal surface D = 04. This
shows the complexity of the study (Figs.8 to Figs.13).

4The necessary computations are detailed in Maple code files which are available on http://mercurey.gforge.inria.fr/

http://mercurey.gforge.inria.fr/
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2. GEOMETRIC FRAME

The aim of this section is twofold. First of all, recall the geometric framework relating the classification of singular
extremals and the optimal problems. Second, a neat approach is proposed to generate all Lie brackets, in relation with
semi-direct Lie algebras.

2.1. The classification problem of singular extremals

In this section, we recall the results of [3] which will justify all our algebraic computations.

Definition 2.1. Let E and F be two R-vector spaces, and let G be a group acting linearly on E and F. An homomorphism
X : G→ R0 is called a character. Let X be a character. A semi-invariant of weight X is a map λ : E → R such that for
all g ∈ G and all x ∈ E, λ (g.x) = X (g)λ (x). It is an invariant if X = 1. A map λ : E → F is a semi-covariant of weight
X is for all g ∈ G and for all x ∈ E, λ (g.x) = X (g)g.λ (x). It is called a covariant if X = 1.

Notations and definitions. Let U ⊂ Rn be an open subset and let V ω(U) be the set of real analytic vector fields on U
identified to maps from U to U . We denote by Cω(U,R) the set of analytic maps from U to R. Let Gd be the group of
Cω diffeomorphisms of U . The coordinates of TU 'U×Rn are denoted z = (q, p) and we endow T ∗U with its canonical
symplectic structure defined by Ω = ∑n

i=1 dqi∧dpi. Let Z be a Cω vector field on U , the Hamiltonian lift of Z is defined
by the Hamiltonian HZ(z) = p ·Z(q). If ϕ ∈ Gd : q = ϕ(Q), one can lift ϕ into a symplectic diffeomorphism ~ϕ , called a
Mathieu transformation defined by:

~ϕ : q = ϕ(Q), p = P
∂ϕ−1

∂Q

writing p and P as row vectors. A system q̇ = X + uY , X ,Y ∈ V ω(U), is written as (X ,Y ) and let S = {(X ,Y )}. Take
(X ,Y ),(X ′,Y ′) in S, they are called feedback equivalent if there exists ϕ ∈ Gd and a feedback u = α(q)+β (q)v, α,β ∈
Cω(U,R),β (q) non-zero for each q, such that {

X ′ = ϕ ∗X +ϕ ∗Y.α
Y ′ = ϕ ∗Y.β

where ϕ ∗Z is the image of Z defined by ϕ ∗Z = ∂ϕ−1

∂q (Z ◦ϕ). This action defines a group structure on the set of triplets
(ϕ,α,β ) and this group is the feedback group and denoted by G f .
Singular extremals of order 2. Let (F,G) ∈ S , the singular extremals of order 2 are the solutions of

ż = ~HF(z)+us ~HG(z),z ∈ Σ : HG = 0

such that {{HG,HF},HG}(z) is never vanishing and us is given by (11) as

us =−
{{HG,HF},HF}(z)
{{HG,HF},HG}(z)

(13)

and they are contained in the surface Σ′ : HG(z) = {HG,HF}(z) = 0. Let S : {{HG,HF},HG}= 0.
Plugging such us in H(z,u) = HF(z)+uHG(z) defines a true Hamiltonian denoted Ĥ(z). One has the following, see [3].

Proposition 2.2. The singular extremals of order 2 are the solutions of the Hamiltonian equation

q̇ =
∂ Ĥ
∂ p

, ṗ =−∂ Ĥ
∂q

,(q, p) ∈ Σ′ \S (14)

Moreover, an explicit representation is as follows:

Lemma 2.3. Assume that G and [G,F ] are never colinear on U. Then (Σ′ \S,Ω′) is a symplectic manifold, Ω′ denoting
the restriction of the standard symplectic form and Ĥ on Σ′ \S is a Cω Hamiltonian whose solutions are singular extremals
of order 2.
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The action on the feedback group G f on the set of singular extremals of order 2 is defined as follows: if (ϕ,α,β )∈G f ,
then the feedback (α,β ) acts trivially and ϕ acts by the change of symplectic coordinates ~ϕ .

The key result in our analysis is the following [3].

Theorem 2.4. Let λ be the map (F,G)→ (Ĥ,Σ′,S) (differential equation defined by (14)). Then for the respective action
of the feedback group GF , λ is a covariant.

Moreover, in relation with our geometric study, it is worth extracting two more covariants, where GF acts on functions
by ~ϕ action only. This is called a feedback invariant.

Proposition 2.5. The following sets are feedback invariants:

(1) The set C where F and G are colinear ;
(2) The set C′ where G and [F,G] are colinear ;
(3) On Σ′, the set S defined by {{HG,HF},HG}= 0.

Reparameterization. In order to study the meromorphic equation (14), one makes a change of parameterization:

ds = dt/{{HG,HF},HG} (15)

and observes that the map: (F,G) 7→ {{HG,HF},HG} is a semi-covariant if z ∈ Σ′.

Theorem 2.6. The map λ ′;(F,G) 7→ (~̂H{{HG,HF},HG},Σ′) is a semi-covariant.

Note that the associated vector field is Cω but not Hamiltonian. It amounts to relate the classification problem to the
classification of smooth vector fields and is the basic tool to generate invariants.
Exceptional and generic cases. The set of singular extremals of order 2 can be split according to [4] into two subsets,
recalling that the level sets Ĥ = c are invariants.
Exceptional case. It corresponds to Ĥ = 0 and the corresponding singular extremals of order 2 are called exceptional.
Their role in Mayer optimal problems is analyzed in [4].

In our situation, in dimension 4, the constraint Ĥ = 0 leads to the additional relation HF = p ·F = 0. Hence the singular
control is defined by {

HF = HG = {HG,HF}= 0
{{HG,HF},HF}+us{{HG,HF},HG}= 0

Since p ∈ R4 \{0} this leads to the relation

D′(q)+usD(q) = 0

where D,D′ are the associated determinants

D = det(F,G, [G,F ], [[G,F ],G])

D′ = det(F,G, [G,F ], [[G,F ],F ])

and the corresponding control is given by a feedback us =−D′(q)
D(q) and the vector field is denoted Xe(q)=F(q)− D′(q)

D(q) G(q),
which again can be analyzed using the reparameterization ds = dt/D(q(t)) and this gives the smooth vector field

Xe
r = DF−D′G. (16)

In this case the ~ϕ-action is reduced to the standard action of diffeomorphisms ϕ on U acting on tensors, that is, on
vector fields V by image ϕ ∗V and on mappings f : U → R by composition.
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Generic case. It corresponds to Ĥ = c 6= 0 and by homogeneity one can take c = 1.
Let D′ = {{HG,HF},HG}, D = {{HG,HF},HF}, the singular control uS is defined by{

HG = {HG,HF}= 0
D+uSD′ = 0.

2.2. Lie brackets computations

Each spin system can be lifted on the semi-direct product S = GL(3,R)oR3 acting on the q-space using the action
(A,a).q = Aq+ a. The Lie bracket computation rule is [(A,a),(B,b)] = ([A,B],Ab−Ba). Our system is written (F,G)
with

• F = (A,a), A = diag(−Γ,−Γ,−γ) and a = (0,0,γ)
• G =Cq where C is the antisymmetric matrix C = E32−E23 with Ei j = (δi j).

According to the Lie bracket computation rule on the semidirect Lie product, we can reduce the computations to matrix
Lie brackets. Moreover, to make such computations we use the following standard results, see [32] for the details.

The Lie algebra gl(n,R) of n×n matrices decomposes into cIn⊕ sl(n,R) where sl(n,R) is the Lie algebra of matrices
with zero trace. This algebra can be written as the direct sum a⊕b where a is the Cartan subalgebra of diagonal matrices
and b =

⊕
i 6= j REi j. Moreover we have the Cartan decomposition sl(n,R) = so(n)⊕ h where h is the subspace of sym-

metric matrices. If A = diag(λ1, . . . ,λn) ∈ a then [A,Ei j] = (λi−λ j)Ei j and λi−λ j will form the nontrivial spectrum of
adA (where adA is defined as adA(B) = [A,B]) with corresponding eigenvectors Ei j.
Application. Restricting to the q = (y,z) space we have A = diag(−Γ,−γ) and a = (0,γ) and A = cI2 + diag(λ ,−λ )
where c =−Γ+γ

2 which is zero if and only if γ = Γ = 0 and λ = δ/2 where δ = γ−Γ. If δ 6= 0, the nontrivial spectrum
is (δ ,−δ ).

In NMR, we have the following

Lemma 2.7. The case γ = Γ is the case of water species.

Otherwise, an easy computation gives that the Lie algebra generated by ((A,a),(C,0)) is gl(2,R)⊕R2. Moreover, all
Lie brackets can be easily computed. They are listed next, up to order 4, needed in our computation.
Length 1.

• F = (−Γy,γ(1− z))
• G = (−z,y)

Length 2.

• [F,G] = (γ−δ z,−δy)

Length 3.

• [[F,G],F ] = (−γ(γ−2Γ)+δ 2z,−δ 2y)
• [[F,G],G] = (−2δy,−γ +2δ z)

Length 4.

• [[[F,G],F ],F ] =
(
−δ 3z+ γ

(
γ2−3γΓ+3Γ2

)
,−δ 3y

)
• [[[F,G],F ],G] = [[[F,G],G],F ] = (0,γ(γ−2Γ))
• [[[F,G],G],G] = (−γ +4δ z,4δy)

Couples of spins.

• Contrast, multisaturation: pairs with (Γ1,γ1),(Γ2,γ2)
• Multisaturation with B1 inhomogeneity: in this case Γ1 = Γ2 = Γ, γ1 = γ2 and for the second spin the vector field

G is rescaled into (1− ε)G.
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3. ALGEBRAIC COMPUTATIONS

3.1. Preliminaries

Four test cases. In the physical experiments different cases will be considered. For the contrast problem:
• In vitro four test cases [5] with relaxation times in seconds:

– P1: water (T1 = T2 = 2.5s) / cerebrospinal fluid (T1 = 2s, T2 = 0.3s)
– P2: deoxygenated blood (T1 = 1.35s, T2 = 0.05s) / oxygenated blood (T1 = 1.35s, T2 = 0.2s)
– P3: gray cerebral matter (T1 = 0.92s, T2 = 0.1s) / white cerebral matter (T1 = 0.780s, T2 = 0.09s)
– P4: water (T1 = T2 = 2.5s) / fat (T1 = 0.2s, T2 = 0.1s)

• In vivo one test case [45]:
– Q1: brain (T1 = 1.062s, T2 = 0.052s) / parietal muscle (T1 = 1.200s, T2 = 0.029s)

Colinear sets (feedback invariants). We denote by Π1,Π2 the respective projections on the first and second spind: q 7→ q1,
q 7→ q2. Each colinear set is a curve described by the projections corresponding to the colinear set of each spin and an
additional relation.

• C1: F,G linearly dependent: the projections are the ovals defined by

Γiy2
i = γi(1− zi)zi,0≤ z1 ≤ 1

intersected with either of the sets

Γ1y1z2 = Γ2y2z1

γ1y1(z2−1) = γ2y2(z1−1)

for the contrast setting, or with either of the sets

Γ(1− ε)y1z2 = Γy2z1

γy1(z2−1) = γ(1− ε)y2(z1−1)

for the B1-inhomogeneity setting.
• C2: G, [G,F ] linearly dependent: for a single spin, the projections are the 2 lines defined by

y = 0

2δ z = γ (if δ 6= 0, that is if the matter is not water)

For two spins in the contrast setting, the projections are:
– the curve y1 = y2 = 0, γ1z2− γ2z1 = (δ1−δ2)z1z2;
– the 2 lines yi = 0, z1 = γi/(δ1 +δi), z2 = γi/(δ2 +δi) (i = 1,2);
– the plane z1 = γ1/2δ , z2 = γ2/2δ if δ1 = δ2 = δ .
For two spins in the B1-inhomogeneity setting, the projections are:

– the line y1 = y2 = 0, z1 = z2;
– the plane z1 = z2 = γ/2δ .

3.2. Algebraic techniques

In this section, we give a brief overview of algebraic tools and methods to solve the algebraic problems posed by the
study. We refer the reader to various textbooks [22, 23, 29, 50] for more information about those tools and others.

3.2.1. Operations on polynomial ideals

Throughout the rest of this section, we let n be a positive integer, and we consider polynomials in A = C[X1, . . . ,Xn].
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Our main object of study shall be the polynomial ideal generated by a finite family F of polynomials in A, i.e. the
subset of A of algebraic combinations of elements in F . Their importance in algebraic geometry stems from the fact that
this is the set of polynomials which vanish at all common solutions of the finite subset F of A under consideration. Such
an ideal is denoted by 〈F〉 ; the set of common complex zeroes of F is denoted by V (F) or V (〈F〉), and called an algebraic
set.

Our work will consist in successive transformations of finite sets of generators ideals of polynomial equations, in order
to enable information extraction on the algebraic set associated to those ideals. These transformations are mostly of two
forms: elimination of variables, and saturation of polynomials.

Eliminating the first k variables from the ideal I means computing a set of generators of Ik := I ∩C[Xk+1, . . . ,Xn].
Geometrically, the set of zeroes of the ideal Ik is the smallest algebraic set containing the projection of the set of zeroes
V (I) onto the affine subspace Cn−k with coordinates Xk+1, . . . ,Xn.

Given an ideal I and a polynomial f , saturating I by f means computing a set of generators of the ideal

(I : f ∞) := {g ∈ A | ∃m ∈ N,g f n ∈ I}.

Geometrically, the zeroes of this ideal is the smallest algebraic set containing V (I)\V ( f ).
This can be computed by adding the polynomial u · f −1 (with a new variable u) to the generators of I, and eliminating

u from that ideal.
This effectively reduces our two major computational tools to the polynomial elimination problem. Because this

problem is of such importance in computational algebraic geometry, many tools have been developed for solving it, for
example triangular sets and regular chains [1, 17], resultants [14–16, 40] or Gröbner bases [13, 25, 26]. In the following
computations, we shall mainly use Gröbner bases, because they will allow us to perform both the elimination steps and
routine simplification steps.

In the next subsection we give more details about how Gröbner bases can be used in our setting. Before that, we con-
clude this subsection with a few algebraic and algorithmic techniques which we shall use in the following computations.

Given two systems of polynomial equations F and G, the set V (F)∩V (G) is the algebraic set V (F ∪G).
The radical of an ideal I is the set √

I := { f ∈ A | ∃m ∈ N, f m ∈ I}.

and it has the same set of zeroes as I. Computing the radical of an ideal is a difficult problem, which we will not need to
tackle here. However, we shall sometimes be interested in, given a set of generators of I, computing a set of generators of
another ideal J ⊃ I such that

√
I =
√

J. We refer to algorithms in [35] for computing Gröbner bases of the radical of an
ideal given by a finite set of its generators.

3.2.2. Gröbner bases

A Gröbner basis of an ideal I is a particular set of generators of I, with additional properties. We only detail the
information needed to understand subsequent computations, and we refer the interested reader to [22, Chap. 2-3] for
a comprehensive overview of Gröbner basis techniques and elimination theory. In some sense, Gröbner bases are to
polynomial systems what triangular linear systems are to linear system solving. As triangular systems depend on an
implicit order on the variables used by Gaussian elimination in the solving process, Gröbner bases depend on an ordering
on the monomials (non-linearity implies that ordering the variables is not sufficient). Hence, Gröbner bases, as objects
and algorithms for computing them depend on a monomial ordering, that is a total ordering on the monomials Xα1

1 · · ·Xαn
n

compatible with multiplication. In the sequel, we will use mostly 3 orderings:
• the degree reverse-lexicographic ordering (DRL), denoted X1 > X2 > · · ·> Xn;
• the k’th elimination ordering (elim-k), denoted X1 > · · · > Xk � Xk+1 > · · · > Xn, and defined as a block-DRL

ordering;
• the lexicographical ordering lex, denoted X1� X2� ··· � Xn.

Of course, the choice of monomial orderings impacts on the efficiency of the computations. Usually, the DRL ordering
yields faster computations, but is nonetheless useful for simple cases, when one merely wants to simplify the generators
of an ideal.
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The elim-k ordering allows us to eliminate the first k variables: if G is a Gröbner basis of I with respect to the elim-k
ordering, then G∩C[Xk+1, . . . ,Xn] is a (DRL) Gröbner basis of the ideal I∩C[Xk+1, . . . ,Xn].

Finally, the lexicographical order has the elimination property for all indices k: from a single Gröbner basis, one can
recover all the intermediate elimination bases. This is usually enough to obtain a full description of the solutions, but
these bases are also the hardest to compute directly.

Most computer algebra systems include at least one toolbox for Gröbner basis computations. For example in Maple,
one can use the built-in package Groebner as well or the third-party library FGb [28].

3.2.3. Cylindrical algebraic decomposition

The last subsections are focused on tools for real algebraic geometry. The basic items of study of real algebraic
geometry is semi-algebraic sets, that is a sets S ⊂ Rn defined as a finite union S =

⋃r
i=1 Si of sets defined by polynomial

equations Pi and inequalities Qi with real coefficients:

Si =

{
x ∈ Rn

∣∣∣∣ ∀P ∈ Pi,P(x) = 0
∀Q ∈Qi,Q(x)> 0

}
and maps between those sets.

Given two semi-algebraic sets A and B, a map A→ B is called a semi-algebraic function if its graph is a semi-algebraic
set. For example, polynomial or rational functions are semi-algebraic.

A Cylindrical Algebraic Decomposition (CAD) [18,19,42] of Rn is a sequence S1, . . . ,Sn such that for all i∈{1, . . . ,n},
Si is a decomposition of Ri into connected semi-algebraic subsets, called cells, and such that:

• Cells of S1 are all points or intervals;
• For any i ∈ {1, . . . ,n}, and for any cell S of Si, there exists a finite number of continuous semi-algebraic functions

ξS,1, . . . ,ξS,lS : S→ R

such that S×R⊂ Ri+1 is a disjoint union of cells of Si+1, which are
– either the graph ΓS, j of a function ξS, j
– or a band BS, j bounded by ξS, j and ξS, j+1 for j ∈ {0, . . . , lS}, with the convention that ξS,0 =−∞ and ξS,lS+1 =
+∞:

BS, j = {(x′,xi+1) ∈ S×R | ξS, j(x′)< xi+1 < ξS, j+1(x′)}.

Given a set of polynomials P ⊂ R[X1, . . . ,Xn], a CAD S = (S1, . . . ,Sn) is P-invariant if, for any cell S ∈ Sn and any
polynomial P ∈ P , P has constant sign on S.

In particular, given a semi-algebraic set defined by polynomial equations P and polynomial inequalities Q, a P ∪Q-
invariant CAD gives an extensive topological description of the semi-algebraic set by means of a partition into subsets
homeomorphic to ]0,1[i for some i ∈ {0, . . . ,n}.

Unfortunately, computing a P-invariant cylindrical algebraic decomposition, for P , is intrinsically difficult: the com-
plexity of the algorithm and the size of the output, for most entries, is doubly exponential in n.

Nonetheless, this tool will prove useful for completing computations when n ≤ 2 or 3 needed for e.g. real root clas-
sification algorithms described hereafter. In this context, the main purpose of the CAD will be to compute one point per
connected component of an open semi-algebraic set, defined by inequations Pi 6= 0 and strict inequalities Pj > 0. In the
next paragraph, we describe an efficient alternative to cylindrical algebraic decision which we used for solving systems
which were unreachable to Cylindrical Algebraic Decomposition because the number of variables was greater than 2.

Algorithms for computing Cylindrical Algebraic Decompositions are implemented in the C library QEPCAD [11], the
command CylindricalDecomposition in the computer algebra system Mathematica and the subpackage SemialgebraicsetTools
of RegularChains in the computer algebra system Maple.

3.2.4. Real root solving for polynomial systems

As we already said, the complexity (in terms of output size and run time) of Cylindrical Algebraic Decomposition
is doubly exponential in the number n of variables. Recall also that a Cylindrical Algebraic Decomposition provides a
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partition of the semi-algebraic set under consideration into semi-algebraic pieces which are homeomorphic to ]0,1[i for
0≤ i≤ n.

As we will see in the next paragraph, such a partition is not needed to solve classification problems over semi-algebraic
sets. We only need to compute sample points in each connected component of a given semi-algebraic set. Thanks to the
so-called critical point method initiated in [31] and complexity improvements [2, Chapter 13], it has been proved that this
can be done in time (sD)O(n) where s is the number of polynomials defining the semi-algebraic set under consideration
and D is the maximum degree of those polynomials. The core geometric idea, on which this method is based, is to reduce
the problem to a polynomial optimization one.

It took a decade to obtain algorithms based on this method which have a practical impact [24, 30, 47]. These are
implemented and available in the RAGlib (Real Algebraic Geometry library) Maple package [46]. In the sequel, we
roughly describe these algorithms.

The input consists of a polynomial system of equations and inequalities

f1 = · · ·= fp = 0, h1 > 0, . . . ,hr > 0.

defining a semi-algebraic set S⊂ Rn. We aim at computing sample points in each connected component of S.
The first step is a reduction to computing sample points in each connected component of a semi-algebraic set defined

with non-strict inequalities. Indeed, Observe that there exists e0 > 0 such that for any connected component C of S and
all 0 < e < e0, there exists a connected component Ce of the semi-algebraic set Se defined by f1 = · · · = fp = 0, h1 ≥
e, . . . ,hr ≥ e. Finding a suitable e0 can be done using notions of critical values and asymptotic critical values (see e.g. [30]
and references therein).

This reduction to the study of closed semi-algebraic sets opens some perspectives. Indeed, the next step is to reduce
this semi-algebraic problem to algebraic ones. The cornerstone of this reduction comes with the result below.

Proposition 3.1. [2, Proposition 13.2] Let S ⊂ Rn be a semi-algebraic set defined and e0 be as above C ⊂ S be a
connected component of S. Then, for 0 < e < e0, there exists {i1, . . . , i`} ⊂ {1, . . . ,r} and a connected component C′ of
the real algebraic set defined by

f1 = · · ·= fp = 0, hi1 = · · ·= hi` = e

such that C′ ⊂C.

Observe that using the above result we can reduce the problem of computing sample points in each connected com-
ponent of S to the problem of computing sample points in several real algebraic sets and filter those points at which the
inequalities used to define S are positive.

Let us mention that using standard computer algebra techniques, the number of real algebraic sets to be considered can
be well-controlled and lies in sO(n) with s = p+ r.

It remains to explain how we compute sample points in real algebraic sets. Hence, let us assume that a real algebraic
set is given as the real solution set to the system

f1 = · · ·= fk = 0.

In order to keep this description as simple as it can be, we assume that any solution to this system, its jacobian matrix has
full rank ; hence the real algebraic set is smooth.

The core idea developed in [24] is the following. Let a=(a1, . . . ,an)⊂Qn be generically chosen and πa : (x1, . . . ,xn)→
a1x1 + · · ·+anxn. Then for any connected component C′ of the real algebraic set under study, either C′ contains a critical
point of the map πa restricted to the set under study (then such points can be computed using e.g. Gröbner bases, see [27]),
or for an arbitrary ρ ∈R, π−1

a (ρ) meets C′ (hence it is sufficient to perform a recursive call to the algorithm by adding the
constraint a1X1 + · · ·+anXn to the input). The overall cost of those computations lie in DO(n).

Implementations of such algorithms are available in the RAGlib Maple package based on the C library FGb for com-
puting Gröbner bases.
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3.2.5. Real roots classification

Our last algebraic tool is a computational technique for solving the problem of classifying the real fibers of projection
restricted to an algebraic set.

Consider an algebraic set V in Cn+t , with coordinates (X,G) = (X1, . . . ,Xn,G1, . . . ,Gt) and the projection onto the
parameter space

π : Cn+t → Ct

(x,g) 7→ g

Assume that V has dimension t. Let B ∈ Rn+t be a semi-algebraic set defined only by a set of polynomial inequalities
H ⊂ R[X,G]:

B =
{
(x,g) ∈ Rn+t | ∀h ∈ H, h(x,g)> 0

}
,

we consider the semi-algebraic set V ∩B⊂ Rn+t .
The classification problem is to identify a dense covering of the real parameter space Rt into open subsets U1, . . . ,UN

such that on each Ui, the number of points in the fibers of π restricted to V ∩B is constant:

∃ci, ∀g ∈Ui,#π−1(g)∩V ∩B = ci.

This problem has been thoroughly studied, see [39, 51] among other references. In our situation, the variety V shall
be defined as the zero set of D and its partial derivatives along the Xi’s, where D is the determinant of a matrix. The
strategy that we use, as described in [10], is adapted from the more general strategy of described in [39, 51] but dedicated
to the structure of the polynomial systems which appear in our context. This enables our variant algorithm to tackle those
classification issues which were out of reach to the implementations of the general strategy.

We summarize first the key points of this general strategy. One wishes to compute a set of polynomials {p1, . . . , pM} ⊂
R[G] such that the dense covering (Ui) given by the connected components of Rt \ (V (p1)∪V (p2)∪·· ·∪V (pM)). These
polynomials correspond to equations satisfied by points at which the cardinality of the fibers change. These points may
be:

• the projection of singular points of V ;
• the critical values of π restricted to V ;
• the projection of points where V meets the topological border ∂B of the semi-algebraic set B;
• points g at which the fiber π−1(g)∩V has positive real dimension;
• points at which the projection π restricted to V ∩B is not proper.

This is formalized in the following lemma, whose proof relies on Thom’s isotopy lemma. We first set some notations
and hypotheses. If B is a semi-algebraic set defined by polynomial inequalities H, we define

B0 :=
⋃

h∈H

V (h).

Note in particular that ∂B⊂ B0. We denote by sing(V ) the singular locus of V , crit(π,V ) the critical locus of π restricted
to V , and K(π,V ) = sing(V )∪ crit(π,V ).

The hypotheses are:

H1 There exists a nonempty Zariski-open subsetO1 of Ct such that for all g∈O1, the fiber V ∩π−1(g) is a nonempty
finite subset of Cn+t

H2 The restriction of the projection π to B is proper;
H3 The intersection V ∩B0 has dimension at most t−1 in Cnt ;
H4 The algebraic set V is equidimensional with dimension t.

Lemma 3.2. Let V and B satisfying hypotheses H1, H2, H3 and H4. Let U be a nonempty connected open subset
of Rt which does not meet π(V ∩ B0)∪ π(K(π,V )), and let g ∈ U. Then V ∩ π−1(g) is finite, and for any g′ ∈ U,
#V ∩π−1(g′) = #V ∩π−1(g).
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Hence, under these hypotheses, it suffices to compute a nonzero polynomial whose zeroes cover π(V ∩ B0) and
π(K(π,V )) to obtain the dense covering that we need.

The strategy that we use refines these computations by taking advantage of the fact that our variety V comes from a
determinantal variety, defined as follows. Let M be a k× k matrix with coefficients in R[X,G], r ∈ {0, . . . ,k−1}, the r’th
determinantal variety associated with M is

Vr(M) =
{
(x,g) ∈ Cn+t | rank(M(x,g))≤ r

}
.

These varieties can be defined algebraically in two ways. First, one can use the minors modelization:

Vr(M) =V ((r+1)-minors of M).

Another way to define Vr is as the projection of the incidence variety defined as the set of solutions of

M(x,g) ·Y (y) = 0

where Y (y) is a full-rank k× k− r matrix whose entries are new variables y = y1,1, . . . ,yk,k−r.
We now describe more precisely how this property allows us to compute the classification for the MRI problem. The

variety V that we will consider is defined as K(π,Vr0(M)) for r0 ∈ {0, . . . ,k−1}. Assume that the variety V satisfies the
following three properties:
H5 There exists a nonempty Zariski-open subset O2 ⊂ Ct such that

V ∩π−1(O2) =Vr0−1∩π−1(O2);

H6 For any r1 < r2 ∈ {0, . . . ,k− 1}, for any matrix A of size r1 in M, the ideal generated by the r2-minors of M
containing A is radical;

H7 For any r ∈ {0, . . . ,k−1}, the variety Vr is equidimensional with dimension n+ t− (k− r+1)2.
These properties are generic [12], [44]. If we assume that

n = (k− r0 +1)2,

then hypothesesH7 andH5 imply hypothesesH4 andH1 for V .
Under these hypotheses, the strategy consists in computing:

(1) the projection of V \Vr0−1, which has dimension less than t;
(2) the projection of K(π,Vr0−1);
(3) the projection of B0∩Vr0−1.

Remark 3.3. In section 3.3.3, we will also be describing K(π,V ) where V is an incidence variety defined by the equations

Pt ·M(x,g) = 0

where P is a vector of dimension 4 and M is a matrix of size 4×3. This incidence variety encodes an underdefined linear
system, so its projection onto the affine space Cn+t with coordinates (X,G) is the affine space itself. In this situation,
generically, sing(V ) is exactly V2(M).

3.3. Algebraic computations for multisaturation with B1-inhomogeneity

3.3.1. Conventions and notations

In this section and the next one, we use the change of coordinates

z1← z1 +1, z2← z2 +1,
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which places the center of the coordinates at the North pole of the Bloch ball. In this new system of coordinates, the center
of the Bloch ball has coordinates (0,−1,0,−1).

With these coordinates, the determinants D and D′ defined in Sec. 2.1 are written

D = det(F,G, [G,F ], [[G,F ],G])

= det


−Γy −z−1 δ z−Γ 2δy
−γz y δy −2δ z+Γ−δ
−Γy (1− ε)(−z−1) (1− ε)(δ z−Γ) (1− ε)2(2δy)
−γz (1− ε)y (1− ε)δy (1− ε)2(−2δ z+Γ−δ )


and

D′ = det(F,G, [G,F ], [[G,F ],F ])

=


−Γy −z−1 δ z−Γ γ(γ−2Γ)+δ 2(z+1)
−γz y δy δ 2y
−Γy (1− ε)(−z−1) (1− ε)(δ z−Γ) (1− ε)2(γ(γ−2Γ)+δ 2(z+1))
−γz (1− ε)y (1− ε)δy (1− ε)2δ 2y


The following polynomials will appear frequently in the remainder of the section:
• Py1 := y1− (1− ε)y2
• Py2 := y2− (1− ε)y1
• Pz1 := 2(Γ− γ)z1 +2Γ− γ
• Pz2 := 2(Γ− γ)z2 +2Γ− γ

The root of the univariate polynomials Pz1 and Pz2 is

zS =
γ−2Γ
2Γ−2γ

.

3.3.2. Transfer time not fixed (HF = 0)

Singularities of {D = 0}.
Proposition 3.4. The set of points satisfying D = ∂D

∂y1
= ∂D

∂ z1
= ∂D

∂y2
= ∂D

∂ z2
= 0 is given, generically on authorized values

of γ,Γ, by
(1) the point y1 = y2 = z1 = z2 = 0, and
(2) the curve defined by Py1 = Pz1 = Pz2 = 0, which is parameterized by y2 as{

y1 = (1− ε)y2

z1 = z2 = zS =
γ−2Γ
2Γ−2γ .

If γ = Γ (for example if the matter is water), only the former solution exists.

Proof. The structure of this proof is summarized in Fig. 6. The determinant D can be factored as (1− ε)D̃. The singular-
ities of D and those of D̃ are the same, so for the study, we consider the ideal

I :=
〈

D̃,
∂ D̃
∂y1

,
∂ D̃
∂y2

,
∂ D̃
∂ z1

,
∂ D̃
∂ z2

〉
.

In order to eliminate y1, y2 and z1 from the ideal I, we compute a Gröbner basis G of I with respect to the elimination
ordering y1 > y2 > z1� z2 > ε > Γ > γ .This computation yields that

I∩Q[z2,ε,Γ,γ] =
〈
ε2(ε−2)2(2Γ− γ)(Γ− γ)z3

2P3
z2

〉
,
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D, ∂D

∂y1
, ∂D

∂y2
, ∂D

∂ z1
, ∂D

∂ z2

〉
〈

D̃, ∂ D̃
∂y1

, ∂ D̃
∂y2

, ∂ D̃
∂ z1

, ∂ D̃
∂ z2

〉

z2 = 0

z1 = 0
y2 = 0
y1 = 0

Pz2 = 0
z2 6= 0

z1 = z2

y1 = 0 Py1 = 0

FIGURE 6. Structure of the study of the singularities of {D = 0}

so singular points necessarily satisfy 
z2 = 0
or

Pz2 = 0 ⇐⇒ z2 =
γ−2Γ

2Γ−2γ .

If Γ = γ (that is, if the matter is water), the second of these solutions does not exist. If γ = 2Γ (which means that the
matter is on the limit of the domain of validity 2Γ≥ γ), both solutions coincide.

In all other cases, there are 2 distinct possible values for z2, and we consider both cases: we consider the two ideals

I1 := 〈sqfr(G),z2〉
I2 := 〈sqfr(G),Pz2〉

where for any polynomial f , sqfr( f ) is the square-free part of f and sqfr(G) means that we apply sqfr to each element of
G.

In order to lift the partial solution z2 = 0, we compute a Gröbner basis G1 of I1 with respect to the ordering y1 > y2�
z1 > z2 > ε > Γ > γ , and we find that this ideal contains

γz2
1(ε−1)2(2Γ− γ),

so z1 = 0.
We then compute a Gröbner basis of 〈sqfr(G1),z1〉 with respect to the order y1� y2 > z1 > z2 > ε > Γ > γ , and we

find that this ideal contains

Γγεy2
2(Γ− γ)(2Γ− γ)2(ε−2),

so y2 = 1.
Finally, adding y2 to the ideal yields that

0 = Γy1(ε−1)(2Γ− γ),
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so the final solution is
(y1,y2,z1,z2) = (0,0,0,0).

We now consider the partial solution z2 = (γ − 2Γ)/(2Γ− 2γ). We compute a Gröbner basis G2 of I2 with respect to
the order y1 > y2� z1 > z2 > ε > Γ > γ , and we find that the ideal contains

z2γ(z1− z2)
2.

Since this case was already studied, we may assume that z2 6= 0, so

z1 = z2 =
γ−2Γ
2Γ−2γ

.

Adding z1− z2 to sqfr(G2) and computing a Gröbner basis for the order y1� y2 > z1 > z2 > ε > Γ > γ , we find that
the ideal contains

γ2y2(ε−1)Py1(2Γ− γ),

so we have 2 new branches to consider.
If y2 6= 0, y1 = (1− ε)y2. Otherwise, by adding y2 = 0 to the system of equations, we find that the ideal contains

γy2
1z2,

so y1 = 0, and in particular, this point is on {Py1 = 0}.
�

Locus of {D = D′ = 0}.
Proposition 3.5. The points of {D = D′ = 0} are given by:

(1) the plane

z1 = z2 = zS =
γ−2Γ

2Γ−2γ
(17)

(2) the line {
y1 = y2 = 0
z1 = z2

(18)

(3) the surface (parameterized by y1,y2)

z1 = z2 =
ΓP2

y2
(γ−2Γ)

2(Γ− γ)a3
(19)

with

a3 = (Γ+ γ)P2
y1
+ ε(ε−2)Γ(y1− y2)(y1 + y2)

(4) the surface (parameterized by y1,z2)

y2 =
y1z2

(1− ε)z1
, z1 =

(2Γ− γ)z2

a4
(20)

with

a4 = 2(ε−2)(Γ− γ)εz2 +(2Γ− γ)(ε−1)2
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D = D′ = 0

D̃ = 0
z1− z2 = 0

Pz2 = 0
(solution 1)

p2 = 0

y1 = y2 = 0
(solution 2)

a3 6= 0
(solution 3)

D̃ = 0
(ε−1)y2z1 + y1z2 = 0

y1 = z1 = 0

y2 = z2 = 0
(⊂ solution 2)

y1 = 0
z1 6= 0

p3 = 0
(solution 4)

y1 6= 0

p4 = 0 p5 = 0

FIGURE 7. Structure of the study of {D = D′ = 0}

(5) the surface (parameterized by y2,z2)

z1 =
z2y1

(1− ε)y2
, y1 =

(1− ε)y2
(
(2Γ− γ)Γy2

2 + γ2z2
2
)

a5
(21)

with

a5 = Γ
(
2ε(ε−2)(Γ− γ)z2 +(ε−1)2(2Γ− γ)

)
y2

2 + γ2z2
2

Proof. The structure of this proof is summarized in Fig. 7. The determinant D′ factors as

D′ = 2γ2(2Γ− γ)(Γ− γ)(z1− z2)(ε−1)((ε−1)y2z1 + y1z2),

so we form the two ideals

I1 = 〈D̃,z1− z2〉
I2 = 〈D̃,(ε−1)y2z1 + y1z2〉.

If z1 = z2, after substitution, D̃ has two factors depending on y1,y2,z2: Pz2 and

p2 := 2(Γ− γ)
(
(Γ+ γ)P2

y1
+ ε(ε−2)Γ(y1− y2)(y1 + y2)

)
z2 +ΓP2

y2
(2Γ− γ)

The polynomial Pz2 gives solution 1.
Let

a3(y1,y2) = (Γ+ γ)P2
y1
+ ε(ε−2)Γ(y1− y2)(y1 + y2)

so that the coefficient of z2 in p2 is 2(Γ− γ)a3, it is homogeneous in y1,y2 with degree 2. Its discriminant in y2 is

−4(ε−2)2ε2y2
1γΓ.

Since the parameters γ,Γ are necessarily positive, this discriminant is negative, and thus the only real root of a3(y1,y2) is
y1 = y2 = 0. If y1 = y2 = 0, p2 vanishes regardless of z2.
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If y1 6= 0, a3(y1,y2) does not have any real root in y2, and z2 is given by

(z1 =)z2 =
ΓP2

y2
(γ−2Γ)

2(Γ− γ)a3(y1,y2)
.

We now turn to the other branch, defined by (ε−1)y2z1 + y1z2 = 0.
If y1 = z1 = 0, there are 2 curves of singular points defined (in y2,z2) by

Γ(2Γ− γ)y2
2 + γ2z2

2 = 0.

Since 2Γ≥ γ , the only solution is z2 = 0 with either 2Γ = γ or y2 = 0.
If y1 = 0 and z1 6= 0, then (since ε 6= 1) we must have y2 = 0. Furthermore, we may assume that z1 6= z2 since this case

was already studied. The remaining solutions form a curve defined by

0 = p3 :=
(
2(ε−2)(Γ− γ)εz2 +(2Γ− γ)(ε−1)2)z1− (2Γ− γ)z2.

Let a4(z1,z2) be the coefficient of z1 in p3, the solutions are given by either
a4(z2) 6= 0

z1 =
2Γ− γ
c3(z2)

z2

or (since by assumption z1 6= 0)
z2 = 2Γ− γ = 0.

So we may assume that y1 6= 0. We compute a Gröbner basis of I2 + 〈uy1−1〉 for the order u� z1 > y1� z2 > y2 >
ε > γ > Γ. This basis contains a polynomial which factors as the product of

p4 =
(
2(ε−2)(Γ− γ)εz2 +(ε−1)2(2Γ− γ)

)
y1 +(ε−1)(2Γ− γ)y2

and

p5 =
(
Γ
(
2ε(ε−2)(Γ− γ)z2 +(ε−1)2(2Γ− γ)

)
y2

2 + γ2z2
2
)

y1 +(ε−1)y2
(
(2Γ− γ)Γy2

2 + γ2z2
2
)
.

First, assume that p4 = 0. We compute a Gröbner basis of I2 + 〈uy1−1, p4〉 for the order u� z1 > y1� z2 > y2 > ε >
γ > Γ, and we find that the last polynomial defining the ideal is p3, whose solutions we already studied.

Finally, assume that p4 6= 0 and p5 = 0. The discriminant in y2 of the coefficient a5(y2,z2) of y1 in p5 is

−4a4(z2)Γγ2z2
2

where a4(z2) is as above the coefficient of z1 in p3. The last components of the solutions are given bya5(y2,z2) 6= 0

y1 =
(1−ε)y2((2Γ−γ)Γy2

2+γ2z2
2)

Γ(2ε(ε−2)(Γ−γ)z2+(ε−1)2(2Γ−γ))y2
2+γ2z2

2

and {
a5(y2,z2) = 0
y2
(
(2Γ− γ)Γy2

2 + γ2z2
2
)

which, as in the case y1 = z1 = 0, is only y2 = z2 = 0 if 2Γ > γ . This partial solution completes into y1 = y2 = z1 = z2 = 0,
which was already known. �
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Equilibrium positions.

Lemma 3.6. The equilibrium points of Ẋ = DF−D′G are all contained in {D = D′ = 0}.
Proof. Assume that at some point, either of the determinants D and D′ is non-zero, this implies that F and G are colinear.
Since F and G form the first two columns of the matrices whose D and D′ are the respective determinants, D = D′ = 0 at
that point. �

Linearization of the system at equilibrium points. For each of the components of the set of equilibrium points {D=D′= 0}
found in the previous paragraph, we inspect the behavior of the system in a neighborhood. Namely, for each equilibrium
point q, we write

d
dt
(q+δq) = (DF−D′G)(q)+A(q) ·δq+R(δq).

where A = Jacq(DF−D′G), so that
d
dt
(δq) = A(q) ·δq+R(q)(δq).

We can compute A(q) explicitely: Indeed, let f = DF−D′G. Its first derivative is

d f (q)(u) = dD(q)(u)F(q)+D(q)dF(q)(u)−dD′(q)(u)G(q)−D′(q)dG(q)(u), (22)

so
A(q) = ∇D(q).F(q)+D(q)Jacq(F)(q)−∇D′(q).G(q)−D′(q)Jacq(G)(q).

We examine the eigenvalue decomposition of A(q).
Solution 1 (17). If z1 = z2 =

γ−2Γ
2Γ−2γ , the characteristic polynomial of A factors as

T 2 (T − γ2(2Γ− γ)2(ε−1)P2
y1

)2

The matrix A(q) is diagonalizable.
Solution 2 (18). If y1 = y2 = 0 and z1 = z2, the characteristic polynomial of A(q) is

T 4

The Jacobian matrix A(q) can be trigonalized as

A(q) = P−1


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

P

with the transition matrix

P =


0 1 −1 0

εγ3(ε−1)(ε−2)z2
1Pz1 1 0 0

0 1 0 1
εγ3(ε−1)(ε−2)z2

1Pz1 0 0 0

 .
Solution 3 (19). If z1 = z2 = ΓP2

y2
(γ−2Γ)/2(Γ− γ)a3, the characteristic polynomial of A(q) factors as

T 2
(

T +
b3

a3

)(
T − b3

a3

)
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with

b3 = Γγ2(ε−1)Py1Py2(2Γ− γ)2.

The matrix A(q) is diagonalizable.
Solution 4 (20). If y2 =

y1z2
(1−ε)z1

and z1 =
(2Γ−γ)z2

a4
, the characteristic polynomial of A(q) factors as

T 2
(

T − b4

a4

)(
T +

b4

a4

)
with

b4 = 2ε2γ3z3
2(ε−1)(ε−2)2(2Γ− γ)(Γ− γ)Pz2 .

The matrix A(q) is diagonalizable.

Solution 5 (21). If z1 =
z2y1

(1−ε)y2
and y1 =

(1−ε)y2((2Γ−γ)Γy2
2+γ2z2

2)
a5

, the characteristic polynomial of A(q) factors as

T 2
(

T − b4(Γy2
2 + γ(z2

2 + z2))Γy2
2

a5

)2

.

The matrix A(q) is diagonalizable.
Special points. There are two points at which A vanishes: the North pole N = (0,0,0,0) and S = (0,zS,0,zS). Both points
are such that D = D′ = 0, ∇D = ∇D′ = 0, and additionally, at the North pole, F(N) = 0.

The North pole is on solutions 2, 3, 4 and 5. The remainder at N is cubic:

d
dt
(N +δq) = R(N)(δq) = O(‖δq‖3).

The point S is the intersection of solutions 1 and 2. The remainder at S is quadratic.
Higher order studies for the special points.
Quadratic approximation at S. We now study the quadratic component H2 = Q(S) of the remainder R(S):

d
dt
(q+δq) = (DF−D′G)(q)+A(q)(δq)+Q(q)(δq)+O(‖δq‖3),

with dq
dt (S) = (DF−D′G)(S) = 0 and A(S) = 0.

We can compute Q by differentiating f = DF −D′G again, as was done in [5, Sec. 3.4]. Differentiating (22) along q
again, the second derivative of f is

d2 f (q)(u,v) = d2D(q)(u,v)F(q)+dD(q)(u)dF(q)(v)+dD(q)(v)dF(q)(u)

−d2D′(q)(u,v)G(q)−dD′(q)(u)dG(q)(v)−dD′(q)(v)dG(q)(u) (23)

Note that second derivatives of F and G are 0, since their coordinates are affine in q.
We wish to compute H2(δq) = Q(S)(δq,δq) = 1

2 d2 f (q)(δq,δq). Since dD(S) = dD′(S) = 0, we find in the end that

H2(δq) = h2(δq)F(S)−h′2(δq)G(S),
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with

F(S) =
(

0,
γ(2Γ− γ)
2(Γ− γ)

,0,
γ(2Γ− γ)
2(Γ− γ)

)t

G(S) =
(

γ
2(Γ− γ)

,0,
(1− ε)γ
2(Γ− γ)

,0
)t

h2(δq) =
1
2

d2D(S)(δq,δq) = (1− ε)(δ z1−δ z2)(δ z1− (1− ε)2δ z2)(2Γ− γ)γ2

h′2(δq) =
1
2

d2D′(S)(δq,δq) = (1− ε)(δ z1−δ z2)(δy2(ε−1)+δy1)(2Γ− γ)2γ2.

Following [5] and [41], we study the projection of the differential equation v̇ = H2(v) on the sphere S3. Let w = v/‖v‖
be this projection, it satisfies the differential equation

ẇ =
1
‖v‖2

(
v̇‖v‖− v

〈v, v̇〉
‖v‖

)
=

H2(v)
‖v‖ −

〈v,H2(v)〉
‖v‖3 v

= ‖v‖
(
H2(w)−〈w,H2(w)〉w

)
so we are to study the following differential equation on the sphere S3:

v̇ = H2(v)−〈v,H2(v)〉v =: Hπ
2 (v).

Invariants are related to the eigenvalues of the linearization of Hπ
2 at points where Hπ

2 (v) = 0. Those points are:
• lines of non-isolated singular points of H2, that is vectors v such that H2(v) = 0
• ray solutions, that is vectors ξ such that there exists λ ∈ R\{0}, H2(ξ ) = λξ .

We study the linearization of Hπ
2 in some neighborhood of these solutions in S3.

Proposition 3.7. The blow-up at point S has no ray solution, and two sets of non-isolated singularities:
(1) the projective plane δ z1 = δ z2;
(2) the projective line δy2 = (1− ε)δy1, δ z1 = (1− ε)2δ z2.

In the first case, the Jacobian of the system is nilpotent. In the second case, it is diagonalizable with non-zero eigenvalues:

1
2

(
¯δy2 +1±

√
¯δy2

2
+(2ε−1)2( ¯δy2 +1)−4(ε−1)4−2 ¯δy2 +1

)
.

Proof. First we study ray solutions. Let ξ be a vector on a ray solution, such that

H2(ξ ) = λξ .

Let αξ be another vector on the same line (α ∈ R), since H2 is homogeneous with degree 2, one has

H2(αξ ) = α2H2(ξ ) = α2λξ = αλ (αξ ).

So each line or ray solutions contains a unique ξ0 such that H2(ξ0) = ξ0.
A Gröbner basis of the system 〈H2(δq)−δq〉 is given by {δy1,δ z1,δy2,δ z2}, so there is no non-trivial ray.
This can also be seen in the following way: let δq be a vector such that H2(δq) = δq. By the structure of the vector

F(S), δq satisfies δ z1 = δ z2, and so h2(δq) = h′2(δq) = 0, so H2(δq) = 0, and which, by hypothesis, implies that δq = 0.



TITLE WILL BE SET BY THE PUBLISHER 23

We now consider non-isolated singular points of H2, that is the zeroes of H2. Since F(S) and G(S) are linearly
independent, those points are exactly the zeroes of h2 and h′2, as described in the statement of the proposition.

Then we study the linearization of Hπ
2 in some neighborhood of these solutions in S3. First we consider vectors δq such

that δ z1 = δ z2, we may perform the computations in the affine chart given by δ z1 6= 0, with coordinates ¯δy1 = δy1/δ z1,
¯δy2 = δy2/δ z1, ¯δ z2 = δ z2/δ z1. The differential equation becomes

d
dt

 ¯δy1
¯δy2
¯δ z1

= δ z2C̄( ¯δy1, ¯δy2, ¯δ z1)

with C̄ a polynomial vector field of degree 3.
At ¯δ z1 = 1, its Jacobian is nilpotent:0 0 (ε−1)( ¯δy1(ε(ε−1)−1)+ ¯δy2(1− ε))(2Γ− γ)2γ3

0 0 (ε−1)( ¯δy1(2ε(ε−2)+1)+ ¯δy1(ε−1))(2Γ− γ)2γ3

0 0 0


Then we consider vectors δq such that δy2 = (1− ε)δy1, δ z1 = (1− ε)2δ z2. This time we use the chart δ z2 6= 0 with

coordinates ¯δy1 = δy1/δ z2, ¯δy2 = δy2/δ z2, ¯δ z1 = δ z1/δ z2. As above, we compute the differential equation in this chart,
linearize the resulting vector field, and evaluate this Jacobian at ¯δy2 = (1− ε) ¯δy1 and ¯δ z1 = (1− ε)2. This matrix has
rank 2 and is diagonalizable with non-zero eigenvalues:

1
2

(
¯δy2 +1±

√
¯δy2

2
+(2ε−1)2( ¯δy2 +1)−4(ε−1)4−2 ¯δy2 +1

)
.

�

Cubic approximation at N. We perform the same study at the North pole N. With expression (23), we can verify that the
quadratic component of R(N) is 0. Indeed, F(N) = 0 and d2D′(N) = 0.

Further differentiating along q, we obtain

H3(δq) :=
1
6

d3 f (N)(δq,δq,δq) =
1
6
(
3d2D(N)(δq,δq)F(δq)−d3D′(N)(δq,δq,δq)G(N)

)
Note that since we centered the coordinates at the North pole, F is linear in q, so dF(q) = F , and G is affine in q, so dG(q)
is constant.

As in the previous subsection, we study the projection of the differential equation v̇ = H3(v) on the sphere S3, and its
equilibrium points, which form lines of non-isolated singular points and ray solutions.

Proposition 3.8. The cubic blow-up at the North pole N, for admissible values of the parameters, has two sets of ray
solutions:

(1) the projective line 
δ z1 = δ z2 = 0

(ε−1)δy1 +δy2 =
1

Γ(2Γ− γ)
√

1− ε
;

(24)

(2) the quadric 
δy1 = δy2 = 0

((ε−1)δ z1−δ z2)
2− (ε−2)δ z1δ z2 =

1
γ3(2Γ− γ)(1− ε)

.

and three sets of real non-isolated singularities:
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(1) the plane {
δ z1 = δ z2

δy1(1− ε) = δy2
(25)

(2) the plane {
δy2 = (1− ε)δy1

δ z2 = (1− ε)2δ z1
(26)

(3) the surface defined by
0 = Γ(ε−1)(2Γ− γ)δy2

1 +(2Γ− γ)Γδy1δy2 + γ2(ε−1)δ z2
1− γ2(ε−1)δ z1δ z2

0 = Γ(ε−1)(2Γ− γ)δy1δy2− γ2δ z1δ z2 +(2Γ− γ)Γδy2
2 + γ2δ z2

2

0 = δy1δ z2 +(ε−1)δy2δ z1.

(27)

For points on the line (24), the linearization of Hπ
3 is diagonal: the vectors (1,0,0) and (0,0,1) are eigenvectors, with

the same eigenvalue, and the vector (0,0,1) is in the kernel.
For isolated singularities satisfying (25), the matrix is not diagonalizable, its Jordan form has the following structure:0 0 0

0 ∗ 1
0 0 ∗


For isolated singularities satisfying (26), the matrix is diagonalizable with 3 non-zero eigenvalues.

Proof. First we study ray solutions. Let ξ be a vector on a ray solution, such that

H3(ξ ) = λξ .

Let αξ be another vector on the same line (α ∈ R), one has

H3(αξ ) = α3H3(ξ ) = α3λξ = α2λ (αξ ).

So unlike in the quadratic case, a line of ray solutions contains 2 vectors ξ1,ξ2 such that either H3(ξ1) = H3(ξ2) = 1 or
H3(ξ1) = H3(ξ2) =−1.

In order to study ray solutions, we compute a Gröbner basis of the system H3(δq)− ιδq = 0, ι2 = 1, for an order
eliminating α . We find that the basis contains

{δy1δ z1,δy1δ z2,δy2δ z1,δy2δ z2}

so either δy1 = δy2 = 0 or δ z1 = δ z2 = 0.
If δ z1 = δ z2 = 0, computing a new Gröbner basis of the system, saturating with Γ− γ and δy1 (see Sec. 3.2.1), shows

that δy1 and δy2 must satisfy (
Γ2(ε−1)(2Γ− γ)2 ((ε−1)δy1 +δy2)

2
)2
−1 = 0.

Since ε−1 < 0, 2Γ− γ > 0 and Γ > 0, this defines 2 lines of real solutions given by

(ε−1)δy1 +δy2 =±
1

Γ(2Γ− γ)
√

1− ε

Those lines are equivalent in the projective space: each line of ray-solutions contains a vector in both lines.
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If δy1 = δy2 = 0, the same technique shows that δ z1 and δ z2 must satisfy(
γ3(2Γ− γ)(ε−1)

(
((ε−1)δ z1−δ z2)

2− (ε−2)δ z1δ z2

))2
−1 = 0,

which defines 1 quadric

((ε−1)δ z1−δ z2)
2− (ε−2)δ z1δ z2 =

1
γ3(2Γ− γ)(1− ε)

.

We now consider non-isolated singularities, that is zeroes of H3. To this end, we compute a Gröbner basis of the system
H3(δq) = 0, saturating by γ −Γ, γ , Γ, ε − 1 and 2Γ− γ . Factoring the results, it appears that the solutions split into 5
cases:

(1) δ z1 = δ z2
(2) δ z1 =−δ z2
(3) δ z1 = 0
(4) δ z2 = (1− ε)2δ z1
(5) otherwise.

In the case 1, a Gröbner basis is given by 
δy1(δy1(ε−1)+δy2)

2

δy2(δy1(ε−1)+δy2)
2

δ z2(δy1(ε−1)+δy2)
2

δ z1−δ z2


and the solutions form the plane (25).

In the case 2, saturating by δ z1−δ z2, a Gröbner basis is given by
δy1 +(1− ε)δy2

δ z1 +δ z2

Γ(ε2−2ε +2)(2γ− γ)δy2
2 +2γ2δ z2

2


which has no real non-zero solution for admissible values of the parameters.

In the case 3, saturating by δ z1−δ z2 and δ z1 +δ z2, a Gröbner basis is given by{
δy1,δ z1,(2Γ− γ)Γδy2

2 + γ2δ z2
2
}

which has no real non-zero solution for admissible values of the parameters.
In the case 4, saturating by δ z1±δ z2 and δ z1, a Gröbner basis is given by{

δy1δ z2 +(ε−1)δy2δ z1,δy2 +(ε−1)δy1,δ z2− (ε−1)2δ z1
}

and the solutions form the plane (26).
Finally, for the case 5, we compute a Gröbner basis, saturating by all the previous conditions. This basis is

Γ(ε−1)(2Γ− γ)δy2
1 +(2Γ− γ)Γδy1δy2 + γ2(ε−1)δ z2

1− γ2(ε−1)δ z1δ z2

Γ(ε−1)(2Γ− γ)δy1δy2− γ2δ z1δ z2 +(2Γ− γ)Γδy2
2 + γ2δ z2

2

δy1δ z2 +(ε−1)δy2δ z1(
Γ(2Γ− γ)(ε−1)2δy2

2 +δ z2
2γ2)δ z1− (2Γ− γ)Γδ z2δy2

2− γ2δ z3
2


The fourth polynomial is a combination of the other 3, and the solutions form the surface (27).
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For the second part of the proposition, as in the quadratic case, we study the linearization of Hπ
3 : v̇ = H3(v)−

〈v,H3(v)〉v. In the affine chart with δy1 6= 0, with coordinates ¯δ z1 = δ z1/δy1, ¯δy2 = δy2/δy1 and ¯δ z2 = δ z2/δy1,
the differential equation v̇ = H3(v) becomes

d
dt

 ¯δ z1
¯δy2
¯δ z2

= δy2
1Q̄( ¯δ z1, ¯δy2, ¯δ z2)

with Q̄ a polynomial vector field of degree 4. In this chart, Hπ
3 becomes

v̇ = Q̄(v).

We conclude by evaluating the Jacobian of Q̄ at the relevant points. �

3.3.3. General case

Singularities of {D = HG = {HG,HF}= 0}.
Proposition 3.9. The set of singularities of {D = HG = {HG,HF}= 0} is given, generically on authorized values of γ,Γ,
by

(1) the plane z1 = z2 = zS;
(2) the line z1 = z2, y1 = y2 = 0;
(3) an irreducible variety of dimension 5.

If γ = Γ, solution 2 becomes a surface defined by z1 = z2, y2 = (1− ε)y1.

Proof. By definition of D = {{HG,HF},HG}, we want to study the zeroes of
0 = p ·G
0 = p · [G,F ]

0 = p · [[G,F ],G]

(D)

The singularities of this variety is the set of points at which the matrixG [G,F ] [[G,F ],G]


has rank at most 2 (as per Remark 3.3).

We encode that with the incidence varietyG [G,F ] [[G,F ],G]

v1 v2 v3

 ·
L1

L2
L3

=


0
0
0
1


with new variables L = L1,L2,L3 and random numbers v1,v2,v3. This gives us a system of 4 polynomial equations in the
10 unknowns y1,z1,y2,z2,L1,L2,L3,Γ,γ,ε . We eliminate L1,L2,L3 from the ideal in order to recover the projection, and
we saturate by 1− ε .

We then compute a Gröbner basis for the elimination order y1 > y2 > z1 > z2 � γ > Γ > ε , this basis contains 10
polynomials, some of which have factors with multiplicity greater than 1 or are divisible by 1− ε or γ . We take the
square-free form of this basis, and we saturate by 1− ε and γ before computing a new Gröbner basis for the same order.
The result is a set of 11 polynomials which includes

(z1− z2)((ε−1)Pz2y1 +Pz1y2) .
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First, we add z1− z2 to the ideal. Once again, we compute a Gröbner basis for the elimination order y1 > y2 > z1 >
z2� γ > Γ > ε , take its square-free form, and recompute a Gröbner basis. The result contains the polynomial

Pz2Py2 .

The solutions decompose into 2 algebraic sets, defined by

z1 = z2 = zS =
2Γ− γ

2Γ−2γ

and (adding (ε−1)y1 + y2 to the ideal and saturating by Pz2 , ε and ε−2)
0 = y1(Γ− γ)
0 = y2(Γ− γ)
0 = Py2 = (ε−1)y1 + y2

0 = z1− z2.

The latter is generically (if Γ 6= γ) defined by {
y1 = y2 = 0
z1 = z2

or if Γ = γ (that is if the spin we consider is water), by{
y1 =

y2
ε−1

z1 = z2.

Then, starting again with the whole ideal, we add (ε−1)Pz2y1 +Pz1y2 to the ideal and saturate by z1− z2. The result,
generically on (Γ,γ,ε), is an irreducible surface. �

Locus of {D =D′ = HG = {HG,HF}= 0}.
Proposition 3.10. The solutions form the union of the hyperplane defined by

z1 = z2 (28)

and the hypersurface

y1 =−
y2Pz1

(ε−1)Pz2

. (29)

Proof. Points such that {D =D′ = HG = {HG,HF}= 0} satisfy
0 = p ·G
0 = p · [G,F ]

0 = p · [[G,F ],G]

0 = p · [[G,F ],F ]

The projection of these points onto the space (y1,z1,y2,z2) is given by the vanishing of the determinant ∆′, defined as

∆′ = det
[

G [G,F ] [[G,F ],G] [[G,F ],F ]
(1− ε)G [(1− ε)G,F ] [[(1− ε)G,F ],(1− ε)G] [[(1− ε)G,F ],F ]

]
= (1− ε)2 det

[
G [G,F ] [[G,F ],G] [[G,F ],F ]
G [G,F ] (1− ε)[[G,F ],G] [[G,F ],F ].

]
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This determinant factors as

−2 (ε−1)2 (2Γ−1)(Γ−1)(z1− z2)
[
(ε−1)Pz2y1 +Pz1y2

]
�

Equilibrium positions.

Lemma 3.11. All equilibrium points of Ż =D ~HF−D′ ~HG satisfying HG = {HG,HF}= 0 are contained in {D=D′ = 0}.
Proof. Recall that ~HF is defined as

~HF =

[
∂HF
∂ p
− ∂F

∂q

]
=

[
F

−p · ∂HF
∂q

]
and ~HG is defined in the same way. Let z = (q, p) be a point such that

D(z) ~HF(z)−D′(z) ~HG(z) = 0,

by looking at the first 4 components of this system, we see that the vectors F(q) and G(q) are colinear.
Introduce new variables XD and XD′ and consider the ideal generated by
• XDF(q)−XD′G(q) = 0
• HG(z) = {HG,HF}(z) = 0
• D(z) ~HF(z)−D′(z) ~HG(z) = 0

saturated by XD and XD′ . Computing a Gröbner basis of this ideal (for any order) yields that this ideal is actually 〈1〉, and
so the associated system has no solution.

Hence, at an equilibrium point, either D(z) or D′(z) has to be 0. Since both O (the center of the Bloch ball) and N (the
north pole) are on the hyperplane z1 = z2 = 0, which is contained in {D = D′ = 0}, we may assume that the point z is
neither O nor N. Hence, F(z) and G(z) are non-zero, and so D(z) =D′(z) = 0. �

Eigenvalues of the linearization. We consider the eigenvalue decomposition of the matrix

A= Jac(D ~HF −D′ ~HG)

on equilibrium point, given as the union of points satisfying Eq. (28) and (29).
Solutions of Eq. (28). If z1 = z2, the matrix A has rank 2, and its characteristic polynomial is

T 6

(
T 2− ε(ε−1)(ε−2)

(
8(Γ− γ)2Py1y1y2 +Pz2(2Pz2 − γ)Py2

)
2Py1(Γ− γ)y1

T +

(
(ε−1)γPy1(2Γ− γ)

y1

)2
)

Solutions of Eq. (29). If y2 =− y2 pz1
(ε−1)pz2

, the matrix A has rank 2, and its characteristic polynomial is

T 6

(
T 2−4εy2(ε−1)(ε−2)(Γ− γ)T +

(
2γ(z1− z2)(ε−1)2(2Γ− γ)(Γ− γ)

pz1

)2
)
.

The discriminant of the degree 2 factor factors as

16(Γ− γ)2(ε−1)2 (a6(z1,y2)−b6(z1,z2))(a6(z1,y2)+b6(z1,z2))

p2
z1

with

a6(z1,y2) = ε(ε−2)Pz1y2

b6(z1,z2) = (2Γ− γ)(ε−1)γ(z1− z2)
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which induces the following classification of the eigenvalues of A:
• if |a(z1,y2)|> |b(z1,z2)|: 2 single real eigenvalues;
• if |a(z1,y2)|= |b(z1,z2)|: 1 double real eigenvalue;
• if |a(z1,y2)|< |b(z1,z2)|: 2 single complex eigenvalues.

3.4. Algebraic computations for the contrast problem

3.4.1. Subcase of water (2 projective parameters)

We consider the set of singularities of the hypersurface {D = 0} lying in the Bloch ball. We show in the following that
these singularities can be computed by means of explicit rational expressions. These explicit solutions show how complex
is the structure of the algebraic variety corresponding to the singularities of {D = 0}. The number of real singularities can
be computed directly without knowing the exact expressions by the algorithm in [10] using an optimized variant of the
Cylindric Algebraic decomposition algorithm.
Statement of the main results. We keep the same letters for the sake of simplification. The new coordinates of the center O
of the Bloch ball are O : (0,−1,0,−1). We consider the set of polynomials S = {D,Dy1 ,Dy2 ,Dz1 ,Dz2}. We recall that we
assume that 2Γ2≥ γ2 > 0, and that (γ1,Γ1) 6= (γ2,Γ2). We normalize by means of Γ1 = γ1 = 1 (water), leaving free the two
parameters Γ2,γ2 corresponding to the second matter. Under this normalization, the hypothesis becomes (γ2,Γ2) 6= (1,1).
Let Π be the plane {y1 = y2 = 0}.

The following theorems were proved in [10] using a real roots classification algorithm.

Theorem 3.12. Consider the 9 polynomials:

f1 = Γ2−1
f2 = 3Γ2−2γ2−1

f3 = 3Γ2
2−5Γ2γ2 + γ2

2 +2Γ2−2γ2 +1

f4 = 2Γ2
2−5Γ2γ2 +2γ2

2 −2Γ2 +3γ2

f5 = 2γ3
2 − (3Γ2 +11)γ2

2 +
(
9Γ2 +6−3Γ2

2
)

γ2 +2Γ2 (Γ2 +2)(Γ2−1)
f6 = Γ2−2γ2 +1
f7 = 2Γ2− γ2−1
f8 = γ2−2+Γ2

f9 = 2Γ2
2−5Γ2γ2 +2γ2

2 +1.

The zeroes of their product divide the subset of R2 defined by 2Γ2 > γ2 > 0 into connected components where the cardi-
nality of VR∩π−1(γ2,Γ2) is constant.

Using a Cylindrical Algebraic Decomposition, one can make this statement more precise by expliciting this cardinality.
Let ψ : (y1,z1,y2,z2) 7→ (−y1,z1,−y2,z2) be the symmetry fixing Π = {y1 = y2 = 0}, and let us consider the semi-
algebraic sets (see Fig. 8):

G−1 = {0 < γ2 < 2Γ2,Γ2 < 1, f2 > 0},
G+1 = {0 < γ2 < 2Γ2,Γ2 > 1, f2 < 0, f4 > 0},
G−2 = {0 < Γ2 < 1, f6 > 0, f3 < 0},
G+2 = {Γ2 > 1, f6 < 0, f5 > 0},
G1 = G+1 ∪G−1 ,

G2 = G+2 ∪G−2 ,

G = G1∪G2.
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FIGURE 8. Curves involved in the definition of the semi-algebraic set G. The blue (resp. green) sample
points correspond to points in G−1 ∪G+1 (resp. G−2 ∪G+2 ). The circled numbers in each area correspond
to the number of singularities in B for parameters in the area. Parameters in the red area are physically
irrelevant.

Theorem 3.13. For all (γ2,Γ2) such that 2Γ2 > γ2 > 0, the center O of the Bloch ball B is a singularity of {D = 0}. And
if (γ2,Γ2) ∈ G, there exist at most two other singularities in the interior of the Bloch ball:

(1) if (γ2,Γ2) ∈ G1 there is one other singularity lying on Π∩B;
(2) if (γ2,Γ2) ∈ G2 there are two other singularities in B, ψ-symmetric, outside Π.

Computing the polynomials listed in Th. 3.12 takes about 10 s using the strategy described in Section 3.2.5, using
Gröbner basis computations with the Maple FGb library for elimination steps. Computing points in each cell of the
parameter space defined by these polynomials, in order to prove Th. 3.13, takes 50 s using the CAD implementation from
the RegularChains package in Maple.

The configuration is illustrated in Figs. 8 and 9. Observe that the number of singularities inside B is an invariant of the
contrast problem. Two of the pairs of biological matters studied in [8], water-cerebrospinal fluid (normalized parameters
[γ2 = 5

4 ,Γ2 = 25
3 ]) and water-fat (normalized parameters [γ2 = 25

2 ,Γ2 = 25]) correspond to points outside G, and their
invariant is 1 in both cases (see Fig. 9).
. We can give a more precise description of those points. Assuming that (γ2−Γ2)(2Γ2− γ2− 2) 6= 0, we define a point
(with the coordinates (y1,z1,y2,z2)):

Ω :
(

0,
Γ2−1
Γ2− γ2

, 0,
(1−Γ2)(2Γ2− γ2)

(2Γ2− γ2−2)(Γ2− γ2)

)
In the same coordinates system, O : (0,−1,0,−1) is the center of the Bloch ball, while N : (0,0,0,0) is the North pole.
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FIGURE 9. Positions of the parameters corresponding to the pairs water-cerebrospinal fluid (red circle)
and water-fat (red square) and the set G (with the same conventions as in Fig. 8). For both these pairs,
there is only 1 singularity in B.

Let
δ (γ2,Γ2) = (Γ2−1)(2Γ2− γ2)(Γ2−2γ2 +1)(Γ2−2γ2 +2) (30)

and
η(γ2,Γ2) = (5Γ2−4γ2 +1)(Γ2− γ2)(Γ2 + γ2−1)(Γ2−2γ2 +2) .

If η(γ2,Γ2) 6= 0 we denote by Ω+
a (resp. Ω−a ) the points of coordinates (y1,z1,y2,z2) (resp. (−y1,z1,−y2,z2)), with:

y1 =

√
3
√

δ (γ2,Γ2)

(5Γ2−4γ2 +1)(Γ2− γ2)

z1 =
(γ2 +Γ2−1)(Γ2−1)

(5Γ2−4γ2 +1)(γ2−Γ2)

y2 =
γ2
√

3
√

δ (γ2,Γ2)

2(γ2 +Γ2−1)(Γ2−2γ2 +2)(Γ2− γ2)

z2 =
(2Γ2− γ2)(Γ2−1)

2(γ2 +Γ2−1)(γ2−Γ2)
.

Theorem 3.14. For values of the parameters (γ2,Γ2) outside of a finite union of curves, the following points are singular
points of {D = 0} in the subcase of water:

• O (always in the interior of the Bloch ball);
• Ω if (γ2− γ2)(2Γ2− γ2−2) 6= 0;
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FIGURE 10. The curves involved in the decomposition of the parameter space (with the same conven-
tions as in Fig. 8).

• Ω+
a and Ω−a if η(γ2,Γ2) 6= 0 and which are real if δ (γ2,Γ2)> 0.

The remainder of this section will be devoted to the proof of Theorem 3.14. Beforehand, however, let us state this
last theorem, which makes the connection between the results of Theorems 3.13 and 3.14, and in particular implies that
generically, the points listed in Theorem 3.14 are the only singularities of {D = 0} in the Bloch ball.

Theorem 3.15. For values of the parameters (γ2,Γ2) outside of a finite union of curves, the singularities of {D = 0}
inside the Bloch ball in the case of water are:

• O;
• Ω if and only if (γ2,Γ2) ∈ G1;
• Ω+

a and Ω−a are real and inside the Bloch ball if and only if (γ2,Γ2) ∈ G2.

Remark 3.16. Note that generically the number of singularities of {D = 0} in the Bloch ball is at most 3, because the
domains G1 and G2 are disjoint.

Proof. The point Ω is within the ball if and only if its coordinates satisfy

−2 < z1,z2 < 0.

The inequalities in z1 are equivalent to the disjonction of these two sets of inequalities
Γ2−1 > 0
Γ2 < γ2

3Γ2−2γ2−1 = f2 < 0
or


Γ2−1 < 0
Γ2 > γ2

f2 > 0
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FIGURE 11. Magnification of Fig. 10 near (1,1).

Note that in each case, the first and third condition imply the second one.
In the first case, since Γ2 > γ2, the inequalities 0 > z2 >−2 are equivalent to{

2Γ2− γ2−2 < 0
f4 < 0

Both inequalities are satisfied by assumption, recovering the defining inequalities of G−1 . In the second case (Γ2 > γ2), the
inequalities 0 > z2 >−2 are equivalent to {

2Γ2− γ2−2 > 0
f4 > 0

The first inequality is satisfied whenever the second is, so have recoved the defining inequalities of G+1 , proving the first
point.

The second case is studied in the same way.
�

Proof of Theorem 3.14.

Proof. We consider separately those solutions which are on the symmetry plane {y1 = y2 = 0} (Proposition 3.17) and
those which are not (Proposition 3.18). The result is an immediate consequence of those propositions. �

Solutions on the symmetry plane {y1 = y2 = 0}.
Proposition 3.17. The singularities of D which are on the symmetry hyperplane Π are:

• if (2Γ2− γ2)(Γ2− γ2)(2Γ2− γ2−2) 6= 0: the center O of B, and the point Ω;
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• if 2Γ2 = γ2: O, Ω and N;
• if Γ2 6= 1, and (Γ2− γ2)(2Γ2− γ2−2) = 0: O.
• if Γ2 = 1 and γ2 6= 1: O and Ω = N.

Proof. We split the proof in seven cases, finding the solutions such that z2 = −1, 2Γ2 = γ2, Γ2 = 1, z2 = 0, 2Γ2 = γ2,
Γ2 = γ2, 2Γ2− γ2−2 = 0, and the remaining general case.

(1) Case z2 = −1. We compute a basis of S∪{y1,y2,z2 + 1} with the lexicographical order y1 � y2 � z1 � z2 �
γ2 � Γ2. The polynomial γ2

2 (z1 + 1) is present, and since γ2 6= 0, we get z2 = −1 and derive directly that the
unique solution is O.

(2) Case 2Γ2 = γ2. We compute a basis of S∪{y1,y2,2Γ2− γ2} with the same order y1� y2� z1� z2� γ2� Γ2,
and the result follows immediately.

(3) Case Γ2 = 1. We found in the basis of S ∪ {y1,y2,Γ2 − 1} with order y1 � y2 � z1 � z2 � γ2 � Γ2, the
polynomial z2γ2

2 (γ2−1)2(z2 +1). The case z2 +1 is already treated, while the case γ2 = 0 is excluded. The case
γ2 = 1 is also excluded, since that would mean (γ2,Γ2) = (1,1). In the case z2 = 0, the polynomial 2γ3

2 z1(γ2−2)
appears in the basis of S∪{y1,y2,Γ2−1,z2}. Since the case γ2 = 2 = 2Γ2 has already been studied, this implies
z1 = 0 hence the north pole N is the unique solution. Note that for Γ2 = 1, N and Ω coincide.

(4) Case z2 = 0. We compute a basis with the lexicographic y1� y2� z1� z2� γ2� Γ2. The first polynomial is
(Γ2−1)2(2Γ2− γ2). Since 2Γ2− γ2 = 0 and Γ2 = 1 are already known, there is no extra solution.

(5) Case Γ2 = γ2. The basis contains the polynomial Γ2(Γ2−1)2(z2+1), which leads to z2 =−1 (already discussed).
(6) Case 2Γ2− γ2−2 = 0. The basis contains the polynomial (Γ2−1)2(z2 +1), as in the previous case.
(7) Let us finally search the solutions such that z2(z2 +1)(γ2−Γ2)(2Γ2− γ2−2) 6= 0. We consider the system

S∪{y1,y2,z2ξ1−1,(z2 +1)ξ2−1,(Γ2− γ2)λ1−1,(2Γ2− γ2−2)λ2−1},

and compute a basis with order y1� y2� z1� z2� ξ1� ξ2� γ2� Γ2� λ1� λ2. The last four polynomials
of the basis are:

Γ2 λ1 +2λ2 λ1 +λ1−2λ2 + z2,−Γ2 λ1 +λ1 + z1, y2, y1.

This implies that there is at most one solution under the above conditions. By plugging into the system, one
verifies that Ω is a solution satisfying these conditions, hence it is the unique solution.

�

Solutions outside the symmetry plane {y1 = y2 = 0}.

Proposition 3.18. For values of the parameters (γ2,Γ2) outside of a finite union of curves, the solutions of S outside Π
are given by means of a two parameters family of Π-symmetric points (Ω+

a (γ2,Γ2),Ω−a (γ2,Γ2)), which can be either real
or complex depending on the sign of δ (γ2,Γ2).

Proof of Proposition 3.18. .

Proof. The case y2 = 0,y1 6= 0 is treated in Lemma 3.19. We assume now that y2 6= 0.
We transform the system S = {D,Dy1 ,Dy2 ,Dz1 ,Dz2} by means of the introduction of the new variables (t,h) such

that y1 = t y2, and γ2 = hΓ2. After simplification by y2, one observes that the powers of y2 in the simplified system are
all even. So we perform the change of variables Y2 = y2

2, and denote by S̃ this new set of polynomials in the variables
(h,Γ2,z1,z2, t,Y2).
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We first compute a Gröbner basis, considering the polynomials in Q(γ2,Γ2)[y1,z1,y2,z2] with a lexicographical order,
and find directly the rational expressions

z1 =
(1− (1+h) Γ2)(Γ2−1)

(4Γ2 h−5Γ2−1)Γ2 (h−1)

z2 =
1
2

(Γ2−1)(h−2)
(1− (1+h) Γ2)(h−1)

Y2 =
3
4

h2 Γ2 (Γ2−1)(h−2)(2Γ2 h−Γ2−1)

(2Γ2 h−Γ2−2)(Γ2 h+Γ2−1)2 (h−1)2

t = 2
(Γ2 h+Γ2−1)(2Γ2 h−Γ2−2)

(4Γ2 h−5Γ2−1)hΓ2

(SoluGen)

which correspond to the points Ω+
a ,Ω−a . These points are symmetric with respect to Π and real if and only if

(Γ2−1)(2Γ2−hΓ2)(Γ2−2hΓ2 +1)(Γ2−2hΓ2 +2)≥ 0

Recall that hΓ2 = γ2, so we have recovered the definition of δ (30). We define

η̄(Γ2,h) = (4Γ2 h−5Γ2−1) (h−1)(2Γ2 h−Γ2−2)(1− (1+h) Γ2) ,

the lowest common multiple of the denominators of the solutions, so that those paired solutions are valid on a Zariski
open set (including at least the complementary of {(γ2,Γ2) s.t. η̄(Γ2,h) = 0}. �

Lemma 3.19. If γ2 6= 2Γ2 and γ2 6= 0, the only solutions of the system S∪{y2} are the solutions on Π given in Proposi-
tion 3.17. In particular, all these solutions are such that y1 = 0.

Proof. The second polynomial of a basis of S∪{y2}with respect to the order z1� z2� y1� y2� γ2�Γ2 is γ2
2 y1 (2Γ2−

γ2). �

3.4.2. General case (3 projective parameters)

We conclude by giving classification results for the classification of the real singularities of {D = 0} in the Bloch ball,
in the general case. We now have 4 parameters (γ1,Γ1,γ2,Γ2), which we may reduce to 3, normalizing by γ1 = 1. The
constraints are 2Γ1 ≥ 1, 2Γ2 ≥ γ2 > 0, and we exclude the case of a single spin (Γ2,γ2) = (Γ1,1).

In this case, real roots classification algorithms [10] allow to compute a generic classification of the parameter space
according to the number of singularities.

Theorem 3.20 ( [10]). Splitting the subset of R3 defined by 2Γ2 ≥ γ2 > 0 and 2Γ1 > 1 into open subsets where the number
of real singularities of {D= 0} in the Bloch ball in the fibers is constant, can be done by cutting out 12 irreducible surfaces,
consisting of 5 planes, 3 quadrics, 2 surfaces of degree 9, and one of degree 14.

Note that this computation is more expensive than in the case of water (2.5 h), and the result is also larger: the degree
14 polynomial has 451 monomials.

Using critical points computations on the hypersurface defined by the product of these polynomials, we are able to
compute at least one point per connected component of the complementary of this hypersurface. This second step of the
computations is also more computationally expensive than in the case of water, it takes 48 h and results in 10109 points.

We can then use these points to count the number of singularities in each cell. However, unlike the case of water, it is
not possible to characterize the cells using only the signs of these polynomials.

Theorem 3.21. For values of the parameters (γ1,Γ1,γ2,Γ2) outside of a finite union of hypersurfaces, the number of
singularities of {D = 0} in the Bloch ball can be 1, 2, 3, 4 or 5.
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FIGURE 12. All polynomials involved in the classification in the in vivo case

FIGURE 13. Classification regarding the second parameter in the in vivo case

As an example, we show slices of this classification for Γ1 = 531/26' 20.4, which corresponds to the in vivo experi-
mental setting. All polynomials involved are represented on Figure 12. In this case, there can be 1, 2, 3 or 4 singularities,
and the corresponding sample points are represented respectively with gray dots, blue diamonds, green circles and orange
boxes.

In the experimental setting, the parameters for the second matter were γ2 ' 0.89 and Γ2 ' 36.6. Scaling the graphic
down to fit this point (Figure 13) shows that some of the polynomials can be eliminated for values in this order of
magnitude. Several of the classification polynomials vanish at (γ2,Γ2) = (γ1,Γ1), which is a natural singularity. One can
also note that unlike in the case of water, the areas where there is only 1 singularity are quite far from the actual values of
the parameters.
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