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Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. Apply a magnetic field to a body

2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure
Example: in vivo experiment on a mouse brain (brain vs parietal muscle)1

Bad contrast (not enhanced) Good contrast (enhanced)

Known methods:
I inject contrast agents to the patient: potentially toxic...
I enhance the contrast dynamically =⇒ optimal control problem

1Éric Van Reeth et al. (2016). ‘Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI’. . In:
Submitted IEEE transactions on medical imaging.
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The Bloch equations for a single spin

The Bloch equations

{
ẏ =−Γy−uz
ż = γ(1−z) + uy

 q̇ = F(γ,Γ,q) + uG(q)

I q = (y,z): state variables
I γ,Γ: relaxation parameters (constants depending on the biological matter)
I u: control function (the unknown of the problem)

Physical limitations

I State variables: the Bloch Ball

y2 + z2 ≤ 1

I Parameters:

2γ ≥ Γ > 0

I Control:
−1≤ u ≤ 1

O

N
ẏ =−Γy

ż = γ− γz

u ≡+1

u ≡ 0
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Optimal control problems

Bloch equations for 2 spins:

{
q̇1 = F1(γ1,Γ1,q1) + uG1(q1)

q̇2 = F2(γ2,Γ2,q2) + uG2(q2)

Contrast problem

I Two matters, 4 parameters
γ1,Γ1,γ2,Γ2

I Both spins have the same dynamic:
F1 = F2 = F , G1 = G2 = G

I Equations{
q̇1 = F(γ1,Γ1,q1) + uG(q1)

q̇2 = F(γ2,Γ2,q2) + uG(q2)

I Goal: saturate #1, maximize #2:{
y1 = z1 = 0
Maximize |(y2,z2)|

Multi-saturation problem

I Two spins of the same matter:
Γ1 = Γ2 = Γ, γ1 = γ2 = γ

I Small perturbation on the second
spin: F1 = F2 = F , G2 = (1− ε)G1

I 2 parameters + ε
I Equations:{

q̇1 = F(γ,Γ,q1) + uG(q1)

q̇2 = F(γ,Γ,q2) + u(1− ε)G(q2)

I Goal: both matters saturated:{
y1 = z1 = 0
y2 = z2 = 0
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Workflow

Control problem

Description of
extremal trajectories

Classification of
algebraic invariants of
the singular dynamics

Classification of
the trajectories

Pontryagin

This work

q̇ = F(γ,Γ,q) + uG(q)

I Bang arcs: u ≡±1

I Singular arcs: u =
D′

D
Ẋ = D F −D′G

I Singularities of {D = 0}
I Equilibria: {D = D′ = 0}
I . . .

Problem: study and classif.
of the solutions of systems of
polynomial equations

Method: exact algorithmic tools
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Example: control of a single spin2

O

N

S

+1

+1

Bridge

O

N

Inversion

Figure: Time-minimal saturation for a single spin: left: 2Γ < 3γ , right: 2Γ≥ 3γ

Horizontal line at altitude
γ

2(Γ− γ)
= part of the singular locus of {D = 0}

2Marc Lapert (2011). ‘Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la
Résonance Magnétique Nucléaire à la physique moléculaire’. PhD thesis. Université de Bourgogne, Dijon, France.
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Polynomial tools: factorization and elimination

Factorization (isolation of components)

I Ex: P = X1
2X2 + 4X1X2

2 + 4X2
3 + X1

2 + 4X1X2 + 4X2
2 → (X1 + 2X2)2 (1 + X2)

I Very fast, efficiently implemented in most CAS
I Ex. square-free form:

√
P := (X1 + 2X2)(1 + X2) has the same zeroes as P

Elimination (projection)

I Ex: P1 = X1 + X3, P2 = X1X2 + 2X3

→ X2P1−P2 = X1X2 + X2X3−X1X2−2X3 (X1 was eliminated)
I Computationally expensive, many different tools: resultants, Gröbner bases...
I Ex. saturation: 〈f1, . . . , fr : f ∞〉= 〈f1, . . . , fr ,U f −1〉∩Q[X1, . . . ,Xn]

The roots of this system “are” the roots of f1, . . . , fr , minus the zeroes of f

Typical example of simplification

If I contains P = fg, we can split the study into:

1. the roots of I + 〈f 〉
2. the roots of I + 〈g〉 saturated by f
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Examples for multi-saturation

{
q̇1 = D F(γ,Γ,q1)−D′G(q1)

q̇2 = D F(γ,Γ,q2)−D′ (1− ε)G(q2)

Singularities of {D = 0}

I North pole

I Line defined by

{
y1 = (1− ε)y2

z1 = z2 = zS := γ
2(Γ−γ)

(cf. the horizontal line for a single spin)

Equilibrium points D = D′ = 0

I Horizontal plane z1 = z2 = zS = γ
2(Γ−γ)

I Vertical line y1 = y2 = 0, z1 = z2

I 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!
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Previous results for the contrast problem3

Study of 4 experimental cases:

Matter #1 / # 2 γ1 Γ1 γ2 Γ2

Water / cerebrospinal fluid 0.01 0.01 0.02 0.10

Water / fat 0.01 0.01 0.15 0.31

Deoxygenated / oxygenated blood 0.02 0.62 0.02 0.15

Gray / white brain matter 0.03 0.31 0.04 0.34

Separated by means of several invariants:
I Number of singularities of {D = 0}  Always 1 for water?
I Structure of {D = D′ = 0}
I Eigenvalues of the linearizations at equilibrium points
I Study of the quadratic approximations at points where the linearization is 0

3Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). ‘Algebraic geometric
classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance’. In: Mathematical
Control and Related Fields 3.4, pp. 397–432. ISSN: 2156-8472. DOI: 10.3934/mcrf.2013.3.397.

http://dx.doi.org/10.3934/mcrf.2013.3.397
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Classification for the contrast problem

{
q̇1 = D F(γ1,Γ1,q1)−D′G(q1)

q̇2 = D F(γ2,Γ2,q2)−D′G(q2)

More complicated

I 4 variables, 4 parameters ( 3 by homogeneity)
I Polynomials of high degree

Singularities of {D = 0} using Gröbner bases and factorisations/saturations

(After appropriate saturations) the ideal contains

0 = Py2 (y2
2 ,•) with degree 4 in y2

2 (8 roots)
•y1 = Py1 (y2,•)
•z1 = Pz1 (y2,•)
•z2 = Pz2 (y2,•)

...

=⇒ study of the number of roots of Py2 (depending on its leading coefficient and
discriminant)
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Singularities of {D = 0} for the contrast problem: first results

(γ1 = 1)

Properties:
I Finite number of singularities

for each value of the parameters
I Singularities come in pairs:

invariant under (yi 7→ −yi )

Classification in terms of Γi ,γi :
I Generically: 4 pairs of singularities
I 3 pairs on a surface

with several components:
I one hyperplane
I one quadric
I one degree 24 surface
I . . .

I 2 pairs on a curve with many
components

I 1 pair on a set of points

Can we get more information? For example, information about real points?
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The real roots classification problem: state of the art and contribution

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

Real Roots Classification problem

Goal: Partition of the parameter space
s.t. #

(
V ∩B∩π−1(g)

)
= constant

I V = {D = ∂D
∂y1

= ∂D
∂z1

= ∂D
∂y2

= ∂D
∂z2

= 0}
I B: Bloch ball

Existing tools

I Cylindrical Algebraic Decomposition
I Specific tools for roots classification
I Unable to solve the MRI problem

→ Can we exploit the determinantal
structure?

4Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and Thibaut Verron (2016).
‘Determinantal sets, singularities and application to optimal control in medical imagery’. In: Proceedings of the 2016
International Symposium on Symbolic and Algebraic Computation. ISSAC ’16. Waterloo, Canada
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G
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π

B

3 4 2 2 2

V1

2

3

1
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meeting the border

critical

singular

Real Roots Classification problem

Goal: Partition of the parameter space
s.t. #

(
V ∩B∩π−1(g)

)
= constant

I V = {D = ∂D
∂y1

= ∂D
∂z1

= ∂D
∂y2

= ∂D
∂z2

= 0}
I B: Bloch ball

Contribution4

I Dedicated strategy for the structure
I Refines existing strategies

(easy to implement)
I Able to solve the MRI problem

4Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and Thibaut Verron (2016).
‘Determinantal sets, singularities and application to optimal control in medical imagery’. In: Proceedings of the 2016
International Symposium on Symbolic and Algebraic Computation. ISSAC ’16. Waterloo, Canada
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Application to the contrast problem

Full classification strategy

1. Real Roots Classification→ limits of the cells

2. Cylindrical algebraic decomposition→ points in each cell

3. Gröbner basis computations for each point→ count of singularities

I Results obtained with Maple, using the FGb Gröbner basis library for eliminations
I Source code and full results available at mercurey.gforge.inria.fr

Case # Params
Time
for step 1
(direct)

Time
for step 1
(new strat.)

Results
Time
for step 2

# Points

Water 2 110 s 10 s
9 pols.

(deg ≤ 3)
50 s 1533

General 3 >24 h 2 h
14 pols.

(deg ≤ 14)
48 h 10109

mercurey.gforge.inria.fr
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Detailed results for the contrast problem in the case of water

1

1

1

1
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3

3
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γ2

Γ2

I Case of water: 1, 2 or 3 singular points
I General case: 1, 2, 3, 4 or 5 singular points
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Detailed results for the contrast problem in the case of water (zoom in)

1
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I Case of water: 1, 2 or 3 singular points
I General case: 1, 2, 3, 4 or 5 singular points



14

Detailed results for the contrast problem in the case of water (zoom out)

Cerebrospinal fluid

Fat

1
1

1

1

1 2

3

0 2 4 6 8 10 12 14 16
0

10

20

30

γ2

Γ2

I Case of water: 1, 2 or 3 singular points
I General case: 1, 2, 3, 4 or 5 singular points
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Conclusion and perspectives

This work

I Applications of algebraic methods to an optimal control problem
I Dedicated strategy for a classification problem related to one of the invariants

Perspectives

Algorithmically:
I Extension of the algorithms to structures of other invariants

And for the MRI problem:
I Direct relation between the invariants and properties of the trajectories?
I Is it possible to lift some approximations?
I Further studies, e.g. classification according to optimal contrast

Thank you for your attention!
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