Méthodes algébriques pour le contrôle optimal en Imagerie à Résonance Magnétique

Bernard Bonnard 1,2	Olivier Cots 5	Jean-Charles Faugère

1. Université de Bourgogne-Franche Comté, Dijon
2. Inria Sophia Antipolis, Équipe McTAO
3. UPMC Paris Sorbonne Universités, Inria Paris, CNRS, LIP6, Équipe PolSys
4. LAAS, CNRS, Toulouse
5. Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO

Congrès SMAI 2017, Mini-symposium Contrôle et applications
09 juin 2017

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction

Goal $=$ optimize the contrast $=$ distinguish two biological matters from this measure
Example: in vivo experiment on a mouse brain (brain vs parietal muscle) ${ }^{1}$

[^0]
Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure Example: in vivo experiment on a mouse brain (brain vs parietal muscle) ${ }^{1}$

Bad contrast (not enhanced)

Good contrast (enhanced)

Known methods:

- inject contrast agents to the patient: potentially toxic...
- enhance the contrast dynamically \Longrightarrow optimal control problem

[^1]
The Bloch equations for a single spin

The Bloch equations

$$
\left\{\begin{array}{l}
\dot{y}=-\Gamma y-u z \\
\dot{z}=\gamma(1-z)+u y
\end{array} \quad \rightsquigarrow \dot{q}=F(\gamma, \Gamma, q)+u G(q)\right.
$$

- $q=(y, z)$: state variables
- γ, Γ : relaxation parameters (constants depending on the biological matter)
- u : control function (the unknown of the problem)

Physical limitations

- State variables: the Bloch Ball

$$
y^{2}+z^{2} \leq 1
$$

- Parameters:

$$
2 \gamma \geq \Gamma>0
$$

- Control:

$$
-1 \leq u \leq 1
$$

Optimal control problems

$$
\text { Bloch equations for } 2 \text { spins: }\left\{\begin{array}{l}
\dot{q}_{1}=F_{1}\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G_{1}\left(q_{1}\right) \\
\dot{q}_{2}=F_{2}\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G_{2}\left(q_{2}\right)
\end{array}\right.
$$

Multi-saturation problem

* Two matters, 4 parameters
- Both spins have the same dynamic: $F_{1}=F_{2}=F, G_{1}=G_{2}=G$
- Equations

- Goal: saturate \#1, maximize \#2:
- Two spins of the same matter:
- Small perturbation on the second spin: $F_{1}=F_{2}=F, G_{2}=(1-\varepsilon) G_{1}$
- 2 parameters $+\varepsilon$
- Equations:

- Goal: both matters saturated:

Optimal control problems

$$
\text { Bloch equations for } 2 \text { spins: }\left\{\begin{array}{l}
\dot{q}_{1}=F_{1}\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G_{1}\left(q_{1}\right) \\
\dot{q}_{2}=F_{2}\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G_{2}\left(q_{2}\right)
\end{array}\right.
$$

Contrast problem

Multi-saturation problem

- Two matters, 4 parameters $\gamma_{1}, \Gamma_{1}, \gamma_{2}, \Gamma_{2}$
- Both spins have the same dynamic:

$$
F_{1}=F_{2}=F, G_{1}=G_{2}=G
$$

- Equations

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: saturate \#1, maximize \#2:

$$
\left\{\begin{array}{l}
y_{1}=z_{1}=0 \\
\text { Maximize }\left|\left(y_{2}, z_{2}\right)\right|
\end{array}\right.
$$

Optimal control problems

$$
\text { Bloch equations for } 2 \text { spins: }\left\{\begin{array}{l}
\dot{q}_{1}=F_{1}\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G_{1}\left(q_{1}\right) \\
\dot{q}_{2}=F_{2}\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G_{2}\left(q_{2}\right)
\end{array}\right.
$$

Contrast problem

- Two matters, 4 parameters $\gamma_{1}, \Gamma_{1}, \gamma_{2}, \Gamma_{2}$
- Both spins have the same dynamic:

$$
F_{1}=F_{2}=F, G_{1}=G_{2}=G
$$

- Equations

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: saturate \#1, maximize \#2:

$$
\left\{\begin{array}{l}
y_{1}=z_{1}=0 \\
\text { Maximize }\left|\left(y_{2}, z_{2}\right)\right|
\end{array}\right.
$$

Multi-saturation problem

- Two spins of the same matter:

$$
\Gamma_{1}=\Gamma_{2}=\Gamma, \gamma_{1}=\gamma_{2}=\gamma
$$

- Small perturbation on the second spin: $F_{1}=F_{2}=F, G_{2}=(1-\varepsilon) G_{1}$
- 2 parameters $+\varepsilon$
- Equations:

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma, \Gamma, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma, \Gamma, q_{2}\right)+u(1-\varepsilon) G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: both matters saturated:

$$
\left\{\begin{array}{l}
y_{1}=z_{1}=0 \\
y_{2}=z_{2}=0
\end{array}\right.
$$

Workflow

$$
\dot{q}=F(\gamma, \Gamma, q)+u G(q)
$$

- Bang arcs: $u \equiv \pm 1$
- Singular arcs: $u=\frac{D^{\prime}}{D}$

$$
\dot{X}=D F-D^{\prime} G
$$

Workflow

$$
\dot{q}=F(\gamma, \Gamma, q)+u G(q)
$$

- Bang arcs: $u \equiv \pm 1$
- Singular arcs: $u=\frac{D^{\prime}}{D}$

$$
\dot{X}=D F-D^{\prime} G
$$

- Singularities of $\{D=0\}$
- Equilibria: $\left\{D=D^{\prime}=0\right\}$
- ...

Workflow

$$
\dot{q}=F(\gamma, \Gamma, q)+u G(q)
$$

- Bang arcs: $u \equiv \pm 1$
- Singular arcs: $u=\frac{D^{\prime}}{D}$

$$
\dot{X}=D F-D^{\prime} G
$$

- Singularities of $\{D=0\}$
- Equilibria: $\left\{D=D^{\prime}=0\right\}$
- ...

> Problem: study and classif. of the solutions of systems of polynomial equations

Method: exact algorithmic tools

Example: control of a single spin ${ }^{2}$

Figure: Time-minimal saturation for a single spin: left: $2 \Gamma<3 \gamma$, right: $2 \Gamma \geq 3 \gamma$
Horizontal line at altitude $\frac{\gamma}{2(\Gamma-\gamma)}=$ part of the singular locus of $\{D=0\}$

[^2]
Polynomial tools: factorization and elimination

Factorization (isolation of components)

- Ex: $P=X_{1}^{2} X_{2}+4 X_{1} X_{2}^{2}+4 X_{2}^{3}+X_{1}^{2}+4 X_{1} X_{2}+4 X_{2}^{2} \rightarrow\left(X_{1}+2 X_{2}\right)^{2}\left(1+X_{2}\right)$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P}:=\left(X_{1}+2 X_{2}\right)\left(1+X_{2}\right)$ has the same zeroes as P

- Computationally expensive, many different tools: resultants, Gröbner bases.

The roots of this system "are" the roots of f_{1}, \ldots, f_{r}, minus the zeroes of f

If I contains $P=f g$, we can split the study into:
the roots of $I+\langle f$
2. the roots of $I+\langle g\rangle$ saturated by f

Polynomial tools: factorization and elimination

Factorization (isolation of components)

- Ex: $P=X_{1}^{2} X_{2}+4 X_{1} X_{2}^{2}+4 X_{2}^{3}+X_{1}^{2}+4 X_{1} X_{2}+4 X_{2}^{2} \rightarrow\left(X_{1}+2 X_{2}\right)^{2}\left(1+X_{2}\right)$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P}:=\left(X_{1}+2 X_{2}\right)\left(1+X_{2}\right)$ has the same zeroes as P

Elimination (projection)

- Ex: $P_{1}=X_{1}+X_{3}, P_{2}=X_{1} X_{2}+2 X_{3}$

$$
\rightarrow X_{2} P_{1}-P_{2}=X_{1} X_{2}+X_{2} X_{3}-X_{1} X_{2}-2 X_{3} \quad\left(X_{1} \text { was eliminated }\right)
$$

- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: $\left\langle f_{1}, \ldots, f_{r}: f^{\infty}\right\rangle=\left\langle f_{1}, \ldots, f_{r}, U f-1\right\rangle \cap \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ The roots of this system "are" the roots of f_{1}, \ldots, f_{r}, minus the zeroes of f

Polynomial tools: factorization and elimination

Factorization (isolation of components)

- Ex: $P=X_{1}^{2} X_{2}+4 X_{1} X_{2}^{2}+4 X_{2}^{3}+X_{1}^{2}+4 X_{1} X_{2}+4 X_{2}^{2} \rightarrow\left(X_{1}+2 X_{2}\right)^{2}\left(1+X_{2}\right)$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P}:=\left(X_{1}+2 X_{2}\right)\left(1+X_{2}\right)$ has the same zeroes as P

Elimination (projection)

- Ex: $P_{1}=X_{1}+X_{3}, P_{2}=X_{1} X_{2}+2 X_{3}$

$$
\rightarrow X_{2} P_{1}-P_{2}=X_{1} X_{2}+X_{2} X_{3}-X_{1} X_{2}-2 X_{3} \quad\left(X_{1} \text { was eliminated }\right)
$$

- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: $\left\langle f_{1}, \ldots, f_{r}: f^{\infty}\right\rangle=\left\langle f_{1}, \ldots, f_{r}, U f-1\right\rangle \cap \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ The roots of this system "are" the roots of f_{1}, \ldots, f_{r}, minus the zeroes of f

Typical example of simplification

If I contains $P=f g$, we can split the study into:

1. the roots of $I+\langle f\rangle$
2. the roots of $I+\langle g\rangle$ saturated by f

Examples for multi-saturation

$$
\left\{\begin{array}{l}
\dot{q}_{1}=D F\left(\gamma, \Gamma, q_{1}\right)-D^{\prime} G\left(q_{1}\right) \\
\dot{q}_{2}=D F\left(\gamma, \Gamma, q_{2}\right)-D^{\prime}(1-\varepsilon) G\left(q_{2}\right)
\end{array}\right.
$$

Singularities of $\{D=0\}$

- North pole
- Line defined by $\left\{\begin{array}{l}y_{1}=(1-\varepsilon) y_{2} \\ z_{1}=z_{2}=z_{S}:=\frac{\gamma}{2(\Gamma-\gamma)} \quad \text { (cf. the horizontal line for a single spin) }\end{array}\right.$

Equilibrium points $D=D^{\prime}=0$

- Horizontal plane $z_{1}=z_{2}=z_{S}=\frac{\gamma}{2(\Gamma-\gamma)}$
- Vertical line $y_{1}=y_{2}=0, z_{1}=z_{2}$
- 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!

Previous results for the contrast problem ${ }^{3}$

Study of 4 experimental cases:

Matter \#1 / \# 2	γ_{1}	Γ_{1}	γ_{2}	Γ_{2}
Water / cerebrospinal fluid	0.01	0.01	0.02	0.10
Water / fat	0.01	0.01	0.15	0.31
Deoxygenated / oxygenated blood	0.02	0.62	0.02	0.15
Gray / white brain matter	0.03	0.31	0.04	0.34

Separated by means of several invariants:

- Number of singularities of $\{D=0\} \rightsquigarrow$ Always 1 for water?
- Structure of $\left\{D=D^{\prime}=0\right\}$
- Eigenvalues of the linearizations at equilibrium points
- Study of the quadratic approximations at points where the linearization is 0

[^3]
Classification for the contrast problem

$$
\left\{\begin{array}{l}
\dot{q}_{1}=D F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)-D^{\prime} G\left(q_{1}\right) \\
\dot{q}_{2}=D F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)-D^{\prime} G\left(q_{2}\right)
\end{array}\right.
$$

More complicated

- 4 variables, 4 parameters ($\rightsquigarrow 3$ by homogeneity)
- Polynomials of high degree

Singularities of $\{D=0\}$ using Gröbner bases and factorisations/saturations (After appropriate saturations) the ideal contains

$$
\begin{cases}0 & =P_{y_{2}}\left(y_{2}^{2}, \bullet\right) \text { with degree } 4 \text { in } y_{2}^{2} \text { (8 roots) } \\ \bullet y_{1} & =P_{y_{1}}\left(y_{2}, \bullet\right) \\ \bullet z_{1} & =P_{z_{1}}\left(y_{2}, \bullet\right) \\ \bullet z_{2} & =P_{z_{2}}\left(y_{2}, \bullet\right) \\ & \vdots\end{cases}
$$

\Longrightarrow study of the number of roots of $P_{y_{2}}$ (depending on its leading coefficient and discriminant)

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
* 3 pairs on a surface
with several components:
- one hvperplane
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one hyperplane
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Can we get more information? For example, information about real points?

The real roots classification problem: state of the art and contribution

Real Roots Classification problem

Goal: Partition of the parameter space
s.t. $\#\left(\mathcal{V} \cap \mathcal{B} \cap \pi^{-1}(g)\right)=$ constant

- $\mathcal{V}=\left\{D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{2}}=0\right\}$
- B: Bloch ball

Existing tools

- Cylindrical Algebraic Decomposition
- Specific tools for roots classification
- Unable to solve the MRI problem
\rightarrow Can we exploit the determinantal structure?

The real roots classification problem: state of the art and contribution

Real Roots Classification problem

Goal: Partition of the parameter space s.t. $\#\left(\mathcal{V} \cap \mathcal{B} \cap \pi^{-1}(g)\right)=$ constant

- $\mathcal{V}=\left\{D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{2}}=0\right\}$
- \mathcal{B} : Bloch ball

Contribution ${ }^{4}$

- Dedicated strategy for the structure
- Refines existing strategies (easy to implement)
- Able to solve the MRI problem

[^4]
Application to the contrast problem

Full classification strategy

1. Real Roots Classification \rightarrow limits of the cells
2. Cylindrical algebraic decomposition \rightarrow points in each cell
3. Gröbner basis computations for each point \rightarrow count of singularities

- Results obtained with Maple, using the FGb Gröbner basis library for eliminations
- Source code and full results available at mercurey.gforge.inria.fr

Case	\# Params	Time for step 1 (direct)	Time for step 1 (new strat.)	Results	Time for step 2	\# Points
Water	2	110 s	10 s	9 pols. $(\mathrm{deg} \leq 3)$	50 s	1533
General	3	$>24 \mathrm{~h}$	2 h	14 pols. $(\mathrm{deg} \leq 14)$	48 h	10109

Detailed results for the contrast problem in the case of water

- Case of water: 1, 2 or 3 singular points
- General case: 1, 2, 3, 4 or 5 singular points

Detailed results for the contrast problem in the case of water (zoom in)

- Case of water: 1, 2 or 3 singular points
- General case: 1, 2, 3, 4 or 5 singular points

Detailed results for the contrast problem in the case of water (zoom out)

- Case of water: 1, 2 or 3 singular points
- General case: 1, 2, 3, 4 or 5 singular points

Conclusion and perspectives

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives

Algorithmically:

- Extension of the algorithms to structures of other invariants

And for the MRI problem:

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- Further studies, e.g. classification according to optimal contrast

Conclusion and perspectives

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives

Algorithmically:

- Extension of the algorithms to structures of other invariants

And for the MRI problem:

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- Further studies, e.g. classification according to optimal contrast

Thank you for your attention!

[^0]: ${ }^{1}$ Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

[^1]: ${ }^{1}$ Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

[^2]: ${ }^{2}$ Marc Lapert (2011). 'Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaire'. PhD thesis. Université de Bourgogne, Dijon, France.

[^3]: ${ }^{3}$ Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). 'Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance'. In: Mathematical Control and Related Fields 3.4, pp. 397-432. ISSN: 2156-8472. DOI: 10.3934/mcrf . 2013.3.397.

[^4]: ${ }^{4}$ Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and Thibaut Verron (2016). 'Determinantal sets, singularities and application to optimal control in medical imagery'. In: Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation. ISSAC '16. Waterloo, Canada

