Méthodes algébriques pour le contrôle optimal en Imagerie à Résonance Magnétique

Bernard Bonnard^{1,2} Alain Jacquemard¹ Olivier Cots⁵ Jérémy Rouot⁴ Thibaut Verron⁵

Jean-Charles Faugère³ Mohab Safey El Din³

- 1. Université de Bourgogne-Franche Comté, Dijon
- 2. Inria Sophia Antipolis, Équipe McTAO
- 3. UPMC Paris Sorbonne Universités, Inria Paris, CNRS, LIP6, Équipe PolSys
- 4. LAAS, CNRS, Toulouse
- 5. Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO

Congrès SMAI 2017, Mini-symposium Contrôle et applications

09 juin 2017

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction
- Goal = optimize the contrast = distinguish two biological matters from this measure Example: *in vivo* experiment on a mouse brain (brain vs parietal muscle)¹

Bad contrast (not enhanced)

Good contrast (enhanced)

¹Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction
- Goal = optimize the contrast = distinguish two biological matters from this measure Example: *in vivo* experiment on a mouse brain (brain vs parietal muscle)¹

Bad contrast (not enhanced)

Good contrast (enhanced)

Known methods:

- inject contrast agents to the patient: potentially toxic...
- ► enhance the contrast dynamically ⇒ optimal control problem

¹Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

The Bloch equations for a single spin

The Bloch equations

$$\begin{cases} \dot{y} = -\Gamma y - uz \\ \dot{z} = \gamma(1-z) + uy \end{cases} \quad \rightsquigarrow \quad \dot{q} = F(\gamma, \Gamma, q) + uG(q)$$

- q = (y, z): state variables
- γ, Γ : relaxation parameters (constants depending on the biological matter)
- u: control function (the unknown of the problem)

Physical limitations

State variables: the Bloch Ball

$$y^2 + z^2 \leq 1$$

Parameters:

$$2\gamma \geq \Gamma > 0$$

Control:

-1 ≤ <u>u</u> ≤ 1

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q_1} = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q_2} = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

 $\dot{q}_1 = F(\gamma_1, \Gamma_1, q_1) + uG(q_1)$ $\dot{q}_2 = F(\gamma_2, \Gamma_2, q_2) + uG(q_2)$

► Goal: saturate #1, maximize #2:

 $\begin{cases} y_1 = z_1 = 0\\ \text{Maximize } |(y_2, z_2)| \end{cases}$

Multi-saturation problem

- Two spins of the same matter: $\Gamma_1 = \Gamma_2 = \Gamma$, $\gamma_1 = \gamma_2 = \gamma$
- Small perturbation on the second spin: F₁ = F₂ = F, G₂ = (1 − ε)G₁
- 2 parameters + ε
- Equations:

 $\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$

Goal: both matters saturated:

 $\begin{cases} y_1 = z_1 = 0\\ y_2 = z_2 = 0 \end{cases}$

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q_1} = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q_2} = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

 $\begin{cases} \dot{q_1} = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q_2} = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$

• Goal: saturate #1, maximize #2:

 $\begin{cases} y_1 = z_1 = 0\\ \text{Maximize } |(y_2, z_2)| \end{cases}$

Multi-saturation problem

- Two spins of the same matter: $\Gamma_1 = \Gamma_2 = \Gamma$, $\gamma_1 = \gamma_2 = \gamma$
- Small perturbation on the second spin: F₁ = F₂ = F, G₂ = (1 − ε)G₁
- 2 parameters + ε
- Equations:

 $\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$

Goal: both matters saturated:

 $\begin{cases} y_1 = z_1 = 0\\ y_2 = z_2 = 0 \end{cases}$

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q_1} = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q_2} = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

 $\begin{cases} \dot{q_1} = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q_2} = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$

• Goal: saturate #1, maximize #2:

 $\begin{cases} y_1 = z_1 = 0\\ \text{Maximize } |(y_2, z_2)| \end{cases}$

Multi-saturation problem

- Two spins of the same matter: $\Gamma_1 = \Gamma_2 = \Gamma$, $\gamma_1 = \gamma_2 = \gamma$
- Small perturbation on the second spin: F₁ = F₂ = F, G₂ = (1 − ε)G₁
- 2 parameters + ɛ
- Equations:

 $\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$

Goal: both matters saturated:

 $\begin{cases} y_1 = z_1 = 0\\ y_2 = z_2 = 0 \end{cases}$

Workflow

$$\dot{q} = F(\gamma, \Gamma, q) + uG(q)$$

► Bang arcs: $u \equiv \pm 1$ ► Singular arcs: $u = \frac{D'}{D}$ $\dot{X} = DF - D'G$

Workflow

$$\dot{q} = F(\gamma, \Gamma, q) + uG(q)$$

Bang arcs: *u* ≡ ±1
 Singular arcs: *u* = ^{*D*'}/_{*D*}
 X = *DF* − *D*' *G*

- Singularities of $\{D=0\}$
- Equilibria: $\{D = D' = 0\}$

...

Workflow

$$\dot{q} = F(\gamma, \Gamma, q) + uG(q)$$

Bang arcs: *u* ≡ ±1
 Singular arcs: *u* = ^{*D*'}/_{*D*}
 X = *DF* − *D*' *G*

- Singularities of $\{D=0\}$
- Equilibria: $\{D = D' = 0\}$

• • • •

Problem: study and classif. of the solutions of systems of polynomial equations

Method: exact algorithmic tools

Example: control of a single spin²

²Marc Lapert (2011). 'Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaire'. PhD thesis. Université de Bourgogne, Dijon, France.

Polynomial tools: factorization and elimination

Factorization (isolation of components)

- Ex: $P = X_1^2 X_2 + 4 X_1 X_2^2 + 4 X_2^3 + X_1^2 + 4 X_1 X_2 + 4 X_2^2 \rightarrow (X_1 + 2 X_2)^2 (1 + X_2)$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P} := (X_1 + 2X_2)(1 + X_2)$ has the same zeroes as P

Elimination (projection)

► Ex:
$$P_1 = X_1 + X_3$$
, $P_2 = X_1 X_2 + 2X_3$
 $\rightarrow X_2 P_1 - P_2 = X_1 X_2 + X_2 X_3 - X_1 X_2 - 2X_3$ (X₁ was eliminated

- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: (*f*₁,...,*f_r*: *f*[∞]) = (*f*₁,...,*f_r*, *Uf* − 1) ∩ Q[*X*₁,...,*X_n*] The roots of this system "are" the roots of *f*₁,...,*f_r*, minus the zeroes of *f*

Typical example of simplification

- If *I* contains P = fg, we can split the study into:
 - 1. the roots of $I + \langle f \rangle$
 - 2. the roots of $I + \langle g \rangle$ saturated by *f*

Polynomial tools: factorization and elimination

Factorization (isolation of components)

- Ex: $P = X_1^2 X_2 + 4 X_1 X_2^2 + 4 X_2^3 + X_1^2 + 4 X_1 X_2 + 4 X_2^2 \rightarrow (X_1 + 2 X_2)^2 (1 + X_2)$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P} := (X_1 + 2X_2)(1 + X_2)$ has the same zeroes as P

Elimination (projection)

► Ex:
$$P_1 = X_1 + X_3$$
, $P_2 = X_1 X_2 + 2X_3$
 $\rightarrow X_2 P_1 - P_2 = X_1 X_2 + X_2 X_3 - X_1 X_2 - 2X_3$ (X₁ was eliminated)

- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: (f₁,..., f_r : f[∞]) = (f₁,..., f_r, Uf − 1) ∩ ℚ[X₁,..., X_n] The roots of this system "are" the roots of f₁,..., f_r, minus the zeroes of f

Typical example of simplification

If *I* contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by *f*

Polynomial tools: factorization and elimination

Factorization (isolation of components)

- Ex: $P = X_1^2 X_2 + 4 X_1 X_2^2 + 4 X_2^3 + X_1^2 + 4 X_1 X_2 + 4 X_2^2 \rightarrow (X_1 + 2 X_2)^2 (1 + X_2)$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P} := (X_1 + 2X_2)(1 + X_2)$ has the same zeroes as P

Elimination (projection)

► Ex:
$$P_1 = X_1 + X_3$$
, $P_2 = X_1 X_2 + 2X_3$
 $\rightarrow X_2 P_1 - P_2 = X_1 X_2 + X_2 X_3 - X_1 X_2 - 2X_3$ (X₁ was eliminated)

- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: (f₁,..., f_r : f[∞]) = (f₁,..., f_r, Uf − 1) ∩ ℚ[X₁,..., X_n] The roots of this system "are" the roots of f₁,..., f_r, minus the zeroes of f

Typical example of simplification

If *I* contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by f

Examples for multi-saturation

.

$$\begin{cases} \dot{q}_1 = DF(\gamma, \Gamma, q_1) - D'G(q_1) \\ \dot{q}_2 = DF(\gamma, \Gamma, q_2) - D'(1 - \varepsilon)G(q_2) \end{cases}$$

Singularities of $\{D = 0\}$

North pole

► Line defined by
$$\begin{cases} y_1 = (1 - \varepsilon)y_2 \\ z_1 = z_2 = z_S := \frac{\gamma}{2(\Gamma - \gamma)} \end{cases}$$
 (cf. the horizontal line for a single spin)

Equilibrium points D = D' = 0

- Horizontal plane $z_1 = z_2 = z_S = \frac{\gamma}{2(\Gamma \gamma)}$
- Vertical line $y_1 = y_2 = 0, z_1 = z_2$
- 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!

Study of 4 experimental cases:

Matter #1 / # 2	γ1	Γ ₁	γ2	Γ2
Water / cerebrospinal fluid	0.01	0.01	0.02	0.10
Water / fat	0.01	0.01	0.15	0.31
Deoxygenated / oxygenated blood	0.02	0.62	0.02	0.15
Gray / white brain matter	0.03	0.31	0.04	0.34

Separated by means of several invariants:

- ▶ Number of singularities of $\{D = 0\}$ \rightarrow Always 1 for water?
- Structure of $\{D = D' = 0\}$
- Eigenvalues of the linearizations at equilibrium points
- Study of the quadratic approximations at points where the linearization is 0

³Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). 'Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance'. In: *Mathematical Control and Related Fields* 3.4, pp. 397–432. ISSN: 2156-8472. DOI: 10.3934/mcrf.2013.3.397.

Classification for the contrast problem

$$\begin{cases} \dot{q_1} &= DF(\gamma_1, \Gamma_1, q_1) - D' G(q_1) \\ \dot{q_2} &= DF(\gamma_2, \Gamma_2, q_2) - D' G(q_2) \end{cases}$$

More complicated

- 4 variables, 4 parameters (~3 by homogeneity)
- Polynomials of high degree

Singularities of $\{D = 0\}$ using Gröbner bases and factorisations/saturations

(After appropriate saturations) the ideal contains

$$\begin{cases} 0 = P_{y_2}(y_2^2, \bullet) \text{ with degree 4 in } y_2^2 \text{ (8 roots)} \\ \bullet y_1 = P_{y_1}(y_2, \bullet) \\ \bullet z_1 = P_{z_1}(y_2, \bullet) \\ \bullet z_2 = P_{z_2}(y_2, \bullet) \\ \vdots \end{cases}$$

 \implies study of the number of roots of P_{y_2} (depending on its leading coefficient and discriminant)

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - ► one hyperplane
 - one quadric
 - one degree 24 surface
 - •
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D = 0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D = 0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - •
- 2 pairs on a curve with many components
- 1 pair on a set of points

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - •
- 2 pairs on a curve with many components
- 1 pair on a set of points

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

Classification in terms of Γ_i , γ_i :

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

Can we get more information? For example, information about real points?

The real roots classification problem: state of the art and contribution

Real Roots Classification problem

Goal: Partition of the parameter space s.t. $\# (\mathcal{V} \cap \mathcal{B} \cap \pi^{-1}(g)) = \text{constant}$

•
$$\mathcal{V} = \{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_2} = 0 \}$$

Bloch ball

Existing tools

- Cylindrical Algebraic Decomposition
- Specific tools for roots classification
- Unable to solve the MRI problem

\rightarrow Can we exploit the determinantal structure?

The real roots classification problem: state of the art and contribution

Real Roots Classification problem

Goal: Partition of the parameter space s.t. $\# (\mathcal{V} \cap \mathcal{B} \cap \pi^{-1}(g)) = \text{constant}$

•
$$\mathcal{V} = \{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_2} = 0 \}$$

B: Bloch ball

Contribution⁴

- Dedicated strategy for the structure
- Refines existing strategies (easy to implement)
- Able to solve the MRI problem

⁴Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and Thibaut Verron (2016). 'Determinantal sets, singularities and application to optimal control in medical imagery'. In: *Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation*. ISSAC '16. Waterloo, Canada

Full classification strategy

- 1. Real Roots Classification \rightarrow limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities
- ► Results obtained with Maple, using the FGb Gröbner basis library for eliminations
- Source code and full results available at mercurey.gforge.inria.fr

Case	# Params	Time for step 1 (direct)	Time for step 1 (new strat.)	Results	Time for step 2	# Points
Water	2	110s	10 s	9 pols. (deg \leq 3)	50 s	1533
General	3	>24 h	2 h	$\begin{array}{ll} \mbox{14 pols.} \\ \mbox{(deg} \leq \mbox{14}) \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \$		10109

- Case of water: 1, 2 or 3 singular points
- General case: 1, 2, 3, 4 or 5 singular points

- Case of water: 1, 2 or 3 singular points
- General case: 1, 2, 3, 4 or 5 singular points

- Case of water: 1, 2 or 3 singular points
- General case: 1, 2, 3, 4 or 5 singular points

Conclusion and perspectives

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives

Algorithmically:

Extension of the algorithms to structures of other invariants

And for the MRI problem:

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- Further studies, e.g. classification according to optimal contrast

Conclusion and perspectives

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives

Algorithmically:

Extension of the algorithms to structures of other invariants

And for the MRI problem:

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- Further studies, e.g. classification according to optimal contrast

Thank you for your attention!