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Polynomial system solving

Polynomial equations
f1(X) = · · ·= fm(X) = 0

Solutions,
e.g. find all the solutions
if finite (dimension 0)

Applications:
I Cryptography
I Physics, industry
I Mathematics. . .

I Numerical: give approximations of
the solutions
I Newton’s method
I Homotopy continuation method

I Symbolic: give exact solutions
I Gröbner bases
I Resultant method
I Triangular sets
I Geometric resolution



Computing Gröbner bases for generic systems: the normal strategy

Gröbner basis algorithms (e.g. F5)

I Compute a basis by iteratively
building and reducing matrices
of polynomials of same degree

I Normal strategy: perform
lowest-degree reductions first

I Degree = indicator of progress
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I Definition: reduction resulting in a lower degree polynomial
I Example: X · (Y −1)−Y · (X −1) = XY −YX +Y −X
I Consequence: “next d” < d +1

Regular sequences =⇒ algorithmic regularity!

I F5-criterion: no reduction to zero in F5 (⇐⇒ all matrices have full-rank)
for regular sequences

I Degree falls ⇐⇒ Reduction to zero of the highest degree components

 Regularity in the affine sense = regularity of the highest degree components

This notion depends on the homogeneous structure!
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Strategy and complexity for generic homogeneous systems

F(X1, . . . ,Xn)

GREVLEX basis

LEX basis

Buchberger
F4
F5
. . .

FGLM

[Buchberger 1976]
[Faugère 1999]
[Faugère 2002]

[Faugère, Gianni, Lazard and Mora 1993]

Homogeneous, generic, with total degree (d1, . . . ,dn)
(zero-dimensional)

Highest degree ∼ # of reduction steps

= dreg ≤
n

∑
i=1

(di −1)+1

Size of the matrix at degree d =

(
n+d−1

d

)

Number of solutions = ∏
n
i=1 di (Bézout bound)
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The weighted homogeneous structure: an example (1)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

0 =


41518
33900
8840

22855
29081

X 16
5 +


49874
32136
34252
24932
11782

X 8
1 +


45709
10698
45336
26076
55993

X 7
1 X2 +


46659
59796
38267
39647
27683

X 6
1 X 2

2 +


32367
23164
64111
63692
29095

X 5
1 X 3

2 +


37627
25182
59951
60422
11080

X 4
1 X 4

2 +


27200
38476
28698
5708
47718

X 3
1 X 5

2 +


64271
43542
57950
52276
9739

X 2
1 X 6

2 +


49159
11328
33520
65039
27178

X1X 7
2 +


59456
49518
46071
49716
33760

X 8
2 +


17060
60912
64907
61073
37208

X 7
1 X3 +


55016
15550
19633
28147
25442

X 6
1 X2X3 +


31264
26817
35757
43106
44133

X 5
1 X 2

2 X3 +


38258
44188
46688
55434
64632

X 4
1 X 3

2 X3 +


19475
52270
9282

51171
17150

X 3
1 X 4

2 X3 +


4467

31828
34222
30753
37662

X 2
1 X 5

2 X3 + 2063 smaller monomials

Goal: compute a Gröbner basis

Normal strategy (total degree):
I Non generic
I Non regular in the affine sense
I Non regular computation

Alt. strategy: use weights
= substitute Xi ← Xwi

i for W = (w1, . . . ,w5)

What weights?
I W = (1,1,1,1,1): nothing changed
I W = (2,2,1,1,1): better...
I W = (2,2,2,2,1): regular!
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The weighted homogeneous structure: an example (2)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

10 20 30 40
0

20

40

60

Step

Degree
Algorithm F5, step by step

I Without weights:
2 h (37 steps, dreg = 36)

I With W = (2,2,1,1,1):
2 h (46 steps, dreg = 38)

I With W = (2,2,2,2,1):
15 min (29 steps, dreg = 72)



The weighted homogeneous structure: an example (3)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
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The weighted homogeneous structure: an example (4)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
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W -degree
Algorithm F5, step by step

I With W = (1,1,1,1,1):
2 h (37 steps, dreg = 36)

I With W = (2,2,1,1,1):
2 h (46 steps, dreg = 38)

I With W = (2,2,2,2,1):
15 min (29 steps, dreg = 72)



The weighted homogeneous structure: an example (5)
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The weighted homogeneous structure: an example (6)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
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W -degree
Algorithm F5, step by step

I With W = (1,1,1,1,1):
2 h (37 steps, dreg = 36)

I With W = (2,2,1,1,1):
2 h (46 steps, dreg = 38)

I With W = (2,2,2,2,1):
15 min (29 steps, dreg = 72)



The weighted homogeneous structure: an example (6)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

10 20 30 40
0

20

40

60

Step

W -degree
Algorithm F5, step by step

I With W = (1,1,1,1,1):
2 h (37 steps, dreg = 36)

I With W = (2,2,1,1,1):
2 h (46 steps, dreg = 38)

I With W = (2,2,2,2,1):
15 min (29 steps, dreg = 72)

Questions

I Explain the regularity?
I Complexity bounds?
I Why does FGLM become a

bottleneck?



Weighted homogeneous systems: definitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: W = (w1, . . . ,wn) ∈ Nn

Weighted degree (or W -degree): degW (X α1
1 . . .X αn

n ) = ∑
n
i=1 wi αi

Weighted homogeneous polynomial: poly. containing only monomials of same W -degree

→ Example: physical systems: Volume=Area×Height

Weight 3 Weight 2 Weight 1

Given a general (non-weighted homogeneous) system and a system of weights

Computational strategy: weighted homogenize it as in the homogeneous case

Complexity estimates: consider the highest-W -degree components of the system

I Enough to study weighted homogeneous systems
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Main results: strategy and complexity results

F(X1, . . . ,Xn),W

F(Xw1
1 , . . . ,Xwn

n )

W -GREVLEX

basis of F

LEX basis

F5

FGLM

Homogeneous, with total degree (d1, . . . ,dn)

W -Homogeneous, generic,
with W -degree (d1, . . . ,dn)
(zero-dimensional)

W = (w1, . . . ,wn)

Highest W -degree

dW ,reg ≤
n

∑
i=1

(di −1)+1−
n

∑
i=1

(wi −1)+wn−1

Size of the matrix at W -degree d ' 1
∏

n
i=1 wi

(
n+d−1

d

)

Number of solutions =
∏

n
i=1 di

∏
n
i=1 wi

(weighted Bézout bound)



O

( 1
∏

n
i=1 wi

)3
(n+dW ,reg−1

dW ,reg

)3

+n

(
n

∏
i=1

di

)3




Roadmap

Input

I W = (w1, . . . ,wn) system of weights
I F = (f1, . . . , fm) generic sequence of W -homogeneous polynomials

with W -degree (d1, . . . ,dm)

General roadmap:

1. Find a generic property with “good” algorithmic and algebraic consequences
I Regular sequences (dimension 0, m = n)
I Noether position (positive dimension, m ≤ n)
I . . . Semi-regular sequences (dimension 0, m > n)

2. Design new algorithms to take advantage of this structure
I Adapt algorithms for the homogeneous case to the weighted homogeneous case

3. Obtain complexity results for these algorithms
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Regular sequences

Definition
F = (f1, . . . , fm) homo. ∈K[X] is regular iff{

〈F 〉(K[X]
∀i , fi is no zero-divisor in K[X]/〈f1, . . . , fi−1〉

X

Y

X2 +Y 2−1
X −2Y −1

Regular sequences
of homo. polynomials

Generic

Good properties
F5-criterion
Hilbert series
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Regular sequences

Definition
F = (f1, . . . , fm) weighted homo. ∈K[X] is regular iff{

〈F 〉(K[X]
∀i , fi is no zero-divisor in K[X]/〈f1, . . . , fi−1〉

X

Y

X2 +Y 2−1
X −2Y −1

Regular sequences
of W -homo. polynomials

Generic if 6= ∅

Good properties
F5-criterion
Hilbert series



Properties of regular sequences

Hilbert series

HSA/I(T ) =
∞

∑
d=0

(rank defect of the F5 matrix at degree d) ·T d

Properties

For regular sequences of homogeneous polynomials of degree di :

HSA/I(T ) =
(1−T d1) · · ·(1−T dm )

(1−T )n

In zero dimension (m = n):

I Bézout bound on the degree: D = ∏
n
i=1 di

∏
n
i=1 di

∏
n
i=1 wi

I Macaulay bound on the degree of regularity: dreg ≤
n

∑
i=1

(di −1)+1
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Hilbert series

HSA/I(T ) =
∞

∑
d=0

(rank defect of the F5 matrix at W -degree d) ·T d

Properties

For regular sequences of W -homogeneous polynomials of W -degree di :

HSA/I(T ) =
(1−T d1) · · ·(1−T dm )

(1−T w1) · · ·(1−T wn)

In zero dimension (m = n):

I Bézout bound on the degree: D =
∏

n
i=1 di

∏
n
i=1 wi

I Macaulay bound on the degree of regularity: dreg ≤
n

∑
i=1

(di −wi)+ max{wj}



Limitations

Limitations of the regularity

I m < n (positive dimension): no real information
I m = n (zero dimension, complete intersection)

I exact formula for dreg?
I dreg depends on the order of the variables
I Hilbert series: independent from that order

I m > n (e.g. cryptography): no regular sequence

=⇒ Additional properties

I m < n: Noether position
I m = n: simultaneous Noether position
I m > n: semi-regular sequences



Noether position (m < n)

Definition
F = (f1, . . . , fm) ∈K[X1, . . . ,Xn]

is in Noether position iff

(F ,Xm+1, . . . ,Xn) is regular

“Regularity + selected variables”

X

Y X

X

Y X

Properties

I Generic if not empty
I True up to a generic change of coordinates if non-trivial changes exist

(E.g. if 1 = wn | wn−1 | . . . | w1)

I Macaulay bound on dreg: dreg ≤
m

∑
i=1

di −
m

∑
i=1

wi + max
1≤j≤m

{wj}

(only the first m weights matter)



Simultaneous Noether position (m ≤ n)

Noether position = information on what variables are important
⇒ Good property for W -homogeneous systems in general

Definition

F = (f1, . . . , fm) ∈K[X1, . . . ,Xn]

is in simultaneous Noether position iff

(f1, . . . , fj) is in Noether pos. for all j ’s

Properties

I dreg ≤
m

∑
i=1

(di −wi)+wm

I Better to have wm ≤ wj (j 6= m)

Order of the variables wm dreg
Macaulay’s

bound
New bound F5 time (s)

X1 > X2 > X3 > X4 1 210 229 210 101.9

X4 > X3 > X2 > X1 20 220 229 229 255.5

Generic W -homo. system, W -degree (60,60,60,60) w.r.t W = (20,5,5,1)



Overdetermined case (m > n)

Equivalent definitions in the homogeneous case

F = (f1, . . . , fm) ∈K[X1, . . . ,Xn] homogeneous is semi-regular

⇐⇒ ∀k ∈ {1, . . . ,m},∀d ∈ N,( · fk ) : (A/Ik−1)d → (A/Ik−1)d+dk
is full-rank

⇐⇒ ∀k ∈ {1, . . . ,m},HSA/Ik =

⌊
∏

k
i=1(1−T di )

(1−T )n

⌋
+

(truncated at the first coef. ≤ 0)

Properties

I Conjectured to be generic (Fröberg)
I Proved in some cases (ex: m = n+1)

I Practical and theoretical gains
I Asymptotic studies of dreg

No equivalence without hypotheses on the weights

Ex: n = 3, W = (3,2,1), m = 8, D = (6, . . . ,6):⌊
∏

m
i=1(1−T di )

∏
n
i=1(1−T wi )

⌋
+
= 1+T +2T 2 +3T 3 +4T 4 +5T 5−T 6 +0T 7−6T 8 + · · ·

HSA/I = 1+T +2T 2 +3T 3 +4T 4 +5T 5+0T 6 +T 7
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Overdetermined case (m > n)

Equivalent definitions in the weighted homogeneous case

Assume that 1 = wn | wn−1 | . . . | w1.
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⌊
∏

k
i=1(1−T di )
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n
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⌋
+

(truncated at the first coef. ≤ 0)

Properties

I Conjectured to be generic (Fröberg)
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Ex: n = 3, W = (3,2,1), m = 8, D = (6, . . . ,6):⌊
∏

m
i=1(1−T di )
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⌋
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= 1+T +2T 2 +3T 3 +4T 4 +5T 5−T 6 +0T 7−6T 8 + · · ·

HSA/I = 1+T +2T 2 +3T 3 +4T 4 +5T 5+0T 6 +T 7



Roadmap

Input

I W = (w1, . . . ,wn) system of weights
I F = (f1, . . . , fm) generic sequence of W -homogeneous polynomials

with W -degree (d1, . . . ,dm)

General roadmap:

1. Find a generic property with “good” algorithmic and algebraic consequences
I Regular sequences (dimension 0, m = n)
I Noether position (positive dimension, m ≤ n)
I . . . Semi-regular sequences (dimension 0, m > n)

2. Design new algorithms to take advantage of this structure
I Adapt algorithms for the homogeneous case to the weighted homogeneous case

3. Obtain complexity results for these algorithms



Algorithms: from weighted homogeneous to homogeneous

Transformation morphism

homW : (K[X],W -deg) → (K[X],deg)
f 7→ f (Xw1

1 , . . . ,Xwn
n )

I Graded injective morphism
I Sends regular sequences on regular sequences
I S-Pol(homW (f ), homW (g)) = homW (S-Pol(f ,g))

−→ Good behavior w.r.t Gröbner bases

(Quasi-homogeneous) F
Basis of F

w.r.t hom−1
W (≺)

(Homogeneous) homW (F) Basis of homW (F)
w.r.t ≺

Gröbner

Gröbner

homW hom−1
W



Size of the Macaulay matrices

Counting the monomials

I homW (F) lies in an algebra with a lot of useless monomials
I Count them: combinatorial object named Sylvester denumerants

I Result1: asymptotically Nd ∼
#Monomials of total degree d

∏
n
i=1 wi

degX1

degX2

1

1
degX1

degX2

1

1

deg = 42

3

X1→ X2
1

X2→ X3
2

1 monomial
out of 6

1Geir Agnarsson (2002). ‘On the Sylvester denumerants for general restricted partitions’



Adapting the algorithms

Detailed strategy

I F5 algorithm on the homogenized system
I FGLM algorithm on the weighted homogeneous system

Input: F ,W W -GREVLEX

basis of F

homW (F)
=

F(Xw1
1 , . . . ,Xwn

n )

GREVLEX

basis of
homW (F)

F5

homW hom−1
W



Adapting the algorithms

Detailed strategy

I F5 algorithm on the homogenized system
I FGLM algorithm on the weighted homogeneous system

Input: F ,W W -GREVLEX

basis of F
∏

n
i=1 di

∏
n
i=1 wi

solutions

homW (F)
=

F(Xw1
1 , . . . ,Xwn

n )

GREVLEX

basis of
homW (F)

∏
n
i=1 di solutions

F5

homW hom−1
W



Adapting the algorithms

Detailed strategy

I F5 algorithm on the homogenized system
I FGLM algorithm on the weighted homogeneous system

Input: F ,W W -GREVLEX

basis of F
LEX basis

of F

homW (F)
=

F(Xw1
1 , . . . ,Xwn

n )

GREVLEX

basis of
homW (F)

F5

FGLM

homW hom−1
W

(
∏

n
i=1 di

∏
n
i=1 wi

solutions
)



Roadmap

Input

I W = (w1, . . . ,wn) system of weights
I F = (f1, . . . , fm) generic sequence of W -homogeneous polynomials

with W -degree (d1, . . . ,dm)

General roadmap:

1. Find a generic property with “good” algorithmic and algebraic consequences
I Regular sequences (dimension 0, m = n)
I Noether position (positive dimension, m ≤ n)
I . . . Semi-regular sequences (dimension 0, m > n)

2. Design new algorithms to take advantage of this structure
I Adapt algorithms for the homogeneous case to the weighted homogeneous case

3. Obtain complexity results for these algorithms



Complexity

Input

I W = (w1, . . . ,wn)

I F = (f1, . . . , fn) ∈K[X1, . . . ,Xn] generic W -homogeneous

Complexity of F5

(
1

∏
n
i=1 wi

)3(n+dreg−1
dreg

)3

I Asymptotic gain from the
size of the matrices

I Practical gain from the
weighted Macaulay bound (dreg)

Complexity of FGLM

(
1

∏
n
i=1 wi

)3

n

(
n

∏
i=1

di

)3

I Asymptotic gain from the
weighted Bézout bound
(number of solutions)



Benchmarking

F : affine system with a weighted homogeneous structure

fi = ∑
α

cα mα with degW (mα )≤ di

Assumption: the highest W -degree components are regular (e.g. if F is generic)

Direct
strategy F

GREVLEX

basis of F
LEX basis

of F

Quasi-homo.
strategy F

W -GREVLEX

basis of F
LEX basis

of F

homW (F)
=

F(Xw1
1 , . . . ,Xwn

n )

GREVLEX

basis of
homW (F)

F5

FGLM
homW hom−1

W

F5 FGLM



Experimental results

System Normal (s) Weighted (s) Speed-up

DLP Edwards n = 5,
GREVLEX (F5, FGb) 6461.2 935.4 6.9

DLP Edwards n = 5,
GREVLEX (F4, Magma) 56195.0 6044.0 9.3

Invariant relations, Cyclic n = 5,
GREVLEX (F4, Magma) >75000 392.7 >191

Monomial relations, n = 26, m = 52,
GREVLEX (F4, Magma) 14630.6 0.2 73153

DLP Edwards n = 5,
LEX (Sparse-FGLM, FGb) 6835.6 2164.4 3.2

Invariant relations, Cyclic n = 5,
ELIM (F4, Magma) NA 382.5 NA

Monomial relations, n = 26, m = 52,
ELIM (F4, Magma) 17599.5 8054.2 2.2



A run of F4 on an inversion example
Ideal of relations between 50 monomials of degree 2 in 25 variables

0 5 15 25 35

10

20

Step

Degree
W -degree

Algorithm F4, step by step

Standard
Quasi-homogeneous

I 50 equations of (W -)degree 2 in 75 variables
I GREVLEX ordering (e.g. for a 2-step strategy)
I Without weights: 3.9 h (34 steps reaching degree 22)
I With weights: 0.1 s (5 steps reaching W -degree 6)



Conclusion

What we have done

I Theoretical results for weighted homogeneous systems under generic assumptions
I Computational strategy for weighted homogeneous systems
I Complexity results for F5 and FGLM for this strategy

I Bound on the maximal degree reached by the F5 algorithm
I Complexity overall divided by (∏wi)

3

Consequences

I Successfully applied to a cryptographical problem
I Wide range of potential applications

Perspectives

I Affine systems: find the most appropriate system of weights
I Additional structure: weighted homo. for several systems of weights, weights ≤ 0. . .

Thank you for your attention!
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