On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems

Jean-Charles Faugère¹ Mohab Safey El Din¹

Thibaut Verron²

¹Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe POLSYS Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

²Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO

Séminaire Géométrie et Algèbre Effectives, 2 juin 2017

Polynomial system solving

- Numerical: give approximations of the solutions
 - Newton's method
 - Homotopy continuation method
- Symbolic: give exact solutions
 - Gröbner bases
 - Resultant method
 - Triangular sets
 - Geometric resolution

Gröbner basis algorithms (e.g. F₅)

- Compute a basis by iteratively building and reducing matrices of polynomials of same degree
- Normal strategy: perform lowest-degree reductions first
- Degree = indicator of progress

Degree fall?

- Definition: reduction resulting in a lower degree polynomial
- Example: $X \cdot (Y-1) Y \cdot (X-1) = XY YX + Y X$
- ► Consequence: "next *d*" < *d*+1

Regular sequences \implies algorithmic regularity!

- F₅-criterion: no reduction to zero in F₅ (\implies all matrices have full-rank) for regular sequences
- ► Degree falls ⇔ Reduction to zero of the highest degree components

→ Regularity in the affine sense = regularity of the highest degree components

Regular sequences \implies algorithmic regularity!

- \blacktriangleright F5-criterion: no reduction to zero in F5 (\iff all matrices have full-rank) for regular sequences
- ► Degree falls ⇐⇒ Reduction to zero of the highest degree components

→ Regularity in the affine sense = regularity of the highest degree components

This notion depends on the homogeneous structure!

Strategy and complexity for generic homogeneous systems

Strategy and complexity for generic homogeneous systems

The weighted homogeneous structure: an example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

The weighted homogeneous structure: an example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Non generic
- Non regular in the affine sense
- Non regular computation

The weighted homogeneous structure: an example (2)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

The weighted homogeneous structure: an example (3)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Non generic
- Non regular in the affine sense
- Non regular computation

Alt. strategy: use weights

= substitute $X_i \leftarrow X_i^{w_i}$ for $W = (w_1, \ldots, w_5)$

What weights?

- ► W = (1,1,1,1,1): nothing changed
- ▶ *W* = (2,2,1,1,1): better...
- ▶ *W* = (2,2,2,2,1): regular!

The weighted homogeneous structure: an example (3)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Non generic
- Non regular in the affine sense
- Non regular computation

Alt. strategy: use weights

= substitute $X_i \leftarrow X_i^{w_i}$ for $W = (w_1, \ldots, w_5)$

What weights?

- ► W = (1,1,1,1,1): nothing changed
- ► W = (2,2,1,1,1): better...

▶ W = (2,2,2,2,1): regular!

The weighted homogeneous structure: an example (4)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

The weighted homogeneous structure: an example (5)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Non generic
- Non regular in the affine sense
- Non regular computation

Alt. strategy: use weights

= substitute $X_i \leftarrow X_i^{w_i}$ for $W = (w_1, \ldots, w_5)$

What weights?

- ► W = (1,1,1,1,1): nothing changed
- ► W = (2,2,1,1,1): better...
- ► W = (2,2,2,2,1): regular!

The weighted homogeneous structure: an example (6)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

The weighted homogeneous structure: an example (6)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

```
System of weights: W = (w_1, \ldots, w_n) \in \mathbb{N}^n
```

Weighted degree (or *W*-degree): $\deg_W(X_1^{\alpha_1}...X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Weighted homogeneous polynomial: poly. containing only monomials of same W-degree

 \rightarrow Example: physical systems: Volume=Area \times Height

Weight 3 Weight 2 Weight 1

Given a general (non-weighted homogeneous) system and a system of weights

Computational strategy: weighted homogenize it as in the homogeneous case Complexity estimates: consider the highest-*W*-degree components of the system

Enough to study weighted homogeneous systems

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

```
System of weights: W = (w_1, \ldots, w_n) \in \mathbb{N}^n
```

Weighted degree (or *W*-degree): deg_{*W*}($X_1^{\alpha_1} \dots X_n^{\alpha_n}$) = $\sum_{i=1}^n w_i \alpha_i$

Weighted homogeneous polynomial: poly. containing only monomials of same W-degree

 \rightarrow Example: physical systems: Volume=Area \times Height

Weight 3 Weight 2 Weight 1

Given a general (non-weighted homogeneous) system and a system of weights

Computational strategy: weighted homogenize it as in the homogeneous case Complexity estimates: consider the highest-*W*-degree components of the system

Enough to study weighted homogeneous systems

Main results: strategy and complexity results

Roadmap

Input

- $W = (w_1, \ldots, w_n)$ system of weights
- ► F = (f₁,..., f_m) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_m)

General roadmap:

- 1. Find a generic property with "good" algorithmic and algebraic consequences
 - Regular sequences (dimension 0, m = n)
 - ▶ Noether position (positive dimension, *m* ≤ *n*)
 - ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the weighted homogeneous case
- 3. Obtain complexity results for these algorithms

Roadmap

Input

- $W = (w_1, \ldots, w_n)$ system of weights
- ► F = (f₁,..., f_m) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_m)

General roadmap:

- 1. Find a generic property with "good" algorithmic and algebraic consequences
 - Regular sequences (dimension 0, m = n)
 - Noether position (positive dimension, $m \le n$)
 - ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the weighted homogeneous case
- 3. Obtain complexity results for these algorithms

Definition

$$\begin{split} F &= (f_1, \dots, f_m) \text{ homo. } \in \mathbb{K}[\mathbf{X}] \text{ is regular iff} \\ \begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \end{cases} \end{split}$$

Definition

$$\begin{split} F &= (f_1, \dots, f_m) \text{ homo. } \in \mathbb{K}[\mathbf{X}] \text{ is regular iff} \\ \begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases} \end{split}$$

Definition

$$\begin{split} F &= (f_1, \dots, f_m) \text{ weighted homo.} \in \mathbb{K}[\mathbf{X}] \text{ is regular iff} \\ \begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases} \end{split}$$

Properties of regular sequences

Hilbert series

$$HS_{A/I}(T) = \sum_{d=0}^{\infty} (rank \text{ defect of the } F_5 \text{ matrix at degree } d) \cdot T^d$$

Properties

For regular sequences of homogeneous polynomials of degree d_i :

$$HS_{A/I}(T) = \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T)^n}$$

In zero dimension (m = n):

- Bézout bound on the degree: $D = \prod_{i=1}^{n} d_i$
- Macaulay bound on the degree of regularity: $d_{reg} \leq \sum_{i=1}^{n} (d_i 1) + 1$

Hilbert series

$$HS_{A/I}(T) = \sum_{d=0}^{\infty} (rank \text{ defect of the } F_5 \text{ matrix at } W \text{-degree } d) \cdot T^d$$

Properties

For regular sequences of *W*-homogeneous polynomials of *W*-degree d_i :

$$HS_{A/I}(T) = \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{w_1}) \cdots (1 - T^{w_n})}$$

In zero dimension (m = n):

• Bézout bound on the degree: $D = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i}$

• Macaulay bound on the degree of regularity: $d_{reg} \leq \sum_{i=1}^{n} (d_i - w_i) + \max\{w_i\}$

Limitations

Limitations of the regularity

- ► *m* < *n* (positive dimension): no real information
- *m* = *n* (zero dimension, complete intersection)
 - exact formula for d_{reg}?
 - d_{reg} depends on the order of the variables
 - Hilbert series: independent from that order
- ► *m* > *n* (e.g. cryptography): no regular sequence

\Rightarrow Additional properties

- ▶ *m* < *n*: Noether position
- ▶ *m* = *n*: simultaneous Noether position
- ▶ m > n: semi-regular sequences

Noether position (m < n)

Definition

 $F = (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n]$ is in Noether position iff (F, X_{m+1}, \dots, X_n) is regular

"Regularity + selected variables"

Properties

- Generic if not empty
- ► True up to a generic change of coordinates if non-trivial changes exist (E.g. if $1 = w_n | w_{n-1} | ... | w_1$)
- Macaulay bound on d_{reg} : $d_{\text{reg}} \le \sum_{i=1}^{m} d_i \sum_{i=1}^{m} w_i + \max_{1 \le j \le m} \{w_j\}$ (only the first *m* weights matter)

Noether position = information on what variables are important \Rightarrow Good property for *W*-homogeneous systems in general

DefinitionProperties $F = (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n]$
is in simultaneous Noether position iff
 (f_1, \dots, f_j) is in Noether pos. for all j's $d_{reg} \leq \sum_{i=1}^m (d_i - w_i) + w_m$
 \blacktriangleright Better to have $w_m \leq w_j$ $(j \neq m)$

Order of the variables	w _m	d _{reg}	Macaulay's bound	New bound	F ₅ time (s)
$X_1 > X_2 > X_3 > X_4$	1	210	229	210	101.9
$X_4 > X_3 > X_2 > X_1$	20	220	229	229	255.5

Generic W-homo. system, W-degree (60, 60, 60, 60) w.r.t W = (20, 5, 5, 1)

Overdetermined case (m > n)

Equivalent definitions in the homogeneous case

$$\begin{aligned} F &= (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n] \text{ homogeneous is semi-regular} \\ &\iff \forall k \in \{1, \dots, m\}, \forall d \in \mathbb{N}, (\cdot f_k) : (A/I_{k-1})_d \to (A/I_{k-1})_{d+d_k} \text{ is full-rank} \\ &\iff \forall k \in \{1, \dots, m\}, \mathsf{HS}_{A/I_k} = \left\lfloor \frac{\prod_{i=1}^k (1 - T^{d_i})}{(1 - T)^n} \right\rfloor_+ \text{ (truncated at the first coef. } \leq 0) \end{aligned}$$

Properties

- Conjectured to be generic (Fröberg)
- Proved in some cases (ex: m = n + 1)

- Practical and theoretical gains
- Asymptotic studies of dreg

Overdetermined case (m > n)

Equivalent definitions in the weighted homogeneous case? $F = (f_1, ..., f_m) \in \mathbb{K}[X_1, ..., X_n] \text{ W-homogeneous is semi-regular}$ $\stackrel{?}{\iff} \forall k \in \{1, ..., m\}, \forall d \in \mathbb{N}, (\cdot f_k) : (A/I_{k-1})_d \to (A/I_{k-1})_{d+d_k} \text{ is full-rank}$ $\stackrel{?}{\iff} \forall k \in \{1, ..., m\}, \text{HS}_{A/I_k} = \left\lfloor \frac{\prod_{i=1}^k (1 - T^{d_i})}{\prod_{i=1}^n (1 - T^{w_i})} \right\rfloor_+ (\text{truncated at the first coef.} \le 0)$

Properties

- Conjectured to be generic (Fröberg)
- Proved in some cases (ex: m = n + 1)

- Practical and theoretical gains
- Asymptotic studies of d_{reg}

No equivalence without hypotheses on the weights

Ex:
$$n = 3$$
, $W = (3, 2, 1)$, $m = 8$, $D = (6, ..., 6)$:

$$\frac{\prod_{i=1}^{m} (1 - T^{d_i})}{\prod_{i=1}^{n} (1 - T^{w_i})} \bigg|_{+} = 1 + T + 2T^2 + 3T^3 + 4T^4 + 5T^5 - T^6 + 0T^7 - 6T^8 + \cdots$$
$$HS_{A/I} = 1 + T + 2T^2 + 3T^3 + 4T^4 + 5T^5 + 0T^6 + T^7$$

Equivalent definitions in the weighted homogeneous case

Assume that $1 = w_n | w_{n-1} | \dots | w_1$. $F = (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n]$ *W*-homogeneous is semi-regular $\iff \forall k \in \{1, \dots, m\}, \forall d \in \mathbb{N}, (\cdot f_k) : (A/I_{k-1})_d \to (A/I_{k-1})_{d+d_k}$ is full-rank $\iff \forall k \in \{1, \dots, m\}, \mathsf{HS}_{A/I_k} = \left\lfloor \frac{\prod_{i=1}^k (1 - T^{d_i})}{\prod_{i=1}^n (1 - T^{w_i})} \right\rfloor_+$ (truncated at the first coef. ≤ 0)

Properties

F

- Conjectured to be generic (Fröberg)
- Proved in some cases (ex: m = n + 1)

- Practical and theoretical gains
- Asymptotic studies of dreg

No equivalence without hypotheses on the weights

x:
$$n = 3, W = (3, 2, 1), m = 8, D = (6, ..., 6)$$
:

$$\left\lfloor \frac{\prod_{i=1}^{m} (1 - T^{d_i})}{\prod_{i=1}^{n} (1 - T^{w_i})} \right\rfloor_{+} = 1 + T + 2T^2 + 3T^3 + 4T^4 + 5T^5 - T^6 + 0T^7 - 6T^8 + \cdots$$

$$HS_{A/I} = 1 + T + 2T^2 + 3T^3 + 4T^4 + 5T^5 + 0T^6 + T^7$$

Roadmap

Input

- $W = (w_1, \ldots, w_n)$ system of weights
- ► F = (f₁,..., f_m) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_m)

General roadmap:

- 1. Find a generic property with "good" algorithmic and algebraic consequences
 - Regular sequences (dimension 0, m = n)
 - ► Noether position (positive dimension, *m* ≤ *n*)
 - ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the weighted homogeneous case
- 3. Obtain complexity results for these algorithms

Algorithms: from weighted homogeneous to homogeneous

Transformation morphism

$$\begin{array}{rcl} \hom_W : & (\mathbb{K}[\mathbf{X}], W\text{-deg}) & \to & (\mathbb{K}[\mathbf{X}], \text{deg}) \\ & f & \mapsto & f(X_1^{w_1}, \dots, X_n^{w_n}) \end{array}$$

- Graded injective morphism
- Sends regular sequences on regular sequences
- ► S-Pol(hom_W(f), hom_W(g)) = hom_W(S-Pol(f,g))

 \longrightarrow Good behavior w.r.t Gröbner bases

Counting the monomials

- hom_W(F) lies in an algebra with a lot of useless monomials
- Count them: combinatorial object named Sylvester denumerants
- ► Result¹: asymptotically $N_d \sim \frac{\#\text{Monomials of total degree } d}{\prod_{i=1}^n w_i}$

¹Geir Agnarsson (2002). 'On the Sylvester denumerants for general restricted partitions'

Detailed strategy

- F₅ algorithm on the homogenized system
- FGLM algorithm on the weighted homogeneous system

Detailed strategy

- F₅ algorithm on the homogenized system
- FGLM algorithm on the weighted homogeneous system

Detailed strategy

- F₅ algorithm on the homogenized system
- FGLM algorithm on the weighted homogeneous system

Roadmap

Input

- $W = (w_1, \ldots, w_n)$ system of weights
- ► F = (f₁,..., f_m) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_m)

General roadmap:

- 1. Find a generic property with "good" algorithmic and algebraic consequences
 - Regular sequences (dimension 0, m = n)
 - ▶ Noether position (positive dimension, *m* ≤ *n*)
 - ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the weighted homogeneous case
- 3. Obtain complexity results for these algorithms

Complexity

Input

- $W = (w_1, \ldots, w_n)$
- ► $F = (f_1, ..., f_n) \in \mathbb{K}[X_1, ..., X_n]$ generic *W*-homogeneous

Complexity of F₅

$$\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 \binom{n+d_{\text{reg}}-1}{d_{\text{reg}}}^3$$

- Asymptotic gain from the size of the matrices
- Practical gain from the weighted Macaulay bound (d_{reg})

Complexity of FGLM

$$\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 n \left(\prod_{i=1}^{n} d_i\right)^3$$

 Asymptotic gain from the weighted Bézout bound (number of solutions)

Benchmarking

F : affine system with a weighted homogeneous structure

$$f_i = \sum_{lpha} c_{lpha} m_{lpha}$$
 with deg $_W(m_{lpha}) \leq d_i$

Assumption: the highest W-degree components are regular (e.g. if F is generic)

System	Normal (s)	Weighted (s)	Speed-up
DLP Edwards $n = 5$, GREvLEX (F ₅ , FGb)	6461.2	935.4	6.9
DLP Edwards $n = 5$, GREvLEX (F ₄ , Magma)	56195.0	6044.0	9.3
Invariant relations, Cyclic $n = 5$, GREvLEX (F ₄ , Magma)	>75000	392.7	>191
Monomial relations, $n = 26$, $m = 52$, GREVLEX (F ₄ , Magma)	14630.6	0.2	73 1 53
DLP Edwards $n = 5$, LEX (Sparse-FGLM, FGb)	6835.6	2164.4	3.2
Invariant relations, Cyclic $n = 5$, ELIM (F ₄ , Magma)	NA	382.5	NA
Monomial relations, $n = 26$, $m = 52$, ELIM (F ₄ , Magma)	17599.5	8054.2	2.2

A run of F₄ on an inversion example

Ideal of relations between 50 monomials of degree 2 in 25 variables

- ► 50 equations of (W-)degree 2 in 75 variables
- GREVLEX ordering (e.g. for a 2-step strategy)
- Without weights: 3.9 h (34 steps reaching degree 22)
- ▶ With weights: 0.1 s (5 steps reaching W-degree 6)

Conclusion

What we have done

- Theoretical results for weighted homogeneous systems under generic assumptions
- Computational strategy for weighted homogeneous systems
- Complexity results for F₅ and FGLM for this strategy
 - Bound on the maximal degree reached by the F₅ algorithm
 - Complexity overall divided by $(\prod w_i)^3$

Consequences

- Successfully applied to a cryptographical problem
- Wide range of potential applications

Perspectives

- Affine systems: find the most appropriate system of weights
- Additional structure: weighted homo. for several systems of weights, weights $\leq 0...$

Conclusion

What we have done

- Theoretical results for weighted homogeneous systems under generic assumptions
- Computational strategy for weighted homogeneous systems
- Complexity results for F₅ and FGLM for this strategy
 - Bound on the maximal degree reached by the F₅ algorithm
 - Complexity overall divided by $(\prod w_i)^3$

Consequences

- Successfully applied to a cryptographical problem
- Wide range of potential applications

Perspectives

- Affine systems: find the most appropriate system of weights
- ► Additional structure: weighted homo. for several systems of weights, weights ≤ 0...

Thank you for your attention!