Méthodes algébriques pour le contrôle optimal en Imagerie à Résonance Magnétique

Bernard Bonnard^{1,2}Jean-Charles Faugère³Alain Jacquemard¹Jérémy Rouot⁴Mohab Safey El Din³Thibaut Verron⁵

- 1. Université de Bourgogne-Franche Comté, Dijon
- 2. Inria Sophia Antipolis, Équipe McTAO
- 3. UPMC Paris Sorbonne Universités, Inria Paris, CNRS, LIP6, Équipe PolSys
- 4. LAAS, CNRS, Toulouse
- 5. Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO

Séminaire CASYS-MEF, Grenoble

2 mars 2017

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction
- Goal = optimize the contrast = distinguish two biological matters from this measure Example: *in vivo* experiment on a mouse brain (brain vs parietal muscle)¹

Bad contrast (not enhanced)

Good contrast (enhanced)

¹Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction
- Goal = optimize the contrast = distinguish two biological matters from this measure Example: *in vivo* experiment on a mouse brain (brain vs parietal muscle)¹

Bad contrast (not enhanced)

Good contrast (enhanced)

Known methods:

- inject contrast agents to the patient: potentially toxic...
- enhance the contrast dynamically —> optimal control problem

¹Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

Problem and results

Study of optimal control strategy for the MRI

- Optimal control theory: find settings for the MRI device ensuring e.g. good contrast
- Already proved to give better results than implemented heuristics²
- Powerful tools allow to understand the control policies

These questions reduce to algebraic problems

- Invariants of a group action on vector fields
- Algebraic: rank conditions, polynomial equations, eigenvalues...

Contribution: algebraic tools for this workflow

- Demonstrate use of existing tools
- Dedicated strategies for specific problems (real roots classification) adapted to the structure of the systems (determinantal systems)
- These structures extend beyond the MRI problem

²Marc Lapert, Yun Zhang, Martin A. Janich, Steffen J. Glaser and Dominique Sugny (2012). 'Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging'. In: *Scientific Reports* 2.589.

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

The Bloch equations for a single spin

The Bloch equations

$$\begin{cases} \dot{y} = -\Gamma y - uz \\ \dot{z} = \gamma(1-z) + uy \end{cases} \quad \rightsquigarrow \quad \dot{q} = F(\gamma, \Gamma, q) + uG(q)$$

- q = (y, z): state variables
- γ, Γ : relaxation parameters (depend on the biological matter)

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q_1} = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q_2} = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

 $\dot{q}_1 = F(\gamma_1, \Gamma_1, q_1) + uG(q_1)$ $\dot{q}_2 = F(\gamma_2, \Gamma_2, q_2) + uG(q_2)$

• Goal: saturate #1, maximize #2:

 $\begin{cases} \text{Minimize } |(y_1, z_1)| \\ \text{Maximize } |(y_2, z_2)| \end{cases}$

Multi-saturation problem

- Two spins of the same matter: $\Gamma_1 = \Gamma_2 = \Gamma$, $\gamma_1 = \gamma_2 = \gamma$
- Small perturbation on the second spin: F₁ = F₂ = F, G₂ = (1 − ε)G₁
- 2 parameters + ε
- Equations:

 $\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$

Goal: both matters saturated:

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q_1} = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q_2} = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

 $\begin{cases} \dot{q_1} = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q_2} = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$

Goal: saturate #1, maximize #2:

 $\begin{cases} \text{Minimize } |(y_1, z_1)| \\ \text{Maximize } |(y_2, z_2)| \end{cases}$

Multi-saturation problem

- Two spins of the same matter: $\Gamma_1 = \Gamma_2 = \Gamma$, $\gamma_1 = \gamma_2 = \gamma$
- Small perturbation on the second spin: F₁ = F₂ = F, G₂ = (1 − ε)G₁
- 2 parameters + ε
- Equations:

 $\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$

Goal: both matters saturated:

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q_1} = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q_2} = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

 $\begin{cases} \dot{q_1} = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q_2} = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$

Goal: saturate #1, maximize #2:

 $\begin{cases} \text{Minimize } |(y_1, z_1)| \\ \text{Maximize } |(y_2, z_2)| \end{cases}$

Multi-saturation problem

- Two spins of the same matter: $\Gamma_1 = \Gamma_2 = \Gamma$, $\gamma_1 = \gamma_2 = \gamma$
- Small perturbation on the second spin: F₁ = F₂ = F, G₂ = (1 − ε)G₁
- 2 parameters + ɛ
- Equations:

 $\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$

Goal: both matters saturated:

 $\begin{cases} \text{Minimize } |(y_1, z_1)| \\ \text{Minimize } |(y_2, z_2)| \end{cases}$

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

Pontryagin's Maximum principle

Control problem: minimize $C(q(t_f))$ under the constraint $\dot{q} = F(q, u)$ $(q(t) \in \mathbb{R}^n)$

Definition: Hamiltonian system

Introduce multipliers $p = (p_1, ..., p_n) : \mathbb{R} \to \mathbb{R}^n$, the Hamiltonian system associated to the control problem is defined with

$$H(q, p, \boldsymbol{u}) := \langle p, F(q, \boldsymbol{u}) \rangle - C(q(t_f))$$

Pontryagin's Maximum principle

If u is an optimal control, then q, p and u are solutions of

and almost everywhere in t, u(t) maximizes the Hamiltonian:

$$H(q(t), p(t), u(t)) = \max_{v \in [-1, 1]} H(q(t), p(t), v)$$

Pontryagin's Maximum principle

Control problem: minimize $C(q(t_f))$ under the constraint $\dot{q} = F(q, u)$ $(q(t) \in \mathbb{R}^n)$

Definition: Hamiltonian system

Introduce multipliers $p = (p_1, ..., p_n) : \mathbb{R} \to \mathbb{R}^n$, the Hamiltonian system associated to the control problem is defined with

$$H(q, p, u) := \langle p, F(q, u) \rangle - C(q(t_f))$$

Pontryagin's Maximum principle

If *u* is an optimal control, then *q*, *p* and *u* are solutions of

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

and almost everywhere in t, u(t) maximizes the Hamiltonian:

$$H(q(t), p(t), u(t)) = \max_{v \in [-1,1]} H(q(t), p(t), v)$$

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

 $\dot{q} = F(q) + \mathbf{u}G(q)$

Pontryagin's principle, the affine case

The control u maximizes over [-1,1]:

$$H(q,p,u) = H_F(q,p) + uH_G(q,p).$$

Two situations:

- ► $H_G \neq 0 \implies u = \operatorname{sign}(H_G)$: "Bang" arc
- \bullet $H_G = 0 \implies ??'$

Singular trajectories for the Bloch equations

They satisfy $\dot{q} = DF(q) - D'G(q)$ with optimal control $u = \frac{D}{D}$.

D and D' are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

 $\dot{q} = F(q) + \mathbf{u}G(q)$

Pontryagin's principle, the affine case

The control u maximizes over [-1, 1]:

$$H(q,p,\mathbf{u}) = H_F(q,p) + \mathbf{u}H_G(q,p).$$

Two situations:

• $H_G \neq 0 \implies u = \text{sign}(H_G)$: "Bang" arc

$$H_G = 0 \implies ???$$

Singular trajectories for the Bloch equations

They satisfy $\dot{q} = DF(q) - D'G(q)$ with optimal control $u = \frac{D}{D}$.

D and D' are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

 $\dot{q} = F(q) + \mathbf{u}G(q)$

Pontryagin's principle, the affine case

The control u maximizes over [-1, 1]:

$$H(q,p,\mathbf{u}) = H_F(q,p) + \mathbf{u}H_G(q,p).$$

Two situations:

• $H_G \neq 0 \implies u = \operatorname{sign}(H_G)$: "Bang" arc

•
$$H_G = 0 \implies ???$$

In practice one chooses u such that H_G remains 0: Singular arc

 \implies need bifurcation strategies...

Singular trajectories for the Bloch equations

They satisfy $\dot{q} = DF(q) - D'G(q)$ with optimal control $u = \frac{D'}{D}$.

D and D' are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

Study of invariants

Group action on vector fields (F, G)

Control system: $\dot{q} = F(q) + uG(q)$

- Changes of coordinates: $q \leftarrow \varphi(q)$
- Feedback: $\boldsymbol{u} \leftarrow \alpha(q) + \beta(q) \boldsymbol{v}$

Long-term goal: classification of the parameters via invariants of this group action

Figure: Time-minimal saturation for a single spin: left: $2\Gamma < 3\gamma$, right: $2\Gamma \ge 3\gamma$

³Marc Lapert (2011). 'Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaire'. PhD thesis. Université de Bourgogne, Dijon, France.

Group action on vector fields (F, G)

Control system: $\dot{q} = F(q) + uG(q)$

- Changes of coordinates: $q \leftarrow \varphi(q)$
- Feedback: $\boldsymbol{u} \leftarrow \alpha(q) + \beta(q) \boldsymbol{v}$

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

- Hypersurface $\Sigma : \{D = 0\}$
- Singularities of Σ
- Set where F and G are colinear
- ▶ Set where G and [F, G] are colinear
- Equilibrium points: $\{D = D' = 0\}$
- Eigenvalues of the linearized system at equilibrium points (up to a constant)

•

Group action on vector fields (F, G)

Control system: $\dot{q} = F(q) + uG(q)$

- Changes of coordinates: $q \leftarrow \varphi(q)$
- Feedback: $\boldsymbol{u} \leftarrow \alpha(q) + \beta(q) \boldsymbol{v}$

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

- Hypersurface $\Sigma : \{D = 0\}$
- Singularities of Σ
- Set where F and G are colinear
- ▶ Set where G and [F, G] are colinear
- Equilibrium points: $\{D = D' = 0\}$
- Eigenvalues of the linearized system at equilibrium points (up to a constant)

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

Polynomial tools: factorization and elimination

Factorization

- Given $P \in \mathbb{Q}[X_1, \dots, X_n]$, compute $F_i \in \mathbb{K}[X_1, \dots, X_n], \alpha_i \in \mathbb{N}$ such that $P = F_1^{\alpha_1} \cdots F_r^{\alpha_r}$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P} := F_1 \cdots F_r$ has the same zeroes as P

Elimination

- ▶ Given an ideal $I \subset \mathbb{Q}[X_1, ..., X_n]$ and $k \in \{1, ..., n\}$, compute $I \cap \mathbb{Q}[X_{k+1}, ..., X_n]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- ► Ex. saturation: $\langle f_1, \dots, f_r : f^{\infty} \rangle = \langle f_1, \dots, f_r, Uf 1 \rangle \cap \mathbb{K}[X_1, \dots, X_n]$ The roots of this system "are" the roots of f_1, \dots, f_r , minus the zeroes of *f*

Typical example of simplification

If *I* contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by *f*

Polynomial tools: factorization and elimination

Factorization

- Given $P \in \mathbb{Q}[X_1, \dots, X_n]$, compute $F_i \in \mathbb{K}[X_1, \dots, X_n], \alpha_i \in \mathbb{N}$ such that $P = F_1^{\alpha_1} \cdots F_r^{\alpha_r}$
- Very fast, efficiently implemented in most CAS
- **•** Ex. square-free form: $\sqrt{P} := F_1 \cdots F_r$ has the same zeroes as P

Elimination

- ▶ Given an ideal $I \subset \mathbb{Q}[X_1, ..., X_n]$ and $k \in \{1, ..., n\}$, compute $I \cap \mathbb{Q}[X_{k+1}, ..., X_n]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- ► Ex. saturation: $\langle f_1, \ldots, f_r : f^{\infty} \rangle = \langle f_1, \ldots, f_r, Uf 1 \rangle \cap \mathbb{K}[X_1, \ldots, X_n]$ The roots of this system "are" the roots of f_1, \ldots, f_r , minus the zeroes of f

Typical example of simplification

If I contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by *f*

Polynomial tools: factorization and elimination

Factorization

- Given $P \in \mathbb{Q}[X_1, \dots, X_n]$, compute $F_i \in \mathbb{K}[X_1, \dots, X_n], \alpha_i \in \mathbb{N}$ such that $P = F_1^{\alpha_1} \cdots F_r^{\alpha_r}$
- Very fast, efficiently implemented in most CAS
- **•** Ex. square-free form: $\sqrt{P} := F_1 \cdots F_r$ has the same zeroes as P

Elimination

- ▶ Given an ideal $I \subset \mathbb{Q}[X_1, ..., X_n]$ and $k \in \{1, ..., n\}$, compute $I \cap \mathbb{Q}[X_{k+1}, ..., X_n]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- ► Ex. saturation: $\langle f_1, \dots, f_r : f^{\infty} \rangle = \langle f_1, \dots, f_r, Uf 1 \rangle \cap \mathbb{K}[X_1, \dots, X_n]$ The roots of this system "are" the roots of f_1, \dots, f_r , minus the zeroes of *f*

Typical example of simplification

- If *I* contains P = fg, we can split the study into:
 - 1. the roots of $I + \langle f \rangle$
 - 2. the roots of $I + \langle g \rangle$ saturated by *f*

Examples for multi-saturation

.

$$\begin{cases} \dot{q}_1 = DF(\gamma, \Gamma, q_1) - D'G(q_1) \\ \dot{q}_2 = DF(\gamma, \Gamma, q_2) - D'(1 - \varepsilon)G(q_2) \end{cases}$$

Singularities of $\{D = 0\}$

North pole

► Line defined by
$$\begin{cases} y_1 = (1 - \varepsilon)y_2 \\ z_1 = z_2 = z_S := \frac{\gamma}{2(\Gamma - \gamma)} \end{cases}$$
 (cf. the horizontal line for a single spin)

Equilibrium points D = D' = 0

- Horizontal plane $z_1 = z_2 = z_S = \frac{\gamma}{2(\Gamma \gamma)}$
- Vertical line $y_1 = y_2 = 0, z_1 = z_2$
- 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!

Study of 4 experimental cases:

Matter #1 / # 2	γ1	Γ ₁	γ2	Γ2
Water / cerebrospinal fluid	0.01	0.01	0.02	0.10
Water / fat	0.01	0.01	0.15	0.31
Deoxygenated / oxygenated blood	0.02	0.62	0.02	0.15
Gray / white brain matter	0.03	0.31	0.04	0.34

Separated by means of several invariants:

- Number of singularities of $\{D = 0\}$
- Structure of $\{D = D' = 0\}$
- Eigenvalues of the linearizations at equilibrium points
- Study of the quadratic approximations at points where the linearization is 0

⁴Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). 'Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance'. In: *Mathematical Control and Related Fields* 3.4, pp. 397–432. ISSN: 2156-8472. DOI: 10.3934/mcrf.2013.3.397.

Classification for the contrast problem

$$\begin{cases} \dot{q_1} = DF(\gamma_1, \Gamma_1, q_1) - D' G(q_1) \\ \dot{q_2} = DF(\gamma_2, \Gamma_2, q_2) - D' G(q_2) \end{cases}$$

More complicated

- 4 variables, 4 parameters (~3 by homogeneity)
- Polynomials of high degree

Singularities of $\{D = 0\}$ using Gröbner bases and factorisations/saturations

(After appropriate saturations) the ideal contains

$$\begin{cases} 0 = P_{y_2}(y_2^2, \bullet) \text{ with degree 4 in } y_2^2 \text{ (8 roots)} \\ \bullet y_1 = P_{y_1}(y_2, \bullet) \\ \bullet z_1 = P_{z_1}(y_2, \bullet) \\ \bullet z_2 = P_{z_2}(y_2, \bullet) \\ \vdots \end{cases}$$

 \implies study of the number of roots of P_{y_2} (depending on its leading coefficient and discriminant)

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - •
- 2 pairs on a curve with many components
- 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - •
- 2 pairs on a curve with many components
- 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → −y_i)

Classification in terms of Γ_i , γ_i :

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- 1 pair on a set of points

Can we get more information? For example, information about real points?

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

- Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial z_2} = \frac{\partial D}{\partial z_2} = 0$
- ► Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

- Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial v_1} = \frac{\partial D}{\partial z_2} = \frac{\partial D}{\partial z_2} = 0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

- Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial v_1} = \frac{\partial D}{\partial v_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

- Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial v_1} = \frac{\partial D}{\partial z_2} = \frac{\partial D}{\partial z_2} = 0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

- Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial v_1} = \frac{\partial D}{\partial z_2} = \frac{\partial D}{\partial z_2} = 0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

Main results

- Dedicated strategy for real roots classification for determinantal systems
- Can use existing tools for elimination
- Main refinements:
 - Rank stratification
 - Incidence varieties

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

Main results

- Dedicated strategy for real roots classification for determinantal systems
- Can use existing tools for elimination
- Main refinements:
 - Rank stratification
 - Incidence varieties
- Faster than general algorithms:
 - 10 s in the case of water
 - 4 h in the general case
- Results for the application
 - Full classification
 - In the case of water: 1, 2 or 3 singularities
 - In the general case: 1, 2, 3, 4 or 5 singularities

In our case, the only points where the number of roots may change are projections of:

In our case, the only points where the number of roots may change are projections of:

 \blacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain

In our case, the only points where the number of roots may change are projections of:

- \blacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}

In our case, the only points where the number of roots may change are projections of:

- \blacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}
- \blacktriangleright singular points of ${\cal V}$

In our case, the only points where the number of roots may change are projections of:

- points where \mathcal{V} meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}

• singular points of
$${\cal V}$$

$$=: \mathcal{K}(\pi, \mathcal{V})$$

We want to compute $P \in \mathbb{Q}[G]$ with $P \neq 0$ and P vanishing at all these points

Intersection with the border

For each inequality f > 0 defining \mathcal{B}

- 1. Add f = 0 to the equations of \mathcal{V}
- 2. Compute the image of the variety through π (eliminate X)

Determinantal systems

- $A = k \times k$ -matrix filled with polynomials in *n* variables **X** and *t* parameters **G**
- $1 \le r < k$ target rank
- Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system:
$$\mathcal{V} = \{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0 \}$$

 \implies In terms of determinantal systems: $n = 4, k = 4, r = 3, \mathcal{V} = \mathcal{K}(\pi, V_{\leq r}(M))$

Determinantal systems

- $A = k \times k$ -matrix filled with polynomials in *n* variables **X** and *t* parameters **G**
- $1 \le r < k$ target rank
- Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system:
$$\mathcal{V} = \{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0 \}$$

 \implies In terms of determinantal systems: $n = 4, k = 4, r = 3, \mathcal{V} = \mathcal{K}(\pi, V_{\leq r}(M))$

For a generic matrix A with the same parameters

- $V_{\leq r}(A)$ equidimensional with codimension $(k-r)^2$
- Sing(V_{≤r}(A)) = V_{≤r-1}(M), t-equidimensional
- Crit(π , $V_{\leq r}(A)$) has dimension < t
- ► Natural stratification : $K(\pi, V_{\leq r}(A)) = \text{Sing}(V_{\leq r}(A)) \cup \text{Crit}(\pi, V_{\leq r}(A))$

Determinantal systems

- $A = k \times k$ -matrix filled with polynomials in *n* variables **X** and *t* parameters **G**
- $1 \le r < k$ target rank
- Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system:
$$\mathcal{V} = \{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0 \}$$

 \implies In terms of determinantal systems: $n = 4, k = 4, r = 3, \mathcal{V} = \mathcal{K}(\pi, V_{\leq r}(M))$

For our specific matrix M

- $V_{\leq r-1}(M) \subset \mathcal{V}$ (always true)
- $V_{\leq r-1}(M)$ is equidimensional with dimension t
- $\mathcal{V} \smallsetminus V_{\leq r-1}(M)$ has dimension < t
- ► Rank stratification : $\mathcal{V} = (\mathcal{V} \cap V_{\leq r-1}(M)) \cup (\mathcal{V} \setminus V_{\leq r-1}(M))$

Modelization using incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

- Minors: rank(A) $\leq r \iff$ all r + 1-minors of A are 0
- ▶ Incidence system: rank(A) $\leq r \iff \exists L, A \cdot L = 0$ and rank(L) = k r

Minors:

- $\binom{k}{r+1}^2$ equations
- Codimension $(k-r)^2$

Incidence system:

- k(k-r) new variables (entries of the matrix L)
- $(k-r)^2 + k(k-r)$ equations
- Codimension: $(k-r)^2 + k(k-r)$

Modelization using incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

- Minors: rank(A) $\leq r \iff$ all r + 1-minors of A are 0
- ▶ Incidence system: rank(A) $\leq r \iff \exists L, A \cdot L = 0$ and rank(L) = k r

Minors:

- $\binom{k}{r+1}^2$ equations
- Codimension $(k-r)^2$

Incidence system:

- k(k-r) new variables (entries of the matrix L)
- $(k-r)^2 + k(k-r)$ equations
- Codimension: $(k-r)^2 + k(k-r)$

Properties of the incidence system (generically and in our situation)

- It forms a regular sequence (codimension = length)
- It defines a radical ideal

Consequence for the strategy

 $K(\pi, V_{\leq r-1}(M))$ can be computed with the incidence system, using maximal minors of the Jacobian matrix

Application to the contrast problem (benchmarks)

- Computations run on the matrix of the contrast optimization problem
 - Water: $\Gamma_1 = \gamma_1 = 1 \implies 2$ parameters
 - General: $\gamma_1 = 1 \implies 3$ parameters
- Results obtained with Maple
- Source code and full results available at mercurey.gforge.inria.fr

Elimination tool	Water (direct)	Water (det. strat.)	General (direct)	General (det. strat.)
Gröbner bases (FGb)	100 s	10 s	>24 h	$46 \times 200\text{s}$
Gröbner bases (F5)	-	1 s	-	110 s
Regular chains (RegularChains)	1050 s	-	>24 h	$90 \times 200\text{s}$

Results for the contrast problem in the case of water

Finishing the computations:

- 1. Classification algorithm \rightarrow limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities

Finishing the computations:

- 1. Classification algorithm \rightarrow limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities

Finishing the computations:

- 1. Classification algorithm \rightarrow limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives regarding the algorithms

Extensions to other structures:

- Incidence varieties for rectangular matrices
- Non-transverse intersection of determinantal varieties

And back to the dynamical problem

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- Further studies, for example cartography of the best possible contrast (LMI methods)

Thank you for your attention!

Results published in:

Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and Thibaut Verron (2016). 'Determinantal sets, singularities and application to optimal control in medical imagery'. In: Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation. ISSAC '16. Waterloo, Canada