Méthodes algébriques pour le contrôle optimal en Imagerie à Résonance Magnétique

Bernard Bonnard ${ }^{1,2}$ Jean-Charles Faugère ${ }^{3}$ Alain Jacquemard ${ }^{1}$
Jérémy Rouot ${ }^{4} \quad$ Mohab Safey El Din ${ }^{3} \quad$ Thibaut Verron ${ }^{5}$

1. Université de Bourgogne-Franche Comté, Dijon
2. Inria Sophia Antipolis, Équipe McTAO
3. UPMC Paris Sorbonne Universités, Inria Paris, CNRS, LIP6, Équipe PolSys
4. LAAS, CNRS, Toulouse
5. Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO

Séminaire CASYS-MEF, Grenoble
2 mars 2017

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction

Goal $=$ optimize the contrast $=$ distinguish two biological matters from this measure
Example: in vivo experiment on a mouse brain (brain vs parietal muscle) ${ }^{1}$

[^0]
Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction

Goal $=$ optimize the contrast $=$ distinguish two biological matters from this measure Example: in vivo experiment on a mouse brain (brain vs parietal muscle) ${ }^{1}$

Bad contrast (not enhanced)

Good contrast (enhanced)

Known methods:

- inject contrast agents to the patient: potentially toxic...
- enhance the contrast dynamically \Longrightarrow optimal control problem

[^1]
Problem and results

Study of optimal control strategy for the MRI

- Optimal control theory: find settings for the MRI device ensuring e.g. good contrast
- Already proved to give better results than implemented heuristics ${ }^{2}$
- Powerful tools allow to understand the control policies

These questions reduce to algebraic problems

- Invariants of a group action on vector fields
- Algebraic: rank conditions, polynomial equations, eigenvalues...

Contribution: algebraic tools for this workflow

- Demonstrate use of existing tools
- Dedicated strategies for specific problems (real roots classification) adapted to the structure of the systems (determinantal systems)
- These structures extend beyond the MRI problem

[^2]
Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

The Bloch equations for a single spin

The Bloch equations

$$
\left\{\begin{array}{l}
\dot{y}=-\Gamma y-u z \\
\dot{z}=\gamma(1-z)+u y
\end{array} \quad \rightsquigarrow \dot{q}=F(\gamma, \Gamma, q)+u G(q)\right.
$$

- $q=(y, z)$: state variables
- γ, Γ : relaxation parameters (depend on the biological matter)

Physical limitations

- Parameters:

$$
2 \gamma \geq \Gamma>0
$$

- State variables: the Bloch Ball

$$
y^{2}+z^{2} \leq 1
$$

- Control:

$$
-1 \leq u \leq 1
$$

Optimal control problems

$$
\text { Bloch equations for } 2 \text { spins: }\left\{\begin{array}{l}
\dot{q}_{1}=F_{1}\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G_{1}\left(q_{1}\right) \\
\dot{q}_{2}=F_{2}\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G_{2}\left(q_{2}\right)
\end{array}\right.
$$

Multi-saturation problem

- Both spins have the same dynamic: $F_{1}=F_{2}=F, G_{1}=G_{2}=G$
- Equations

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: saturate \#1, maximize \#2:
- Two spins of the same matter:
- Small perturbation on the second spin: $F_{1}=F_{2}=F, G_{2}=(1-\varepsilon) G_{1}$
- 2 narameters $+\varepsilon$
- Equations:

- Goal: both matters saturated:

Optimal control problems

$$
\text { Bloch equations for } 2 \text { spins: }\left\{\begin{array}{l}
\dot{q}_{1}=F_{1}\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G_{1}\left(q_{1}\right) \\
\dot{q}_{2}=F_{2}\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G_{2}\left(q_{2}\right)
\end{array}\right.
$$

Contrast problem

- Two matters, 4 parameters $\gamma_{1}, \Gamma_{1}, \gamma_{2}, \Gamma_{2}$
- Both spins have the same dynamic:

$$
F_{1}=F_{2}=F, G_{1}=G_{2}=G
$$

- Equations

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: saturate \#1, maximize \#2:

$$
\left\{\begin{array}{l}
\text { Minimize }\left|\left(y_{1}, z_{1}\right)\right| \\
\text { Maximize }\left|\left(y_{2}, z_{2}\right)\right|
\end{array}\right.
$$

- Goal: both matters saturated:

Optimal control problems

$$
\text { Bloch equations for } 2 \text { spins: }\left\{\begin{array}{l}
\dot{q}_{1}=F_{1}\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G_{1}\left(q_{1}\right) \\
\dot{q}_{2}=F_{2}\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G_{2}\left(q_{2}\right)
\end{array}\right.
$$

Contrast problem

- Two matters, 4 parameters $\gamma_{1}, \Gamma_{1}, \gamma_{2}, \Gamma_{2}$
- Both spins have the same dynamic:

$$
F_{1}=F_{2}=F, G_{1}=G_{2}=G
$$

- Equations

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)+u G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: saturate \#1, maximize \#2:

$$
\left\{\begin{array}{l}
\text { Minimize }\left|\left(y_{1}, z_{1}\right)\right| \\
\text { Maximize }\left|\left(y_{2}, z_{2}\right)\right|
\end{array}\right.
$$

Multi-saturation problem

- Two spins of the same matter:

$$
\Gamma_{1}=\Gamma_{2}=\Gamma, \gamma_{1}=\gamma_{2}=\gamma
$$

- Small perturbation on the second spin: $F_{1}=F_{2}=F, G_{2}=(1-\varepsilon) G_{1}$
- 2 parameters $+\varepsilon$
- Equations:

$$
\left\{\begin{array}{l}
\dot{q}_{1}=F\left(\gamma, \Gamma, q_{1}\right)+u G\left(q_{1}\right) \\
\dot{q}_{2}=F\left(\gamma, \Gamma, q_{2}\right)+u(1-\varepsilon) G\left(q_{2}\right)
\end{array}\right.
$$

- Goal: both matters saturated:

$$
\left\{\begin{array}{l}
\text { Minimize }\left|\left(y_{1}, z_{1}\right)\right| \\
\text { Minimize }\left|\left(y_{2}, z_{2}\right)\right|
\end{array}\right.
$$

Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

Pontryagin's Maximum principle

Control problem: minimize $C\left(q\left(t_{f}\right)\right)$ under the constraint $\dot{q}=F(q, u)\left(q(t) \in \mathbb{R}^{n}\right)$

Definition: Hamiltonian system

Introduce multipliers $p=\left(p_{1}, \ldots, p_{n}\right): \mathbb{R} \rightarrow \mathbb{R}^{n}$, the Hamiltonian system associated to the control problem is defined with

$$
H(q, p, u):=\langle p, F(q, u)\rangle-C\left(q\left(t_{f}\right)\right)
$$

and almost everywhere in $t, u(t)$ maximizes the Hamiltonian:

Pontryagin's Maximum principle

Control problem: minimize $C\left(q\left(t_{f}\right)\right)$ under the constraint $\dot{q}=F(q, u)\left(q(t) \in \mathbb{R}^{n}\right)$

Definition: Hamiltonian system

Introduce multipliers $p=\left(p_{1}, \ldots, p_{n}\right): \mathbb{R} \rightarrow \mathbb{R}^{n}$, the Hamiltonian system associated to the control problem is defined with

$$
H(q, p, u):=\langle p, F(q, u)\rangle-C\left(q\left(t_{f}\right)\right)
$$

Pontryagin's Maximum principle

If u is an optimal control, then q, p and u are solutions of

$$
\left\{\begin{array}{l}
\dot{q}=\frac{\partial H}{\partial p} \\
\dot{p}=-\frac{\partial H}{\partial q}
\end{array}\right.
$$

and almost everywhere in $t, u(t)$ maximizes the Hamiltonian:

$$
H(q(t), p(t), u(t))=\max _{v \in[-1,1]} H(q(t), p(t), v)
$$

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

$$
\dot{q}=F(q)+u G(q)
$$

Pontryagin's principle, the affine case

The contral u mavimizes ovor [-1 11.

$$
H(q, p, u)=H_{F}(q, p)+u H_{G}(q, p) .
$$

Two situations:

- $H_{G} \neq 0 \Longrightarrow u=\operatorname{sign}\left(H_{G}\right)$: "Bang" arc

Singular trajectories for the Bloch equations
They satisfy $\dot{q}=D F(q)-D^{\prime} G(q)$ with optimal control $u=\frac{D^{\prime}}{D}$
D and D^{\prime} are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

$$
\dot{q}=F(q)+u G(q)
$$

Pontryagin's principle, the affine case
The control u maximizes over $[-1,1]$:

$$
H(q, p, u)=H_{F}(q, p)+u H_{G}(q, p)
$$

Two situations:

- $H_{G} \neq 0 \Longrightarrow u=\operatorname{sign}\left(H_{G}\right)$: "Bang" arc
- $H_{G}=0 \Longrightarrow$???

Singular trajectories for the Bloch equations
They satisfy $\dot{q}=D F(q)-D^{\prime} G(q)$ with optimal control $u=\frac{D}{D}$

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

$$
\dot{q}=F(q)+u G(q)
$$

Pontryagin's principle, the affine case

The control u maximizes over $[-1,1]$:

$$
H(q, p, u)=H_{F}(q, p)+u H_{G}(q, p)
$$

Two situations:

- $H_{G} \neq 0 \Longrightarrow u=\operatorname{sign}\left(H_{G}\right)$: "Bang" arc
- $H_{G}=0 \Longrightarrow$???

In practice one chooses u such that H_{G} remains 0: Singular arc
\Longrightarrow need bifurcation strategies...

Singular trajectories for the Bloch equations

They satisfy $\dot{q}=D F(q)-D^{\prime} G(q)$ with optimal control $u=\frac{D^{\prime}}{D}$.
D and D^{\prime} are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

Study of invariants

Group action on vector fields (F, G)

$$
\text { Control system: } \dot{q}=F(q)+u G(q)
$$

- Changes of coordinates: $q \leftarrow \varphi(q)$
- Feedback: $u \leftarrow \alpha(q)+\beta(q) v$

Long-term goal: classification of the parameters via invariants of this group action

Example: control of a single spin ${ }^{3}$

Figure: Time-minimal saturation for a single spin: left: $2 \Gamma<3 \gamma$, right: $2 \Gamma \geq 3 \gamma$

[^3]
Study of invariants

Group action on vector fields (F, G)

Control system: $\dot{q}=F(q)+u G(q)$

- Changes of coordinates: $q \leftarrow \varphi(q)$
- Feedback: $u \leftarrow \alpha(q)+\beta(q) v$

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

- Hypersurface $\Sigma:\{D=0\}$
- Singularities of Σ
- Set where F and G are colinear
- Set where G and $[F, G]$ are colinear
- Equilibrium points: $\left\{D=D^{\prime}=0\right\}$
- Eigenvalues of the linearized system at equilibrium points (up to a constant)

Study of invariants

Group action on vector fields (F, G)

Control system: $\dot{q}=F(q)+u G(q)$

- Changes of coordinates: $q \leftarrow \varphi(q)$
- Feedback: $u \leftarrow \alpha(q)+\beta(q) v$

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

- Hypersurface $\Sigma:\{D=0\}$
- Singularities of Σ
- Set where F and G are colinear
- Set where G and $[F, G]$ are colinear
- Equilibrium points: $\left\{D=D^{\prime}=0\right\}$
- Eigenvalues of the linearized system at equilibrium points (up to a constant)

Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

Polynomial tools: factorization and elimination

Factorization

- Given $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$, compute $F_{i} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right], \alpha_{i} \in \mathbb{N}$ such that $P=F_{1}^{\alpha_{1}} \ldots F_{r}^{\alpha_{r}}$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P}:=F_{1} \ldots F_{r}$ has the same zeroes as P
\square
- Computationally expensive, many different tools: resultants, Gröbner bases.
\square
The roots of this system "are" the roots of f_{1}, \ldots, f_{r}, minus the zeroes of f

If I contains $P=f g$, we can split the study into:
\square
2. the roots of $I+\langle g\rangle$ saturated by f

Polynomial tools: factorization and elimination

Factorization

- Given $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$, compute $F_{i} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right], \alpha_{i} \in \mathbb{N}$ such that $P=F_{1}^{\alpha_{1}} \ldots F_{r}^{\alpha_{r}}$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P}:=F_{1} \cdots F_{r}$ has the same zeroes as P

Elimination

- Given an ideal $I \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $k \in\{1, \ldots, n\}$, compute $I \cap \mathbb{Q}\left[X_{k+1}, \ldots, X_{n}\right]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: $\left\langle f_{1}, \ldots, f_{r}: f^{\infty}\right\rangle=\left\langle f_{1}, \ldots, f_{r}, U f-1\right\rangle \cap \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ The roots of this system "are" the roots of f_{1}, \ldots, f_{r}, minus the zeroes of f

If $/$ contains $P=f g$, we can split the study into:
\qquad

Polynomial tools: factorization and elimination

Factorization

- Given $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$, compute $F_{i} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right], \alpha_{i} \in \mathbb{N}$ such that $P=F_{1}^{\alpha_{1}} \ldots F_{r}^{\alpha_{r}}$
- Very fast, efficiently implemented in most CAS
- Ex. square-free form: $\sqrt{P}:=F_{1} \cdots F_{r}$ has the same zeroes as P

Elimination

- Given an ideal $I \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $k \in\{1, \ldots, n\}$, compute $I \cap \mathbb{Q}\left[X_{k+1}, \ldots, X_{n}\right]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: $\left\langle f_{1}, \ldots, f_{r}: f^{\infty}\right\rangle=\left\langle f_{1}, \ldots, f_{r}, U f-1\right\rangle \cap \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ The roots of this system "are" the roots of f_{1}, \ldots, f_{r}, minus the zeroes of f

Typical example of simplification

If I contains $P=f g$, we can split the study into:

1. the roots of $I+\langle f\rangle$
2. the roots of $I+\langle g\rangle$ saturated by f

Examples for multi-saturation

$$
\left\{\begin{array}{l}
\dot{q}_{1}=D F\left(\gamma, \Gamma, q_{1}\right)-D^{\prime} G\left(q_{1}\right) \\
\dot{q}_{2}=D F\left(\gamma, \Gamma, q_{2}\right)-D^{\prime}(1-\varepsilon) G\left(q_{2}\right)
\end{array}\right.
$$

Singularities of $\{D=0\}$

- North pole
- Line defined by $\left\{\begin{array}{l}y_{1}=(1-\varepsilon) y_{2} \\ z_{1}=z_{2}=z_{S}:=\frac{\gamma}{2(\Gamma-\gamma)} \quad \text { (cf. the horizontal line for a single spin) }\end{array}\right.$

Equilibrium points $D=D^{\prime}=0$

- Horizontal plane $z_{1}=z_{2}=z_{S}=\frac{\gamma}{2(\Gamma-\gamma)}$
- Vertical line $y_{1}=y_{2}=0, z_{1}=z_{2}$
- 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!

Previous results for the contrast problem ${ }^{4}$

Study of 4 experimental cases:

Matter \#1 / \# 2	γ_{1}	Γ_{1}	γ_{2}	Γ_{2}
Water / cerebrospinal fluid	0.01	0.01	0.02	0.10
Water / fat	0.01	0.01	0.15	0.31
Deoxygenated / oxygenated blood	0.02	0.62	0.02	0.15
Gray / white brain matter	0.03	0.31	0.04	0.34

Separated by means of several invariants:

- Number of singularities of $\{D=0\}$
- Structure of $\left\{D=D^{\prime}=0\right\}$
- Eigenvalues of the linearizations at equilibrium points
- Study of the quadratic approximations at points where the linearization is 0

[^4]
Classification for the contrast problem

$$
\left\{\begin{array}{l}
\dot{q}_{1}=D F\left(\gamma_{1}, \Gamma_{1}, q_{1}\right)-D^{\prime} G\left(q_{1}\right) \\
\dot{q_{2}}=D F\left(\gamma_{2}, \Gamma_{2}, q_{2}\right)-D^{\prime} G\left(q_{2}\right)
\end{array}\right.
$$

More complicated

- 4 variables, 4 parameters ($\rightsquigarrow 3$ by homogeneity)
- Polynomials of high degree

Singularities of $\{D=0\}$ using Gröbner bases and factorisations/saturations

(After appropriate saturations) the ideal contains

$$
\begin{cases}0 & =P_{y_{2}}\left(y_{2}^{2}, \bullet\right) \text { with degree } 4 \text { in } y_{2}^{2} \text { (8 roots) } \\ \bullet y_{1} & =P_{y_{1}}\left(y_{2}, \bullet\right) \\ \bullet z_{1} & =P_{z_{1}}\left(y_{2}, \bullet\right) \\ \bullet z_{2} & =P_{z_{2}}\left(y_{2}, \bullet\right) \\ & \vdots\end{cases}
$$

\Longrightarrow study of the number of roots of $P_{y_{2}}$ (depending on its leading coefficient and discriminant)

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface
with several components:
- one hvperplane
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters

- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one hyperplane
- one quadric
- one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- 2 pairs on a curve with many components
- 1 pair on a set of points

Singularities of $\{D=0\}$ for the contrast problem: first results

Properties:

- Finite number of singularities for each value of the parameters

- Singularities come in pairs: invariant under $\left(y_{i} \mapsto-y_{i}\right)$
Classification in terms of Γ_{i}, γ_{i} :
- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
- one quadric
- 2 pairs on a curve with many components
- 1 pair on a set of points

Can we get more information? For example, information about real points?

Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- Pontryagin's Maximurn principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

The goal : real roots classification

- Algebraic variety \mathcal{V} : singularities of $\Sigma: D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_{i}^{2}+z_{i}^{2}-1 \leq 0$

The goal : real roots classification

- Algebraic variety \mathcal{V} : singularities of $\Sigma: D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_{i}^{2}+z_{i}^{2}-1 \leq 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

The goal : real roots classification

- Algebraic variety \mathcal{V} : singularities of $\Sigma: D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_{i}^{2}+z_{i}^{2}-1 \leq 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

The goal : real roots classification

- Algebraic variety \mathcal{V} : singularities of $\Sigma: D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_{i}^{2}+z_{i}^{2}-1 \leq 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

The goal : real roots classification

- Algebraic variety \mathcal{V} : singularities of $\Sigma: D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0$
- Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_{i}^{2}+z_{i}^{2}-1 \leq 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition
Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001
Lazard, Rouillier, 2007

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition
Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001
Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
- 1050 s in the case of water ($\gamma_{1}=\Gamma_{1}=1 \rightarrow 2$ parameters)
- $>24 \mathrm{~h}$ in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition
Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001
Lazard, Rouillier, 2007

Main results

- Dedicated strategy for real roots classification for determinantal systems
- Can use existing tools for elimination
- Main refinements:
- Rank stratification
- Incidence varieties

Problem

- None of these algorithms can solve the problem efficiently:
- 1050 s in the case of water ($\gamma_{1}=\Gamma_{1}=1 \rightarrow 2$ parameters)
- $>24 \mathrm{~h}$ in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition
Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001
Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
- 1050 s in the case of water ($\gamma_{1}=\Gamma_{1}=1 \rightarrow 2$ parameters)
- $>24 \mathrm{~h}$ in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

Main results

- Dedicated strategy for real roots classification for determinantal systems
- Can use existing tools for elimination
- Main refinements:
- Rank stratification
- Incidence varieties
- Faster than general algorithms:
- 10 s in the case of water
- 4 h in the general case
- Results for the application
- Full classification
- In the case of water: 1, 2 or 3 singularities
- In the general case: 1, 2, 3, 4 or 5 singularities

General strategy for the real roots classification problem

In our case, the only points where the number of roots may change are projections of:

General strategy for the real roots classification problem

In our case, the only points where the number of roots may change are projections of:

- points where \mathcal{V} meets the border of the semi-algebraic domain

General strategy for the real roots classification problem

In our case, the only points where the number of roots may change are projections of:

- points where \mathcal{V} meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}

General strategy for the real roots classification problem

In our case, the only points where the number of roots may change are projections of:

- points where \mathcal{V} meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}
- singular points of \mathcal{V}

General strategy for the real roots classification problem

In our case, the only points where the number of roots may change are projections of:

- points where \mathcal{V} meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}
- singular points of \mathcal{V}

$$
\}=: K(\pi, \mathcal{V})
$$

We want to compute $P \in \mathbb{Q}[G]$ with $P \neq 0$ and P vanishing at all these points

General strategy for the real roots classification problem

Intersection with the border

For each inequality $f>0$ defining \mathcal{B}

1. Add $f=0$ to the equations of \mathcal{V}
2. Compute the image of the variety through π (eliminate \mathbf{X})

General strategy for the real roots classification problem

Critical and singular points

$$
\begin{aligned}
(\mathrm{X}, \mathrm{G}) & \in K(\pi, \mathcal{V}) \\
& \Longleftrightarrow \operatorname{Jac}(F, \mathrm{X}) \text { has rank }<d
\end{aligned}
$$

Requirements

- F generates the ideal of $\mathcal{V} \Longrightarrow$ radical
- \mathcal{V} is equidimensional with codimension d

Properties of determinantal systems

Determinantal systems

- $A=k \times k$-matrix filled with polynomials in n variables \mathbf{X} and t parameters G
- $1 \leq r<k$ target rank
- Determinantal variety: $V_{\leq r}(A)=\{(\mathbf{x}, \mathbf{g}): \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system: $\mathcal{V}=\left\{D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0\right\}$
\Longrightarrow In terms of determinantal systems: $n=4, k=4, r=3, \mathcal{V}=K\left(\pi, V_{\leq r}(M)\right)$

Properties of determinantal systems

Determinantal systems

- $A=k \times k$-matrix filled with polynomials in n variables \mathbf{X} and t parameters G
- $1 \leq r<k$ target rank
- Determinantal variety: $V_{\leq r}(A)=\{(\mathbf{x}, \mathbf{g}): \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system: $\mathcal{V}=\left\{D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0\right\}$
\Longrightarrow In terms of determinantal systems: $n=4, k=4, r=3, \mathcal{V}=K\left(\pi, V_{\leq r}(M)\right)$

For a generic matrix A with the same parameters

- $V_{\leq r}(A)$ equidimensional with codimension $(k-r)^{2}$
- $\operatorname{Sing}\left(V_{\leq r}(A)\right)=V_{\leq r-1}(M), t$-equidimensional
- $\operatorname{Crit}\left(\pi, V_{\leq r}(A)\right)$ has dimension $<t$
- Natural stratification : $K\left(\pi, V_{\leq r}(A)\right)=\operatorname{Sing}\left(V_{\leq r}(A)\right) \cup \operatorname{Crit}\left(\pi, V_{\leq r}(A)\right)$

Properties of determinantal systems

Determinantal systems

- $A=k \times k$-matrix filled with polynomials in n variables \mathbf{X} and t parameters G
- $1 \leq r<k$ target rank
- Determinantal variety: $V_{\leq r}(A)=\{(\mathbf{x}, \mathbf{g}): \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system: $\mathcal{V}=\left\{D=\frac{\partial D}{\partial y_{1}}=\frac{\partial D}{\partial y_{2}}=\frac{\partial D}{\partial z_{1}}=\frac{\partial D}{\partial z_{2}}=0\right\}$
\Longrightarrow In terms of determinantal systems: $n=4, k=4, r=3, \mathcal{V}=K\left(\pi, V_{\leq r}(M)\right)$

For our specific matrix M

- $V_{\leq r-1}(M) \subset \mathcal{V}$ (always true)
- $V_{\leq r-1}(M)$ is equidimensional with dimension t
- $\mathcal{V} \backslash V_{\leq r-1}(M)$ has dimension $<t$
- Rank stratification : $\mathcal{V}=\left(\mathcal{V} \cap V_{\leq r-1}(M)\right) \cup\left(\mathcal{V} \backslash V_{\leq r-1}(M)\right)$

Rank stratification

Rank stratification

Rank stratification

Rank stratification

Modelization using incidence varieties

Reminder: $k=$ size of the matrix; $r=$ target rank

Possible modelizations for determinantal varieties

- Minors: $\operatorname{rank}(A) \leq r \Longleftrightarrow$ all $r+1$-minors of A are 0
- Incidence system: $\operatorname{rank}(A) \leq r \Longleftrightarrow \exists L, A \cdot L=0$ and $\operatorname{rank}(L)=k-r$

Minors:

- $\binom{k}{r+1}^{2}$ equations
- Codimension $(k-r)^{2}$

Incidence system:

- $k(k-r)$ new variables (entries of the matrix L)
- $(k-r)^{2}+k(k-r)$ equations
- Codimension: $(k-r)^{2}+k(k-r)$

Modelization using incidence varieties

Reminder: $k=$ size of the matrix; $r=$ target rank

Possible modelizations for determinantal varieties

- Minors: $\operatorname{rank}(A) \leq r \Longleftrightarrow$ all $r+1$-minors of A are 0
- Incidence system: $\operatorname{rank}(A) \leq r \Longleftrightarrow \exists L, A \cdot L=0$ and $\operatorname{rank}(L)=k-r$

Minors:

- $\binom{k}{r+1}^{2}$ equations
- Codimension $(k-r)^{2}$

Incidence system:

- $k(k-r)$ new variables (entries of the matrix L)
- $(k-r)^{2}+k(k-r)$ equations
- Codimension: $(k-r)^{2}+k(k-r)$

Properties of the incidence system (generically and in our situation)

- It forms a regular sequence (codimension = length)
- It defines a radical ideal

Consequence for the strategy
$K\left(\pi, V_{\leq r-1}(M)\right)$ can be computed with the incidence system, using maximal minors of the Jacobian matrix

Application to the contrast problem (benchmarks)

- Computations run on the matrix of the contrast optimization problem
- Water: $\Gamma_{1}=\gamma_{1}=1 \Longrightarrow 2$ parameters
- General: $\gamma_{1}=1 \Longrightarrow 3$ parameters
- Results obtained with Maple
- Source code and full results available at mercurey.gforge.inria.fr

Elimination tool	Water (direct)	Water (det. strat.)	General (direct)	General (det. strat.)
Gröbner bases (FGb)	100 s	10 s	$>24 \mathrm{~h}$	$46 \times 200 \mathrm{~s}$
Gröbner bases (F5)	-	1 s	-	110 s
Regular chains (RegularChains)	1050 s	-	$>24 \mathrm{~h}$	$90 \times 200 \mathrm{~s}$

Results for the contrast problem in the case of water

Finishing the computations:

1. Classification algorithm \rightarrow limits of the cells
2. Cylindrical algebraic decomposition \rightarrow points in each cell
3. Gröbner basis computations for each point \rightarrow count of singularities

Results for the contrast problem in the case of water (zoom in)

Finishing the computations:

1. Classification algorithm \rightarrow limits of the cells
2. Cylindrical algebraic decomposition \rightarrow points in each cell
3. Gröbner basis computations for each point \rightarrow count of singularities

Results for the contrast problem in the case of water (zoom out)

Finishing the computations:

1. Classification algorithm \rightarrow limits of the cells
2. Cylindrical algebraic decomposition \rightarrow points in each cell
3. Gröbner basis computations for each point \rightarrow count of singularities

Conclusion and perspectives

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives regarding the algorithms

Extensions to other structures:

- Incidence varieties for rectangular matrices
- Non-transverse intersection of determinantal varieties

And back to the dynamical problem

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- Further studies, for example cartography of the best possible contrast (LMI methods)

One last word

Thank you for your attention!

Results published in:

- Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and Thibaut Verron (2016). 'Determinantal sets, singularities and application to optimal control in medical imagery'. In: Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation. ISSAC '16. Waterloo, Canada

[^0]: ${ }^{1}$ Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

[^1]: ${ }^{1}$ Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

[^2]: ${ }^{2}$ Marc Lapert, Yun Zhang, Martin A. Janich, Steffen J. Glaser and Dominique Sugny (2012). 'Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging'. In: Scientific Reports 2.589.

[^3]: ${ }^{3}$ Marc Lapert (2011). 'Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaire'. PhD thesis. Université de Bourgogne, Dijon, France.

[^4]: ${ }^{4}$ Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). 'Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance'. In: Mathematical Control and Related Fields 3.4, pp. 397-432. ISSN: 2156-8472. DOI: 10.3934/mcrf . 2013.3.397.

