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Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. Apply a magnetic field to a body

2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure
Example: in vivo experiment on a mouse brain (brain vs parietal muscle)1

Bad contrast (not enhanced) Good contrast (enhanced)

Known methods:
I inject contrast agents to the patient: potentially toxic...
I enhance the contrast dynamically =⇒ optimal control problem

1Éric Van Reeth et al. (2016). ‘Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI’. . In:
Submitted IEEE transactions on medical imaging.
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Problem and results

Study of optimal control strategy for the MRI

I Optimal control theory: find settings for the MRI device ensuring e.g. good contrast
I Already proved to give better results than implemented heuristics2

I Powerful tools allow to understand the control policies

These questions reduce to algebraic problems

I Invariants of a group action on vector fields
I Algebraic: rank conditions, polynomial equations, eigenvalues...

Contribution: algebraic tools for this workflow

I Demonstrate use of existing tools
I Dedicated strategies for specific problems (real roots classification) adapted to the

structure of the systems (determinantal systems)
I These structures extend beyond the MRI problem

2Marc Lapert, Yun Zhang, Martin A. Janich, Steffen J. Glaser and Dominique Sugny (2012). ‘Exploring the Physical
Limits of Saturation Contrast in Magnetic Resonance Imaging’. In: Scientific Reports 2.589.



4

Outline of the talk

1. Context and problem statement
I Magnetic Resonance Imagery
I Physical modelization of the problem

2. Optimal control theory
I Pontryagin’s Maximum principle
I Study of singular extremals: algebraic questions

3. General algebraic techniques
I Tools for polynomial systems
I Examples of results

4. Real roots classification for the singularities of determinantal systems
I What is the goal?
I State of the art and main results
I General strategy: what do we need to compute?
I Dedicated strategy for determinantal systems
I Results for the contrast problem

5. Conclusion
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The Bloch equations for a single spin

The Bloch equations

{
ẏ =−Γy−uz
ż = γ(1−z) + uy

 q̇ = F(γ,Γ,q) + uG(q)

I q = (y,z): state variables
I γ,Γ: relaxation parameters (depend on the biological matter)

Physical limitations

I Parameters:

2γ ≥ Γ > 0

I State variables: the Bloch Ball

y2 + z2 ≤ 1

I Control:
−1≤ u ≤ 1

O

N

> ż = γ− γz

<u ≡+1

u ≡ 0
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Optimal control problems

Bloch equations for 2 spins:

{
q̇1 = F1(γ1,Γ1,q1) + uG1(q1)

q̇2 = F2(γ2,Γ2,q2) + uG2(q2)

Contrast problem

I Two matters, 4 parameters
γ1,Γ1,γ2,Γ2

I Both spins have the same dynamic:
F1 = F2 = F , G1 = G2 = G

I Equations{
q̇1 = F(γ1,Γ1,q1) + uG(q1)

q̇2 = F(γ2,Γ2,q2) + uG(q2)

I Goal: saturate #1, maximize #2:{
Minimize |(y1,z1)|
Maximize |(y2,z2)|

Multi-saturation problem

I Two spins of the same matter:
Γ1 = Γ2 = Γ, γ1 = γ2 = γ

I Small perturbation on the second
spin: F1 = F2 = F , G2 = (1− ε)G1

I 2 parameters + ε
I Equations:{

q̇1 = F(γ,Γ,q1) + uG(q1)

q̇2 = F(γ,Γ,q2) + u(1− ε)G(q2)

I Goal: both matters saturated:{
Minimize |(y1,z1)|
Minimize |(y2,z2)|
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Outline of the talk

1. Context and problem statement
I Magnetic Resonance Imagery
I Physical modelization of the problem

2. Optimal control theory
I Pontryagin’s Maximum principle
I Study of singular extremals: algebraic questions

3. General algebraic techniques
I Tools for polynomial systems
I Examples of results

4. Real roots classification for the singularities of determinantal systems
I What is the goal?
I State of the art and main results
I General strategy: what do we need to compute?
I Dedicated strategy for determinantal systems
I Results for the contrast problem

5. Conclusion
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Pontryagin’s Maximum principle

Control problem: minimize C(q(tf )) under the constraint q̇ = F(q,u) (q(t) ∈ Rn)

Definition: Hamiltonian system

Introduce multipliers p = (p1, . . . ,pn) : R→ Rn, the Hamiltonian system associated to the
control problem is defined with

H(q,p,u) := 〈p,F(q,u)〉−C(q(tf ))

Pontryagin’s Maximum principle

If u is an optimal control, then q, p and u are solutions of{
q̇ = ∂H

∂p

ṗ = − ∂H
∂q

and almost everywhere in t , u(t) maximizes the Hamiltonian:

H(q(t),p(t),u(t)) = max
v∈[−1,1]

H(q(t),p(t),v)
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The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

q̇ = F(q) + uG(q)

Pontryagin’s principle, the affine case

The control u maximizes over [−1,1]:

H(q,p,u) = HF (q,p) + uHG(q,p).

Two situations:
I HG 6= 0 =⇒ u = sign(HG): “Bang” arc
I HG = 0 =⇒ ???

In practice one chooses u such that HG remains 0: Singular arc

=⇒ need bifurcation strategies...

Singular trajectories for the Bloch equations

They satisfy q̇ = D F(q)−D′G(q) with optimal control u =
D′

D
.

D and D′ are determinants of 4×4 matrices (Cramer’s rule for a linear system in p)
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Study of invariants

Group action on vector fields (F ,G)

Control system: q̇ = F(q) + uG(q)

I Changes of coordinates: q← ϕ(q)

I Feedback: u← α(q) + β (q)v

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

I Hypersurface Σ : {D = 0}
I Singularities of Σ

I Set where F and G are colinear
I Set where G and [F ,G] are colinear
I Equilibrium points: {D = D′ = 0}
I Eigenvalues of the linearized system at equilibrium points (up to a constant)
I . . .
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Example: control of a single spin3

0

N

S

+1

+1
Bridge

N

0

Inversion

Figure: Time-minimal saturation for a single spin: left: 2Γ < 3γ , right: 2Γ≥ 3γ

3Marc Lapert (2011). ‘Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la
Résonance Magnétique Nucléaire à la physique moléculaire’. PhD thesis. Université de Bourgogne, Dijon, France.
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Outline of the talk

1. Context and problem statement
I Magnetic Resonance Imagery
I Physical modelization of the problem

2. Optimal control theory
I Pontryagin’s Maximum principle
I Study of singular extremals: algebraic questions

3. General algebraic techniques
I Tools for polynomial systems
I Examples of results

4. Real roots classification for the singularities of determinantal systems
I What is the goal?
I State of the art and main results
I General strategy: what do we need to compute?
I Dedicated strategy for determinantal systems
I Results for the contrast problem

5. Conclusion
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Polynomial tools: factorization and elimination

Factorization

I Given P ∈Q[X1, . . . ,Xn], compute Fi ∈K[X1, . . . ,Xn],αi ∈ N such that P = F α1
1 · · ·F

αr
r

I Very fast, efficiently implemented in most CAS
I Ex. square-free form:

√
P := F1 · · ·Fr has the same zeroes as P

Elimination

I Given an ideal I ⊂Q[X1, . . . ,Xn] and k ∈ {1, . . . ,n}, compute I∩Q[Xk+1, . . . ,Xn]

I Computationally expensive, many different tools: resultants, Gröbner bases...
I Ex. saturation: 〈f1, . . . , fr : f ∞〉= 〈f1, . . . , fr ,U f −1〉∩K[X1, . . . ,Xn]

The roots of this system “are” the roots of f1, . . . , fr , minus the zeroes of f

Typical example of simplification

If I contains P = fg, we can split the study into:

1. the roots of I + 〈f 〉
2. the roots of I + 〈g〉 saturated by f
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Examples for multi-saturation

{
q̇1 = D F(γ,Γ,q1)−D′G(q1)

q̇2 = D F(γ,Γ,q2)−D′ (1− ε)G(q2)

Singularities of {D = 0}

I North pole

I Line defined by

{
y1 = (1− ε)y2

z1 = z2 = zS := γ
2(Γ−γ)

(cf. the horizontal line for a single spin)

Equilibrium points D = D′ = 0

I Horizontal plane z1 = z2 = zS = γ
2(Γ−γ)

I Vertical line y1 = y2 = 0, z1 = z2

I 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!
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Previous results for the contrast problem4

Study of 4 experimental cases:

Matter #1 / # 2 γ1 Γ1 γ2 Γ2

Water / cerebrospinal fluid 0.01 0.01 0.02 0.10

Water / fat 0.01 0.01 0.15 0.31

Deoxygenated / oxygenated blood 0.02 0.62 0.02 0.15

Gray / white brain matter 0.03 0.31 0.04 0.34

Separated by means of several invariants:
I Number of singularities of {D = 0}
I Structure of {D = D′ = 0}
I Eigenvalues of the linearizations at equilibrium points
I Study of the quadratic approximations at points where the linearization is 0

4Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). ‘Algebraic geometric
classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance’. In: Mathematical
Control and Related Fields 3.4, pp. 397–432. ISSN: 2156-8472. DOI: 10.3934/mcrf.2013.3.397.

http://dx.doi.org/10.3934/mcrf.2013.3.397
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Classification for the contrast problem

{
q̇1 = D F(γ1,Γ1,q1)−D′G(q1)

q̇2 = D F(γ2,Γ2,q2)−D′G(q2)

More complicated

I 4 variables, 4 parameters ( 3 by homogeneity)
I Polynomials of high degree

Singularities of {D = 0} using Gröbner bases and factorisations/saturations

(After appropriate saturations) the ideal contains

0 = Py2 (y2
2 ,•) with degree 4 in y2

2 (8 roots)
•y1 = Py1 (y2,•)
•z1 = Pz1 (y2,•)
•z2 = Pz2 (y2,•)

...

=⇒ study of the number of roots of Py2 (depending on its leading coefficient and
discriminant)
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Singularities of {D = 0} for the contrast problem: first results

(γ1 = 1)

Properties:
I Finite number of singularities

for each value of the parameters
I Singularities come in pairs:

invariant under (yi 7→ −yi )

Classification in terms of Γi ,γi :
I Generically: 4 pairs of singularities
I 3 pairs on a surface

with several components:
I one hyperplane
I one quadric
I one degree 24 surface
I . . .

I 2 pairs on a curve with many
components

I 1 pair on a set of points

Can we get more information? For example, information about real points?
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The goal : real roots classification

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

I Algebraic variety V : singularities of Σ: D = ∂D
∂y1

= ∂D
∂y2

= ∂D
∂z1

= ∂D
∂z2

= 0

I Semi-algebraic constraints B: Bloch Ball y2
i + z2

i −1≤ 0

Goal
Partition of the parameter space depending on the number of points of V ∩B above
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State of the art and main results

State of the art:
I General tool: Cylindrical Algebraic

Decomposition
Collins, 1975

I Specific tools for roots classification
Yang, Hou, Xia, 2001
Lazard, Rouillier, 2007

Problem

I None of these algorithms can solve the
problem efficiently:
I 1050 s in the case of water

(γ1 = Γ1 = 1→ 2 parameters)
I > 24h in the general case

(3 parameters)

I Can we exploit the determinantal
structure to go further?
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General strategy for the real roots classification problem

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

In our case, the only points where the number of roots may change are projections of:

I points where V meets the border of the semi-algebraic domain
I critical points of π restricted to V
I singular points of V

We want to compute P ∈Q[G] with P 6= 0 and P vanishing at all these points

=: K (π,V)



22

General strategy for the real roots classification problem

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

meeting the border

In our case, the only points where the number of roots may change are projections of:
I points where V meets the border of the semi-algebraic domain

I critical points of π restricted to V
I singular points of V

We want to compute P ∈Q[G] with P 6= 0 and P vanishing at all these points

=: K (π,V)



22

General strategy for the real roots classification problem

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

meeting the border

critical

In our case, the only points where the number of roots may change are projections of:
I points where V meets the border of the semi-algebraic domain
I critical points of π restricted to V

I singular points of V
We want to compute P ∈Q[G] with P 6= 0 and P vanishing at all these points

=: K (π,V)



22

General strategy for the real roots classification problem

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

meeting the border

critical

singular

In our case, the only points where the number of roots may change are projections of:
I points where V meets the border of the semi-algebraic domain
I critical points of π restricted to V
I singular points of V

We want to compute P ∈Q[G] with P 6= 0 and P vanishing at all these points

=: K (π,V)



22

General strategy for the real roots classification problem

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

meeting the border

critical

singular

In our case, the only points where the number of roots may change are projections of:
I points where V meets the border of the semi-algebraic domain
I critical points of π restricted to V
I singular points of V

We want to compute P ∈Q[G] with P 6= 0 and P vanishing at all these points

=: K (π,V)



22

General strategy for the real roots classification problem
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meeting the border

critical

singular

Intersection with the border

For each inequality f > 0 defining B
1. Add f = 0 to the equations of V
2. Compute the image of the variety through π

(eliminate X)
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General strategy for the real roots classification problem

G

X

π

B

3 4 2 2 2

V1

2

3

1

2

3

1

2

X

meeting the border

critical

singular

Critical and singular points

(X,G) ∈ K (π,V)

⇐⇒ Jac(F ,X) has rank < d

Requirements

I F generates the ideal of V =⇒ radical
I V is equidimensional with codimension d
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Properties of determinantal systems

Determinantal systems

I A = k ×k -matrix filled with polynomials in n variables X and t parameters G
I 1≤ r < k target rank
I Determinantal variety: V≤r (A) = {(x,g) : rank(A(x,g))≤ r}

Our system: V = {D = ∂D
∂y1

= ∂D
∂y2

= ∂D
∂z1

= ∂D
∂z2

= 0}

=⇒ In terms of determinantal systems: n = 4, k = 4, r = 3, V = K (π,V≤r (M))

For our specific matrix M

I V≤r−1(M)⊂ V (always true)
I V≤r−1(M) is equidimensional with dimension t
I VrV≤r−1(M) has dimension < t
I Rank stratification : V = (V ∩V≤r−1(M))∪ (VrV≤r−1(M))
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For a generic matrix A with the same parameters

I V≤r (A) equidimensional with codimension (k − r)2

I Sing(V≤r (A)) = V≤r−1(M), t-equidimensional
I Crit(π,V≤r (A)) has dimension < t
I Natural stratification : K (π,V≤r (A)) = Sing(V≤r (A))∪Crit(π,V≤r (A))
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Rank stratification

V = K (π,V≤r (M))

K (π,V)

P ∈ C[G]

s.t. π(K (π,V))⊂ V (P)

V1 := V ∩V=r (M) V2 := V ∩V≤r−1(M)

P1 ∈ C[G]
s.t. π(K (π,V1))⊂ V (P1)

P2 ∈ C[G]
s.t. π(K (π,V2)⊂ V (P2)

K (π,V1) K (π,V2)

(M has rank exactly r ) (M has rank < r )

⊂ Cn×Ct

⊂ Ct

dim. < t = V≤r−1(M)
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Modelization using incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

I Minors: rank(A)≤ r ⇐⇒ all r + 1-minors of A are 0
I Incidence system: rank(A)≤ r ⇐⇒ ∃L,A ·L = 0 and rank(L) = k − r

Minors:
I
( k

r+1

)2
equations

I Codimension (k − r)2

Incidence system:
I k(k − r) new variables (entries of the matrix L)
I (k − r)2 + k(k − r) equations
I Codimension: (k − r)2 + k(k − r)

Properties of the incidence system (generically and in our situation)

I It forms a regular sequence (codimension = length)
I It defines a radical ideal

Consequence for the strategy

K (π,V≤r−1(M)) can be computed with the incidence system,
using maximal minors of the Jacobian matrix
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Application to the contrast problem (benchmarks)

I Computations run on the matrix of the contrast optimization problem
I Water: Γ1 = γ1 = 1 =⇒ 2 parameters
I General: γ1 = 1 =⇒ 3 parameters

I Results obtained with Maple
I Source code and full results available at mercurey.gforge.inria.fr

Elimination tool
Water

(direct)
Water

(det. strat.)
General
(direct)

General
(det. strat.)

Gröbner bases
(FGb)

100 s 10 s >24 h 46×200s

Gröbner bases
(F5)

- 1 s - 110 s

Regular chains
(RegularChains)

1050 s - >24 h 90×200s

mercurey.gforge.inria.fr
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Results for the contrast problem in the case of water
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Finishing the computations:

1. Classification algorithm→ limits of the cells

2. Cylindrical algebraic decomposition→ points in each cell

3. Gröbner basis computations for each point→ count of singularities
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Results for the contrast problem in the case of water (zoom in)
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Results for the contrast problem in the case of water (zoom out)
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Conclusion and perspectives

This work

I Applications of algebraic methods to an optimal control problem
I Dedicated strategy for a classification problem related to one of the invariants

Perspectives regarding the algorithms

Extensions to other structures:
I Incidence varieties for rectangular matrices
I Non-transverse intersection of determinantal varieties

And back to the dynamical problem

I Direct relation between the invariants and properties of the trajectories?
I Is it possible to lift some approximations?
I Further studies, for example cartography of the best possible contrast (LMI methods)
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One last word

Thank you for your attention!

Results published in:
I Bernard Bonnard, Jean-Charles Faugère, Alain Jacquemard, Mohab Safey El Din and

Thibaut Verron (2016). ‘Determinantal sets, singularities and application to optimal control in
medical imagery’. In: Proceedings of the 2016 International Symposium on Symbolic and
Algebraic Computation. ISSAC ’16. Waterloo, Canada
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