Régularisation du calcul de bases de Gröbner pour des systèmes avec poids et déterminantiels, et application en imagerie médicale

Thibaut VERRON

sous la direction de Jean-Charles FAUGÈRE et Mohab SAFEY EL DIN

Sorbonne Universités, UPMC Univ. Paris 06, LIP6, CNRS, Inria Paris, Équipe POLSYS

26 septembre 2016

An example: the contrast optimisation problem (1)

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure

Bad contrast (not enhanced)

Good contrast (enhanced)

Known methods:

- inject contrast agents to the patient: potentially toxic
- make the field variable to exploit differences in relaxation times
 - \implies requires finding optimal settings depending on the relaxation parameters

An example: the contrast optimisation problem (1)

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction
- Goal = optimize the contrast = distinguish two biological matters from this measure

Bad contrast (not enhanced)

Examples of relaxation parameters:

- Water: $\gamma = \Gamma = 0.01 \text{ Hz}$
- Cerebrospinal fluid: $\gamma = 0.02 \text{ Hz}, \Gamma = 0.10 \text{ Hz}$
- Fat: $\gamma = 0.15 \,\text{Hz}, \Gamma = 0.31 \,\text{Hz}$

Good contrast (enhanced)

An example: the contrast optimization problem (2)

The Bloch equations

 $\begin{cases} \dot{y}_i = -\Gamma_i y_i - uz_i \\ \dot{z}_i = -\gamma_i (1 - z_i) + uy_i \end{cases}$ (i = 1, 2)

Saturation method

Find a path u so that after some time T:

- matter 1 saturated: $y_1(T) = z_1(T) = 0$
- matter 2 "maximized": $|(y_2(T), z_2(T))|$ maximal

Glaser's team, 2012 : method from Optimal Control Theory

An example: the contrast optimization problem (2)

The Bloch equations

 $\begin{cases} \dot{y}_i &= -\Gamma_i y_i - u z_i \\ \dot{z}_i &= -\gamma_i (1 - z_i) + u y_i \end{cases}$

(i = 1, 2)

Saturation method

Find a path u so that after some time T:

- matter 1 saturated: $y_1(T) = z_1(T) = 0$
- matter 2 "maximized": $|(y_2(T), z_2(T))|$ maximal

Glaser's team, 2012 : method from Optimal Control Theory

Problem: analyze the behavior of the control through algebraic invariants

- ► Example: singular feedback control: $u = \frac{D'}{D}$ (*D*, *D'* polynomials in *y*,*z*,*γ*, Γ)
- ▶ Geometry of {D = 0}?
- Study of the singular points of $\{D = 0\}$ for each value of $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Examples with water: Bonnard, Chyba, Jacquemard, Marriott, 2013
 - Water/Fat : 1 point
 Water/Cerebrospinal fluid : 1 point

An example: the contrast optimization problem (2)

The Bloch equations

 $\begin{cases} \dot{y}_i &= -\Gamma_i y_i - u z_i \\ \dot{z}_i &= -\gamma_i (1 - z_i) + u y_i \end{cases}$

(i = 1, 2)

Saturation method

Find a path u so that after some time T:

- matter 1 saturated: $y_1(T) = z_1(T) = 0$
- matter 2 "maximized": $|(y_2(T), z_2(T))|$ maximal

Glaser's team, 2012 : method from Optimal Control Theory

Problem: analyze the behavior of the control through algebraic invariants

- Example: singular feedback control: $u = \frac{D'}{D} (D, D' \text{ polynomials in } y, z, \gamma, \Gamma)$
- ▶ Geometry of {D = 0}?
- Study of the singular points of $\{D = 0\}$ for each value of $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- Examples with water: Bonnard, Chyba, Jacquemard, Marriott, 2013
 - Water/Fat : 1 point
 Water/Cerebrospinal fluid : 1 point

Questions

- Is there always 1 singular point for pairs involving water?
- If not, how many possible families of parameters can we separate?

An example: the polynomial system

The D invariant: equation of a determinantal system

• 4 variables ($y_i, z_i, i = 1, 2$) and 4 parameters ($\gamma_i, \Gamma_i, i = 1, 2$)

$$\bullet M := \begin{pmatrix} -\Gamma_1 y_1 & -z_1 - 1 & -\Gamma_1 + (\gamma_1 - \Gamma_1) z_1 & (2\gamma_1 - 2\Gamma_1) y_1 \\ -\gamma_1 z_1 & y_1 & (\gamma_1 - \Gamma_1) y_1 & 2\Gamma_1 - \gamma_1 - (2\gamma_1 - 2\Gamma_1) z_1 \\ -\Gamma_2 y_2 & -z_2 - 1 & -\Gamma_2 + (\gamma_2 - \Gamma_2) z_2 & (2\gamma_2 - 2\Gamma_2) y_2 \\ -\gamma_2 z_2 & y_2 & (\gamma_2 - \Gamma_2) y_2 & 2\Gamma_2 - \gamma_2 - (2\gamma_2 - 2\Gamma_2) z_2 \end{pmatrix}$$

► D := determinant(M)

$$\blacktriangleright \mathcal{V} := \left\{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_2} = 0 \right\}$$

Polynomial system with structure

- 5 equations of degree 8 in 4 variables and 4 parameters
- Homogeneous in γ , Γ , degree 4
- Roots of D = points where M has rank \leq 3 : determinantal system
- V = singularities and critical points of the determinantal variety

Polynomial system solving

Applications:

- Control theory
- Cryptography
- Physics, industry...

Polynomial equations $f_1(\mathbf{X}) = \cdots = f_m(\mathbf{X}) = 0$

Examples of solutions:

. . .

- Find all the solutions if finite (dimension 0)
- Eliminate some variables (dimension > 0)

- Numerical: give approximations of the solutions
 - Newton's method
 - Homotopy continuation method
- Symbolic: give exact solutions
 - Gröbner bases
 - Resultant method
 - Triangular sets
 - Geometric resolution

Difficult problem

- Exponential number of solutions
- NP-complete (at least on finite fields)

What is the goal for the contrast optimization example?

The D invariant: equation of a determinantal system

► 4 variables (y_i , z_i , i = 1, 2) and 4 parameters (γ_i , Γ_i , i = 1, 2)

$$M := \begin{pmatrix} -\Gamma_1 y_1 & -z_1 - 1 & -\Gamma_1 + (\gamma_1 - \Gamma_1) z_1 & (2\gamma_1 - 2\Gamma_1) y_1 \\ -\gamma_1 z_1 & y_1 & (\gamma_1 - \Gamma_1) y_1 & 2\Gamma_1 - \gamma_1 - (2\gamma_1 - 2\Gamma_1) z_1 \\ -\Gamma_2 y_2 & -z_2 - 1 & -\Gamma_2 + (\gamma_2 - \Gamma_2) z_2 & (2\gamma_2 - 2\Gamma_2) y_2 \\ -\gamma_2 z_2 & y_2 & (\gamma_2 - \Gamma_2) y_2 & 2\Gamma_2 - \gamma_2 - (2\gamma_2 - 2\Gamma_2) z_2 \end{pmatrix}$$

D := determinant(M)

$$\blacktriangleright \mathcal{V} := \left\{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_2} = 0 \right\}$$

The Bloch ball: inequalities ~> real semi-algebraic set

•
$$\mathcal{B} := \left\{ \begin{array}{c} y_1^2 + (z_1 + 1)^2 \leq 1 \\ y_2^2 + (z_2 + 1)^2 \leq 1 \end{array} \right\}$$

Goal

Classification of the real fibers of the projection of $\mathcal{V}\cap\mathcal{B}$ onto the parameter space

Goal

Goal

Goal

Goal

Goal

- Projections (\leftarrow elimination)
- Critical and singular points

Algebraic regularity

How to compute singular and critical points?

- Definition depends on the dimension of irreducible components
- Can be characterized globally using the rank of a truncated Jacobian matrix for equidimensional varieties

Definition

$$\begin{split} \mathbf{F} &= (f_1, \dots, f_m) \in \mathbb{K}[\mathbf{X}] \text{ is regular iff} \\ \begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases} \end{split}$$

Properties

- F regular $\iff V(F)$ equidimensional with dimension n-m
- Regular sequences are generic (amongst systems of polynomials with given degrees)

Algebraic regularity

How to compute singular and critical points?

- Definition depends on the dimension of irreducible components
- Can be characterized globally using the rank of a truncated Jacobian matrix for equidimensional varieties

Definition

$$\begin{split} F &= (f_1, \dots, f_m) \in \mathbb{K}[\mathbf{X}] \text{ is regular iff} \\ \begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases} \end{split}$$

Properties

- F regular $\iff V(F)$ equidimensional with dimension n-m
- Regular sequences are generic (amongst systems of polynomials with given degrees)

Gröbner basis algorithms (e.g. F₅)

- Compute a basis by iteratively building and reducing matrices of polynomials of same degree
- Normal strategy: perform lowest-degree reductions first
- Degree = indicator of progress

Gröbner basis algorithms (e.g. F₅)

- Compute a basis by iteratively building and reducing matrices of polynomials of same degree
- Normal strategy: perform lowest-degree reductions first
- Degree = indicator of progress

Degree 10 Regular Gröbner basis algorithms (e.g. F₅) Irregular Compute a basis by iteratively 8 building and reducing matrices of polynomials of same degree 6 Normal strategy: perform lowest-degree reductions first Degree falls 4 Degree = indicator of progress Step

0

2

6

4

8

10

12

Degree fall?

- Definition: reduction resulting in a lower degree polynomial
- Example: $X \cdot (Y-1) Y \cdot (X-1) = XY YX + Y X$
- ► Consequence: "next d" < d+1</p>

Regular sequences \implies algorithmic regularity!

- ▶ F_5 -criterion: no reduction to zero in F_5 (\iff all matrices have full-rank)
- ► Degree falls ⇐⇒ Reduction to zero of the highest degree components

→ Regularity in the affine sense = regularity of the highest degree components

Regular sequences \implies algorithmic regularity!

- ▶ F_5 -criterion: no reduction to zero in F_5 (\iff all matrices have full-rank)
- ► Degree falls ⇐⇒ Reduction to zero of the highest degree components

→ Regularity in the affine sense = regularity of the highest degree components

This notion depends on the homogeneous structure!

Complexity for generic homogeneous systems if n = m

Context and main results

Context and main results

Why the weights? An example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Why the weights? An example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Difficult computation
- Non regular in the affine sense
- Non regular computation

Why the weights? An example (2)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Why the weights? An example (3)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Difficult computation
- Non regular in the affine sense
- Non regular computation

Alt. strategy: use weights

= substitute $X_i \leftarrow X_i^{w_i}$ for $W = (w_1, \ldots, w_5)$

What weights?

- ► W = (1,1,1,1,1): nothing changed
- ▶ *W* = (2,2,1,1,1): better...
- W = (2, 2, 2, 2, 1): regular!

Why the weights? An example (3)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Difficult computation
- Non regular in the affine sense
- Non regular computation

Alt. strategy: use weights

= substitute $X_i \leftarrow X_i^{w_i}$ for $W = (w_1, \ldots, w_5)$

What weights?

- ► W = (1,1,1,1,1): nothing changed
- ▶ W = (2,2,1,1,1): better...

▶ W = (2,2,2,2,1): regular!

Why the weights? An example (4)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Why the weights? An example (5)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Goal: compute a Gröbner basis

Normal strategy (total degree):

- Difficult computation
- Non regular in the affine sense
- Non regular computation

Alt. strategy: use weights

= substitute $X_i \leftarrow X_i^{w_i}$ for $W = (w_1, \ldots, w_5)$

What weights?

- W = (1, 1, 1, 1, 1): nothing changed
- ► W = (2,2,1,1,1): better...
- ▶ W = (2,2,2,2,1): regular!

Why the weights? An example (6)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Why the weights? An example (6)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, \ldots, w_n) \in \mathbb{N}^n$

Weighted degree (or *W*-degree): $\deg_W(X_1^{\alpha_1} \dots X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Weighted homogeneous polynomial: poly. containing only monomials of same W-degree

 \rightarrow Example: physical equations: Volume=Area \times Height

Given a general (non-weighted-homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case Complexity estimates: consider the highest *W*-degree components of the system

Enough to study weighted homogeneous systems

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, \ldots, w_n) \in \mathbb{N}^n$

Weighted degree (or *W*-degree): $\deg_W(X_1^{\alpha_1}...X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Weighted homogeneous polynomial: poly. containing only monomials of same W-degree

 \rightarrow Example: physical equations: Volume = Area × Height

Weight 3 Weight 2 Weight 1

Given a general (non-weighted-homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case Complexity estimates: consider the highest *W*-degree components of the system

Enough to study weighted homogeneous systems

Strategy and complexity for W-homogeneous systems

Why is the strategy correct?

Why is the strategy correct?

Regularity: homogeneous vs W-homogeneous

Properties of regular sequences				
	Homogeneous	W-homogeneous		
F ₅ Criterion?	Yes	Yes		
Generic?	Yes	$lf \neq \varnothing$		
Bézout's bound	$\deg(\langle F\rangle) = \prod_{i=1}^n d_i$	$deg(\langle F angle) = rac{\prod_{i=1}^n d_i}{\prod_{i=1}^n w_i}$		
Macaulay's bound	$d_{\max} \leq \sum_{i=1}^n (d_i - 1) + 1$	$d_{\max} \leq \sum_{i=1}^n (d_i - w_i) + \max\{w_j\}$		
Macaulay's bound reached?	Yes	Not always		

Macaulay's bound requires to know how each variable participates in the computations

Simultaneous Noether position

- " f_1, \ldots, f_i depend on X_1, \ldots, X_i " for all i
- SNP is "as generic as possible" too
- Weighted Macaulay's bound if in SNP: $d_{max} \leq \sum_{i=1}^{n} (d_i w_i) + w_n$

Regularity: homogeneous vs W-homogeneous

Properties of regular sequences				
	Homogeneous	W-homogeneous		
F ₅ Criterion?	Yes	Yes		
Generic?	Yes	$If \neq \varnothing$		
Bézout's bound	$\deg(\langle F\rangle) = \prod_{i=1}^n d_i$	$deg(\langle F angle) = rac{\prod_{i=1}^n d_i}{\prod_{i=1}^n w_i}$		
Macaulay's bound	$d_{\max} \leq \sum_{i=1}^n (d_i - 1) + 1$	$d_{\max} \leq \sum_{i=1}^{n} (d_i - w_i) + \max\{w_j\}$		
Macaulay's bound reached?	Yes	Not always		

Macaulay's bound requires to know how each variable participates in the computations

Simultaneous Noether position • " $f_1, ..., f_i$ depend on $X_1, ..., X_i$ " for all i• SNP is "as generic as possible" too • Weighted Macaulay's bound if in SNP: $d_{max} \leq \sum_{i=1}^{n} (d_i - w_i) + w_n$

Regularity: homogeneous vs W-homogeneous

Properties of regular sequences				
	Homogeneous	W-homogeneous		
F ₅ Criterion?	Yes	Yes		
Generic?	Yes	$If \neq \varnothing$		
Bézout's bound	$\deg(\langle F\rangle) = \prod_{i=1}^n d_i$	$deg(\langle F angle) = rac{\prod_{i=1}^n d_i}{\prod_{i=1}^n w_i}$		
Macaulay's bound	$d_{\max} \leq \sum_{i=1}^n (d_i - 1) + 1$	$d_{\max} \leq \sum_{i=1}^{n} (d_i - w_i) + \max\{w_j\}$		
Macaulay's bound reached?	Yes	Not always		

Macaulay's bound requires to know how each variable participates in the computations

What about FGLM?

Two-step strategy for 0-dimensional systems

- F₅ algorithm on the homogenized system
- FGLM algorithm on the weighted homogeneous system

What about FGLM?

Two-step strategy for 0-dimensional systems

- F₅ algorithm on the homogenized system
- FGLM algorithm on the weighted homogeneous system

What about FGLM?

Two-step strategy for 0-dimensional systems

- F₅ algorithm on the homogenized system
- FGLM algorithm on the weighted homogeneous system

System	Normal (s)	Weighted (s)	Speed-up
DLP Edwards $n = 5$, GREvLEX (F ₅ , FGb)	6461.2	935.4	6.9
DLP Edwards $n = 5$, GREvLEX (F ₄ , Magma)	56195.0	6044.0	9.3
Invariant relations, Cyclic $n = 5$, GREvLEX (F ₄ , Magma)	>75000	392.7	>191
Monomial relations, $n = 26$, $m = 52$, GREVLEX (F ₄ , Magma)	14630.6	0.2	73153
DLP Edwards $n = 5$, LEX (Sparse-FGLM, FGb)	6835.6	2164.4	3.2
Invariant relations, Cyclic $n = 5$, ELIM (F ₄ , Magma)	NA	382.5	NA
Monomial relations, $n = 26$, $m = 52$, ELIM (F ₄ , Magma)	17599.5	8054.2	2.2

Singularities of determinantal systems

Setting for the contrast optimization problem

The D invariant: equation of a determinantal system

• 4 variables (y_i , z_i , i = 1, 2) and 4 parameters (γ_i , Γ_i , i = 1, 2)

$$M := \begin{pmatrix} -\Gamma_1 y_1 & -z_1 - 1 & -\Gamma_1 + (\gamma_1 - \Gamma_1) z_1 & (2\gamma_1 - 2\Gamma_1) y_1 \\ -\gamma_1 z_1 & y_1 & (\gamma_1 - \Gamma_1) y_1 & 2\Gamma_1 - \gamma_1 - (2\gamma_1 - 2\Gamma_1) z_1 \\ -\Gamma_2 y_2 & -z_2 - 1 & -\Gamma_2 + (\gamma_2 - \Gamma_2) z_2 & (2\gamma_2 - 2\Gamma_2) y_2 \\ -\gamma_2 z_2 & y_2 & (\gamma_2 - \Gamma_2) y_2 & 2\Gamma_2 - \gamma_2 - (2\gamma_2 - 2\Gamma_2) z_2 \end{pmatrix}$$

► D := determinant(M)

$$\blacktriangleright \mathcal{V} := \left\{ D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_2} = 0 \right\}$$

The Bloch ball: inequalities ~> real semi-algebraic set

•
$$\mathcal{B} := \left\{ \begin{array}{c} y_1^2 + (z_1 + 1)^2 \leq 1 \\ y_2^2 + (z_2 + 1)^2 \leq 1 \end{array} \right\}$$

Goal

Classification of the real fibers of the projection of $\mathcal{V}\cap\mathcal{B}$ onto the parameter space

State of the art and contributions

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

State of the art and contributions

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

Main results

- Dedicated strategy for real roots classification for determinantal systems
- Can use existing tools for elimination
- Main refinements:
 - Rank stratification
 - Incidence varieties

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

Main results

- Dedicated strategy for real roots classification for determinantal systems
- Can use existing tools for elimination
- Main refinements:
 - Rank stratification
 - Incidence varieties
- Faster than general algorithms:
 - 10 s in the case of water
 - 4 h in the general case
- Results for the application
 - Full classification
 - Answers to the experimental questions for water: there can be 1, 2 or 3 singularities

In our case, the only points where the number of roots may change are projections of:

In our case, the only points where the number of roots may change are projections of:

 \blacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain

In our case, the only points where the number of roots may change are projections of:

- \blacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}

In our case, the only points where the number of roots may change are projections of:

- \blacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}
- singular points of \mathcal{V}

In our case, the only points where the number of roots may change are projections of:

- points where \mathcal{V} meets the border of the semi-algebraic domain
- critical points of π restricted to \mathcal{V}

singular points of
$${\cal V}$$

$$=: \mathcal{K}(\pi, \mathcal{V})$$

We want to compute $P \in \mathbb{Q}[G]$ with $P \neq 0$ and P vanishing at all these points

Intersection with the border

For each inequality f > 0 defining \mathcal{B}

- 1. Add f = 0 to the equations of \mathcal{V}
- 2. Compute the image of the variety through π (eliminate X)

Can we find a regular sequence for F?

Determinantal systems

- $A = k \times k$ -matrix filled with polynomials in *n* variables **X** and *t* parameters **G**
- $1 \le r < k$ target rank
- Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system: $n = 4, k = 4, r = 3, V = K(\pi, V_{\leq r}(M))$

Determinantal systems

- $A = k \times k$ -matrix filled with polynomials in *n* variables **X** and *t* parameters **G**
- $1 \le r < k$ target rank
- Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system: $n = 4, k = 4, r = 3, V = K(\pi, V_{\leq r}(M))$

For a generic matrix A with the same parameters

- $V_{\leq r}(A)$ equidimensional with codimension $(k-r)^2$
- Sing($V_{\leq r}(A)$) = $V_{\leq r-1}(A)$, *t*-equidimensional
- $\operatorname{Crit}(\pi, V_{\leq r}(A))$ has dimension < t
- ► Natural stratification : $K(\pi, V_{\leq r}(A)) = \text{Sing}(V_{\leq r}(A)) \cup \text{Crit}(\pi, V_{\leq r}(A))$

Determinantal systems

- $A = k \times k$ -matrix filled with polynomials in *n* variables **X** and *t* parameters **G**
- $1 \le r < k$ target rank
- Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : \operatorname{rank}(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system: $n = 4, k = 4, r = 3, V = K(\pi, V_{\leq r}(M))$

For our specific matrix M

- $V_{\leq r-1}(M) \subset \mathcal{V}$ (always true)
- $V_{\leq r-1}(M)$ is equidimensional with dimension t
- $\mathcal{V} \setminus V_{\leq r-1}(M)$ has dimension < t
- ▶ Rank stratification : $\mathcal{V} = (\mathcal{V} \cap V_{\leq r-1}(M)) \cup (\mathcal{V} \setminus V_{\leq r-1}(M))$

Change of model: incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

- Minors: rank(A) $\leq r \iff$ all r + 1-minors of A are 0
- ▶ Incidence system: rank(A) $\leq r \iff \exists L, A \cdot L = 0$ and rank(L) = k r

Minors:

- $\binom{k}{r+1}^2$ equations
- Codimension $(k-r)^2$

Incidence system:

- k(k-r) new variables (entries of the matrix L)
- $(k-r)^2 + k(k-r)$ equations
- Codimension: $(k-r)^2 + k(k-r)$

Change of model: incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

- Minors: rank(A) $\leq r \iff$ all r + 1-minors of A are 0
- ▶ Incidence system: rank(A) $\leq r \iff \exists L, A \cdot L = 0$ and rank(L) = k r

Minors:

- $\binom{k}{r+1}^2$ equations
- Codimension $(k-r)^2$

Incidence system:

- k(k-r) new variables (entries of the matrix L)
- $(k-r)^2 + k(k-r)$ equations
- Codimension: $(k-r)^2 + k(k-r)$

Properties of the incidence system (generically and in our situation)

- It forms a regular sequence (codimension = length)
- It defines a radical ideal

Consequence for the strategy

 $K(\pi, V_{\leq r-1}(M))$ can be computed with the incidence system, using maximal minors of the Jacobian matrix

Experimental results: timings

- Computations run on the matrix of the contrast optimization problem
 - Water: $\Gamma_1 = \gamma_1 = 1 \implies 2$ parameters
 - General: $\gamma_1 = 1 \implies 3$ parameters
- Results obtained with Maple
- Source code and full results available at mercurey.gforge.inria.fr

Elimination tool	Water (direct)	Water (det. strat.)	General (direct)	General (det. strat.)
Gröbner bases (FGb)	100 s	10 s	>24 h	$46 \times 200\text{s}$
Gröbner bases (F5)	-	1 s	-	110 s
Regular chains (RegularChains)	1050 s	-	>24 h	$90 \times 200\text{s}$
Experimental results: answers

Answers to the questions

- There can be 1, 2 or 3 singular points in the fibers
- We can separate 3 families of biological matters

Answers to the questions

- There can be 1, 2 or 3 singular points in the fibers
- We can separate 3 families of biological matters

Answers to the questions

- There can be 1, 2 or 3 singular points in the fibers
- We can separate 3 families of biological matters

Thank you for your attention!

Publications:

- Jean-Charles Faugère, Mohab Safey El Din and Thibaut Verron (2013). 'On the complexity of computing Gröbner bases for quasi-homogeneous systems'. In: Proceedings of the 2013 International Symposium on Symbolic and Algebraic Computation. ISSAC '13. Boston, USA: ACM
- Jean-Charles Faugère, Mohab Safey El Din and Thibaut Verron (2016). 'On the complexity of computing Gröbner bases for weighted homogeneous systems'. In: *Journal of Symbolic Computation* 76, pp. 107–141. ISSN: 0747-7171. DOI: http://dx.doi.org/10.1016/j.jsc.2015.12.001. URL: http://www.sciencedirect.com/science/article/pii/S0747717115001273
- Bernard Bonnard, Jean-Charles Faugère, Alain Jcquemard, Mohab Safey El Din and Thibaut Verron (2016). 'Determinantal sets, singularities and application to optimal control in medical imagery'. In: Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation. ISSAC '16. Waterloo, Canada