Régularisation du calcul de bases de Gröbner
pour des systèmes avec poids et déterminantiel,
et application en imagerie médicale
(erratum)

Thibaut Verron

July 22, 2019

1 Algebra and geometry

• Def. 1.13: the map ϕ^h is not a morphism. For a counter-example, in $\mathbb{K}[X]$, consider $f = X^2 + X, g = -X^2 + X$, then $f^h = X^2 + XH, g^h = -X^2 + XH$, and $f^h + g^h = 2XH$. But $f + g = 2X$ is homogeneous, so $(f + g)^h = 2X$.

What is always true is that $f^h + g^h = H^k(f + g)^h$ for some $k \in \mathbb{N}$, and that $(cf)^h = cf^h$ if $c \in \mathbb{K}$.

• Def. 1.77: the open subset U contains x.

2 Gröbner bases

• Proof of Prop. 2.16, item 3: if $NF(f) - NF(g) = 0$, then $NF(f) - NF(g) \in I$ so $f - g \in I$.

3 Weighted homogeneous systems

4 Real roots classification for determinants – Application to contrast optimization

• Proof of Prop. 4.2, 4 lines after Eq. 4.5: a subideal of a radical ideal may not be radical, since any ideal is included in its radical. The correct observation is that the ideal defined by the entries of M/A is the localization at Δ of the ideal generated by all (r_i+1)-minors of M. Taking radicals commutes with localization, hence this ideal is radical assuming hypothesis $\mathcal{H}6$.

1