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Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery
1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure

Bad contrast (no enhancement) Good contrast (enhanced)

? X

Known methods:
I inject contrast agents to the patient: potentially toxic
I make the field variable to exploit differences in relaxation times

=⇒ requires finding optimal settings depending on the relaxation parameters
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Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery
1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure

Bad contrast (no enhancement) Good contrast (enhanced)

? X

Examples of relaxation parameters:
I Water: γ = Γ = 0.01Hz
I Cerebrospinal fluid: γ = 0.02Hz, Γ = 0.10Hz
I Fat: γ = 0.15Hz, Γ = 0.31Hz
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Numerical approach and computational problem

The Bloch equations{
ẏi =−Γi yi −uzi

żi =−γi (1−zi ) + uyi

(i = 1,2)

Saturation method

Find a path u so that after some time T :
I matter 1 saturated: y1(T ) = z1(T ) = 0
I matter 2 “maximized”: |(y2(T ),z2(T ))| maximal

Glaser’s team, 2012 : method from Optimal Control Theory

Problem: analyze the behavior of the control through algebraic invariants

I Example: singular feedback control: u =
D′

D
(D, D′ polynomials in y,z,γ,Γ)

I Geometry of {D = 0}?
I Study of the singular points of {D = 0} for each value of γ1,Γ1,γ2,Γ2

I Examples with water: [Bonnard, Chyba, Jacquemard, Marriott, 2013]

I Water/Fat : 1 point I Water/Cerebrospinal fluid : 1 point

Questions
I Is there always 1 singular point for pairs involving water?
I If not, how many possible families of parameters can we separate?
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Statement of the semi-algebraic problem

The D invariant: equations of a determinantal system

I M :=


−Γ1y1 −z1−1 −Γ1 + (γ1−Γ1)z1 (2γ1−2Γ1)y1
−γ1z1 y1 (γ1−Γ1)y1 2Γ1− γ1− (2γ1−2Γ1)z1
−Γ2y2 −z2−1 −Γ2 + (γ2−Γ2)z2 (2γ2−2Γ2)y2
−γ2z2 y2 (γ2−Γ2)y2 2Γ2− γ2− (2γ2−2Γ2)z2


I D := determinant(M)

I V :=

{
D =

∂D
∂y1

=
∂D
∂z1

=
∂D
∂y2

=
∂D
∂z2

= 0
}

The Bloch ball: inequalities

I B :=

{
y1

2 + (z1 + 1)2 ≤ 1
y2

2 + (z2 + 1)2 ≤ 1

}

Goal

Classification of the real fibers of the projection of V ∩B onto the parameter space
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State of the art and contributions

State of the art:
I General tool: Cylindrical Algebraic

Decomposition
[Collins, 1975]

I Specific tools for roots classification
[Yang, Hou, Xia, 2001]
[Lazard, Rouillier, 2007]

Problem

I None of these algorithms can solve the
problem efficiently:

I 1050 s in the case of water
(γ1 = Γ1 = 1→ 2 parameters)

I > 24h in the general case
(3 parameters)

I Can we exploit the determinantal
structure to go further?
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Classification strategy

G

X

πG

B

3 4 2 2

V

In our case, the only points where the number of roots may change are:

I projections of points where V meets the border of the semi-algebraic domain
I critical values of πG restricted to V
I projections of singular points of V

We want to compute P ∈Q[G] with P 6= 0 and P vanishing at all these points
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How to compute these points

Goal: compute P ∈Q[γ,Γ] such that

V (P)⊃ π((V ∩∂B)∪Sing(V )∪Crit(π,V ))

with
I π : projection onto the parameters γi ,Γi

I V =

{
D =

∂D
∂y1

=
∂D
∂z1

=
∂D
∂y2

=
∂D
∂z2

= 0
}

I B =
{

y1
2 + (z1 + 1)2 ≤ 1,y2

2 + (z2 + 1)2 ≤ 1
}

Intersection with the border

Compute:
I V ∩{y1

2 + (z1 + 1)2 = 1}
I V ∩{y2

2 + (z2 + 1)2 = 1}
and their image through π

(polynomial elimination)

Critical and singular points

(y,z,γ,Γ) ∈ Sing(V )∪Crit(π,V )

⇐⇒ Jac(F ,(y,z)) has rank < d

Requirements

I F generates the ideal of V =⇒ radical
I V is equidimensional with codimension d
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Properties of determinantal systems

Determinantal systems

I A = k ×k -matrix filled with polynomials in n variables X and t parameters G
I 1≤ r < k target rank
I Determinantal variety: V≤r (A) = {(x,g) : rank(A(x,g))≤ r}

Our system: n = 4, k = 4, r = 3, V = Singy1,y2,z1,z2
(V≤r (M))

With a generic matrix A With our specific matrix M

I SingX(V≤r (A)) = V≤r−1(A)

I V≤r−1(M)⊂ V
I dim(V ) = t
I dim(V rV≤r−1) < t

I V≤r (A) equidimensional
I dim(V≤r (A)) = n + t− (k − r)2

=⇒ dim(V≤r−1(A)) = t

I V≤r−1(M) equidimensional
I dim(V≤r−1(M)) = t

OK

No, but...
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Rank stratification

Goal: P ⊂Q[γ,Γ] such that V (P)⊃ π(Sing(V )∪Crit(π,V )) with π : Cn+t → Ct

Rank stratification

V = (V ∩V=r )∪ (V ∩V≤r−1)

I V ∩V=r : dimension < t
I V ∩V≤r−1 = V≤r−1 : t-equidimensional

Consequence for the strategy

1. Compute P1 such that V (P1)⊃ π(V ∩V=r )

2. Compute P2 such that V (P2)⊃ π(Sing(V≤r−1(M))∪Crit(π,V≤r−1(M)))

3. Return P := P1 ·P2
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Change of model: incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

I Minors: rank(A)≤ r ⇐⇒ all r + 1-minors of A are 0
I Incidence system: rank(A)≤ r ⇐⇒ ∃L,A ·L = 0 and rank(L) = k − r

Minors:
I
( k

r+1

)2
equations

I Codimension (k − r)2

Incidence system:
I k(k − r) new variables (entries of the matrix L)
I (k − r)2 + k(k − r) equations
I Codimension: (k − r)2 + k(k − r)

Properties of the incidence system (generically and in our situation)

I It defines a radical ideal
I It forms a regular sequence (codimension = length)

=⇒ Critical points characterized by maximal minors of the Jacobian matrix

Consequence for the strategy

Sing(V≤r−1(M))∪Crit(π,V≤r−1(M)) can be computed with the incidence system
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Results for water
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I We can separate 3 families of biological matters
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Results for water (zoom in)
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Results for water (zoom out)
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Timings

I Computations run on the matrix of the contrast optimization problem
I Water: Γ1 = γ1 = 1 =⇒ 2 parameters
I General: γ1 = 1 =⇒ 3 parameters

I Results obtained with Maple
I Source code and full results available at mercurey.gforge.inria.fr

Elimination tool
Water

(direct)
Water

(det. strat.)
General
(direct)

General
(det. strat.)

Gröbner bases
(FGb)

100 s 10 s >24 h 46×200s

Gröbner bases
(F5)

- 1 s - 110 s

Regular chains
(RegularChains)

1050 s - >24 h 90×200s

mercurey.gforge.inria.fr
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Conclusion and perspectives

What has been done?

I Algorithmic strategy for real roots classification with determinantal varieties
I Exploiting the determinantal structure
I Successfully applied in an application to contrast optimization in MRI

The future

I Complexity bounds
I Contrast optimization: other criteria of the classification still need to be studied
I New numerical questions about small areas in the classification

Thank you!
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