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Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery
1. Apply a magnetic field to a body
2. Measure the radio waves emitted in reaction
Goal = optimize the contrast = distinguish two biological matters from this measure
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Known methods:
> inject contrast agents to the patient: potentially toxic

» make the field variable to exploit differences in relaxation times
— requires finding optimal settings depending on the relaxation parameters
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Examples of relaxation parameters:
» Water: y=T =0.01Hz
» Cerebrospinal fluid: y=0.02Hz, ' =0.10Hz
» Fat: y=0.15Hz, [ =0.31Hz



Numerical approach and computational problem

The Bloch equations Saturation method
yi =-Tiyi—uz; Find a path v so that after some time T:
zi =—y(1—z)+uy > matter 1 saturated: y1(T) =2z1(T)=0

(i=1,2) > matter 2 “maximized”: |(y2(T),22(T))| maximal

Glaser’s team, 2012 : method from Optimal Control Theory
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Problem: analyze the behavior of the control through algebraic invariants
/
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» Example: singular feedback control: u = ) (D, D’ polynomials in y,z,7,I")
» Geometry of {D =0}7?
» Study of the singular points of { D = 0} for each value of y4,I'1, 72,2
» Examples with water: [Bonnard, Chyba, Jacquemard, Marriott, 2013]

» Water/Fat : 1 point » Water/Cerebrospinal fluid : 1 point
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The Bloch equations Saturation method
yi =-Tiyi—uz; Find a path v so that after some time T:
zi =—y(1—z)+uy > matter 1 saturated: y1(T) =2z1(T)=0

(i=1,2) > matter 2 “maximized”: |(y2(T),22(T))| maximal

Glaser’s team, 2012 : method from Optimal Control Theory

Problem: analyze the behavior of the control through algebraic invariants
/

» Example: singular feedback control: u = % (D, D’ polynomials in y,z,7,I")
» Geometry of {D =0}7?
» Study of the singular points of { D = 0} for each value of y4,I'1, 72,2
» Examples with water: [Bonnard, Chyba, Jacquemard, Marriott, 2013]
» Water/Fat : 1 point » Water/Cerebrospinal fluid : 1 point
Questions

> Is there always 1 singular point for pairs involving water?
» If not, how many possible families of parameters can we separate?



Statement of the semi-algebraic problem

The D invariant: equations of a determinantal system

Ty —z1—1 —T1+(n-T1)=z (2rn —2T1) 4

. M= | 1 2 (n=T)n 2hi—-n—(n-2r)z
—Toys —2—-1 —To+(r-T2)2z (2r—202)y
—%Zp yo (2—T2)ye 2l —1p—(212—-2l7)2

» D := determinant(M)

dyr 9z dy» dz
The Bloch ball: inequalities
L g itz +1)?<i
' y2 +(z2+1)* <1

Goal

Classification of the real fibers of the projection of V N B onto the parameter space



State of the art and contributions

State of the art:

» General tool: Cylindrical Algebraic
Decomposition
[Collins, 1975]

» Specific tools for roots classification
[Yang, Hou, Xia, 2001]
[Lazard, Rouillier, 2007]
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Problem

» None of these algorithms can solve the
problem efficiently:
> 1050s in the case of water
(1 =Ty =1 — 2 parameters)
> > 24hin the general case
(3 parameters)

» Can we exploit the determinantal
structure to go further?

Main results

» Dedicated strategy for real roots
classification for determinantal systems

» Can use existing tools for elimination

» Main refinements:

» Rank stratification
> Incidence varieties

v

Faster than general algorithms:
> 10s in the case of water
> 4hin the general case
Results for the application
> Full classification
> Answers to the experimental
questions for water: there can be
1, 2 or 3 singularities

v
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In our case, the only points where the number of roots may change are:

» projections of points where V meets the border of the semi-algebraic domain
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Classification strategy
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In our case, the only points where the number of roots may change are:

» projections of points where V meets the border of the semi-algebraic domain
» critical values of mg restricted to V
» projections of singular points of V

We want to compute P € Q[G] with P # 0 and P vanishing at all these points



How to compute these points

Goal: compute P € Q[y,I] such that
V(P) > n((VNdB)USiIng(V)UCrit(x, V))
with
» 7 : projection onto the parameters v;,[’;
dD oD 9JD 9D
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Compute:
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» VN{yl+(z+1)% =1}
and their image through &
(polynomial elimination)



How to compute these points

Goal: compute P € Q[y,I] such that
V(P) > n((VNdB)USing(V)UCrit(x, V))
with
» 7 : projection onto the parameters v;,[;
oD oD oJD 9D
= D==""=" =" =" =
-V { dyr  dz dy» Iz O}

> B={Y12+(Z1+1)2§1,J’22+(22+1)2§1}

Intersection with the border Critical and singular points
Compute:
» V{y2+(z1+1)2 =1}
» VN{yl+(z+1)% =1}
and their image through &

(y,z,7,I") € Sing(V) UCrit(x, V)
< Jac(F,(y,z)) has rank < d

(polynomial elimination) Requirements

» F generates the ideal of V = radical
» Vis equidimensional with codimension d
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» A= k x k-matrix filled with polynomials in n variables X and t parameters G
» 1 <r < k target rank
» Determinantal variety: V<,(A) = {(x,9) : rank(A(x,g)) < r}

Our system: n=4, k=4,r=3, V=S8ing, ,, », »,(V<r(M))



Properties of determinantal systems

Determinantal systems

» A= k x k-matrix filled with polynomials in n variables X and t parameters G
» 1 <r < k target rank
» Determinantal variety: V<,(A) = {(x,9) : rank(A(x,g)) < r}

Our system: n=4, k=4,r=3, V=S8ing, ,, », »,(V<r(M))

With a generic matrix A With our specific matrix M

> Singx(V<r(A)) = V<r—1(A)

» V</(A) equidimensional
> dim(V<,(A)) =n+t—(k—r)?
= dim(V<,_4(A)) =t




Properties of determinantal systems

Determinantal systems

» A= k x k-matrix filled with polynomials in n variables X and t parameters G

» 1 <r < k target rank

» Determinantal variety: V<,(A) = {(x,9) : rank(A(x,g)) < r}

Our system: n=4, k=4,r=3, V=S8ing, ,, », »,(V<r(M))

With a generic matrix A

> Singx(V<r(A)) = V<r—1(A)

» V</(A) equidimensional
> dim(V<,(A)) =n+t—(k—r)?
= dim(V<,_4(A)) =t

OK

With our specific matrix M

» V<,_1(M) equidimensional
» dim(V<,_1(M)) =t




Properties of determinantal systems

Determinantal systems

» A= k x k-matrix filled with polynomials in n variables X and t parameters G

» 1 <r < k target rank

» Determinantal variety: V<,(A) = {(x,9) : rank(A(x,g)) < r}

Our system: n=4, k=4,r=3, V=S8ing,, , ;. ,,(V<,(M))

With a generic matrix A

> Singx(V<r(A)) = V<r—1(A)

No, but...

With our specific matrix M

» V</(A) equidimensional
> dim(V<,(A)) =n+t—(k—r)?
= dim(V<,_4(A)) =t

OK

v

v

v

Veri(M) C v
dim(V) =t
dm(V~ Vo)<t

>

v

V<,_1(M) equidimensional
dim( Ve, 1(M)) = t




Rank stratification

Goal: P C Q[y,T] such that V(P) > x(Sing(V) U Crit(r, V)) with 7 : C™ — C!

Rank stratification

V=(VnV-)u(VnVs_4)

» VN V_,:dimension < t
» VN V<,_q = Vo4 : t-equidimensional

Consequence for the strategy

1. Compute Py such that V(P;) D (VN V=,)
2. Compute P» such that V(P;) D m(Sing(V<,—1(M))UCrit(x, V<,_1(M)))
3. Return P:=P; - P,
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Change of model: incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

» Minors: rank(A) < r <= all r+1-minors of Aare 0
» Incidence system: rank(A) <r <= 3JL,A-L=0andrank(L) =k —r

Minors: Incidence system:
> (rL)'2 equations > k(k —r) new variables (entries of the matrix L)
» Codimension (k —r)? > (k—r)?+k(k —r) equations

» Codimension: (k —r)2 +k(k —r)



Change of model: incidence varieties
Reminder: k = size of the matrix; r = target rank
Possible modelizations for determinantal varieties

» Minors: rank(A) < r <= all r+1-minors of Aare 0
» Incidence system: rank(A) <r <= 3JL,A-L=0andrank(L) =k —r

Minors: Incidence system:
> (rL)'2 equations > k(k —r) new variables (entries of the matrix L)
» Codimension (k —r)? > (k—r)?+k(k —r) equations

» Codimension: (k —r)2 +k(k —r)
Properties of the incidence system (generically and in our situation)

» |t defines a radical ideal

» It forms a regular sequence (codimension = length)
— Critical points characterized by maximal minors of the Jacobian matrix

Consequence for the strategy

Sing(V<,_1(M)) UCrit(x, V<,_1(M)) can be computed with the incidence system



Results for water

Answers to the questions
» There can be 1, 2 or 3 singular points in the fibers
» We can separate 3 families of biological matters
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Timings

» Computations run on the matrix of the contrast optimization problem

» Water: 1 =y =1 = 2 parameters
» General: 4 =1 = 3 parameters

» Results obtained with Maple

» Source code and full results available at mercurey.gforge.inria.fr

Elimination tool Water Water General General
(direct)  (det. strat.) (direct)  (det. strat.)

Grbbner bases
(FGb) 100s 10s >24h 46 x200s

Grbbner bases
(F5) - 1s - 110s
Regular chains 0 ¢ - >24h  90x200s

(RegularChains)


mercurey.gforge.inria.fr

Conclusion and perspectives

What has been done?

» Algorithmic strategy for real roots classification with determinantal varieties
» Exploiting the determinantal structure
» Successfully applied in an application to contrast optimization in MRI

The future

» Complexity bounds
» Contrast optimization: other criteria of the classification still need to be studied
» New numerical questions about small areas in the classification
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Thank you!



