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Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery
1. apply a magnetic field to a body
2. measure the radio waves emitted in reaction

Optimize the contrast = be able to distinguish two biological matters from this measure

Bad contrast
(no enhancement)

Good contrast
(enhanced)

Bio. matter 1

Bio. matter 2

Known methods:
I inject contrast agents to the patient: potentially toxic
I make the field variable to exploit differences in relaxation times

=⇒ requires finding optimal settings depending on the relaxation parameters

(Images: Pr. Steffen Glaser, Tech. Univ. München)
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Examples:
I Bio. matter 1: Deoxygenated blood (γ1 ' 0.74 Hz, Γ1 = 20 Hz)
I Bio. matter 2: Oxygenated blood (γ2 = 0.74 Hz, Γ2 ' 5 Hz)
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Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery
1. apply a magnetic field to a body
2. measure the radio waves emitted in reaction

Optimize the contrast = be able to distinguish two biological matters from this measure

Bad contrast
(no enhancement)

Good contrast
(enhanced)

Bio. matter 1

Bio. matter 2

Examples:
I Bio. matter 1: Water (γ1 = Γ1 = 0.4 Hz)
I Bio. matter 2: Cerebrospinal fluid (γ2 = 0.5 Hz, Γ2 ' 3.3 Hz)

(Images: Pr. Steffen Glaser, Tech. Univ. München)



Numerical approach

The Bloch equations{
ẏi = −Γiyi − u · zi

żi = −γi (1− zi ) + u · yi
(i = 1, 2)

Bonnard, Glaser : Control Theory problem

Saturation method

Find a path t 7→ u(t) so that after some time T :
I matter 1 saturated: y1(T ) = z1(T ) = 0
I matter 2 “maximized”: |(y2(T ), z2(T ))| maximal

Problem (Bonnard et al. 2013)

I The length T of the path is not bounded
I Goal: better understand the control problem to obtain optimal solutions
I Classify invariants of a related differential equation

(Images: Pr. Steffen Glaser, Tech. Univ. München)



The invariants D and D′

Expression for D (D′ has an analogous definition)

I M :=


−Γ1y1 −z1 − 1 −Γ1 + (γ1 − Γ1) z1 (2 γ1 − 2 Γ1) y1

−γ1z1 y1 (γ1 − Γ1) y1 2 Γ1 − γ1 − (2 γ1 − 2 Γ1) z1

−Γ2y2 −z2 − 1 −Γ2 + (γ2 − Γ2) z2 (2 γ2 − 2 Γ2) y2

−γ2z2 y2 (γ2 − Γ2) y2 2 Γ2 − γ2 − (2 γ2 − 2 Γ2) z2


I D := det(M)

Properties:
I Homogeneous in the parameters γi , Γi , degree 3
I Degree 4 in the variables yi , zi

Now the problem is algebraic!

Goal
Classification of the invariants in terms of Γi , γi :

I Singularities of {D = 0}
I Surface {D = D′ = 0}
I Curve of singularities of {D = D′ = 0}
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Overview of the results: singularities of {D = 0} in terms of Γi , γi

(γ1 = 1)

Singularities are invariant under (yi 7→ −yi )

Classification in terms of Γi , γi :
I Generically: 4 pairs of singularities for

each value of the parameters
I 3 pairs for each value on a surface with

5 components
I one hyperplane
I one quadric
I one quartic
I one degree 14 surface
I one degree 24 surface

I 2 pairs for each value on a curve with
many components

I 1 pair for each value on a set of
points. . .
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Tool: Gröbner bases

What is it?

I Tool for solving polynomial systems
I If finite number of (complex) solutions: enumerations of the solutions as:{

P1(X1) = 0
Xi − Pi (X1) = 0

I For systems with positive dimension: allows to compute projections
I Known since the 60s, now available in most computer algebra software

Advantages

I Exact computations:
no solutions are left out

I Able to take advantage of algebraic
or geometric structures

I More equations is usually better!

Caveats

I Long computations, complexity not
known beforehand

I Complicated results (high degree,
large polynomials)

I Global method: we can only localise
on dense subsets



How do we use Gröbner bases on this problem?

Key idea: importance of the modelization

I The complexity depends on the system, rather than on its solutions
I Idea: choose a particular system with nicer properties

I Examples: lower degree, less indeterminates, more equations...

I Usually, it means a tradeoff!

State of the art for the current problem

I General case −→ 4 variables, 4 parameters Intractable
I Particular cases −→ 0 parameters (Bonnard et al. 2013)

Application to the current problem

Filling the gap between the two extremes above
I Simplification by homogeneity γ1 = 1 −→ 3 parameters Intractable
I Intermediate cases (e.g. water: γ1 = Γ1 = 1) −→ 2 parameters Solved

Attacking the general classification: decompositions into subproblems



Example of decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

det(M) = 0 =⇒


rank(M) = 3

or
rank(M) < 3

Why the rank? Because of...

Theorem
Consider

M = (Pi,j (X))1≤i,j≤n

Then generically:
det(M) singular =⇒ rank(M) < n − 1

With this specific matrix, the theorem does not apply.
=⇒ There are solutions in both branches.

Case Solutions in Γ1, Γ2, γ2

rank(M) < 3 Dimension 3
rank(M) = 3 Dimension 2



Classification in the generic case rank(M) < 3

We append all 3× 3 minors of M to the system

(Remember: more equations is better!)

Through a (long) Gröbner basis computation, we can find in the ideal:

P =
4∑

d=0

ad (Γ1, Γ2, γ2)y2
2d

It is a large polynomial (1776 monomials...) but with a nice structure:
I Degree 4 in y2

2
I Non-irreducible coefficients in y2, high degree common factors

Classification: number of roots of P(y2)

I Generically: 4 pairs of opposite solutions
I If a4 = 0 or disc(P) = 0, generically:

3 pairs of solutions
I 3 components from the factorization of a4
I 2 components from the factorization of

disc(P)

I . . .



Example of change of model: what to do if rank(M) = 3?

Theorem
Consider M = (Pi,j (X))1≤i,j≤n and let I be the incidence variety defined by M

 ·
λ1

...
λn

 =

0
...
0


If (x) is a point of {det(M(x)) = 0}, then:

I there exists a non-zero vector Λ = (λi ) such that (x,Λ) ∈ I

I Λ is unique up to scalar multiplication, and
I (x,Λ) is a singular point of I w.r.t. X

〈
D,

∂D
∂yi

,
∂D
∂zi

, M · Λ, rank (∇yi ,zi (M · Λ) < 4) , Mk 6= 0 , λi = 1
〉

1≤k≤16
1≤i≤4

Singular point of
the incidence variety

Non-zero
3× 3 minor

(16 choices)

Non-zero
coordinate
(4 choices)
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Conclusion and perspectives

What has been done?
Part of the classification of invariants for the saturation problem

I Exhaustive classification in some particular cases (water)
I Some branches entirely explored in full generality

Still work in progress

I Some branches not solved yet in full generality
I Some parameters of the classification still need to be studied (D′)

Applications

I New control policies for contrast optimisation for the MRI
I More generally, computational strategy applicable to similar problems



One last word

Thank you for your attention!
Merci pour votre attention!


