Algebraic classification related to contrast optimization for MRI

Bernard Bonnard ${ }^{1}$ Jean-Charles Faugère ${ }^{2}$ Alain Jacquemard ${ }^{2} \quad$ Mohab Safey El Din ${ }^{2}$ Thibaut Verron ${ }^{2}$

${ }^{1}$ Institut de Mathématiques de Bourgogne, Dijon, France UMR CNRS 5584
${ }^{2}$ Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe PoLSYs
Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

Journées Nationales de Calcul Formel, 05 novembre 2015

Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery

1. apply a magnetic field to a body
2. measure the radio waves emitted in reaction

Optimize the contrast = be able to distinguish two biological matters from this measure

Bad contrast
Good contrast
Known methods:

- inject contrast agents to the patient: potentially toxic
- make the field variable to exploit differences in relaxation times
\Longrightarrow requires finding optimal settings
(Images: Pr. Steffen Glaser, Tech. Univ. München)

Numerical approach

The Bloch equations

$\left\{\begin{array}{l}\dot{y}_{i}=-\Gamma_{i} y_{i}-u_{x} z_{i} \\ \dot{z}_{i}=-\gamma_{i}\left(1-z_{i}\right)+u_{x} y_{i}\end{array}\right.$ $(i=1,2)$

Saturation method

Find a path u_{x} so that after some time T :

- matter 1 saturated: $y_{1}(T)=z_{1}(T)=0$
- matter 2 "maximized": $\left|\left(y_{2}(T), z_{2}(T)\right)\right|$ maximal

Glaser's team, 2012 : Control Theory method

- Numerical method to find a path towards a saturated system = solution u_{x}
- Already used in some specific cases for the MRI, here applied in full generality

Numerical approach... and computational problem

The Bloch equations

$\left\{\begin{array}{l}\dot{y}_{i}=-\Gamma_{i} y_{i}-u_{x} z_{i} \\ \dot{z}_{i}=-\gamma_{i}\left(1-z_{i}\right)+u_{x} y_{i}\end{array}\right.$
$(i=1,2)$

Saturation method

Find a path u_{x} so that after some time T :

- matter 1 saturated: $y_{1}(T)=z_{1}(T)=0$
- matter 2 "maximized": $\left|\left(y_{2}(T), z_{2}(T)\right)\right|$ maximal

Glaser's team, 2012 : Control Theory method

- Numerical method to find a path towards a saturated system = solution u_{x}
- Already used in some specific cases for the MRI, here applied in full generality Problem:
- The complexity of the path u_{x} is not bounded

Goal:

- Classify singular trajectories for the control
- Obtain control policies for the contrast problem

This classification problem can be modelled with polynomials!

System

$-M:=\left(\begin{array}{cccc}-\Gamma_{1} y_{1} & -z_{1}-1 & -\Gamma_{1}+\left(\gamma_{1}-\Gamma_{1}\right) z_{1} & \left(2 \gamma_{1}-2 \Gamma_{1}\right) y_{1} \\ -\gamma_{1} z_{1} & y_{1} & \left(\gamma_{1}-\Gamma_{1}\right) y_{1} & 2 \Gamma_{1}-\gamma_{1}-\left(2 \gamma_{1}-2 \Gamma_{1}\right) z_{1} \\ -\Gamma_{2} y_{2} & -z_{2}-1 & -\Gamma_{2}+\left(\gamma_{2}-\Gamma_{2}\right) z_{2} & \left(2 \gamma_{2}-2 \Gamma_{2}\right) y_{2} \\ -\gamma_{2} z_{2} & y_{2} & \left(\gamma_{2}-\Gamma_{2}\right) y_{2} & 2 \Gamma_{2}-\gamma_{2}-\left(2 \gamma_{2}-2 \Gamma_{2}\right) z_{2}\end{array}\right)$

- $D:=\operatorname{det}(M)$

Problem

Find all zeroes of D which are singular in $\left(y_{1}, y_{2}, z_{1}, z_{2}\right)$

Equivalent formulation

Find the zeroes of

$$
\left\langle D, \frac{\partial D}{\partial y_{1}}, \frac{\partial D}{\partial y_{2}}, \frac{\partial D}{\partial z_{1}}, \frac{\partial D}{\partial z_{2}}\right\rangle
$$

- Method described in [Bonnard et al. 2013]
- Proof of concept: they used this method to solve the problem for the 4 experimental settings serving as examples to the saturation method
- Question : solutions in full generality?

Method

Obvious method?

Compute a Gröbner basis of this system

- Works in theory: method used in [Bonnard et al. 2013]
- Impracticable in full generality

This work
Decompositic into simpler problems

- easy simplifications (e.g. $\gamma_{1}=1$)
- specific physical cases: e.g. matter 1 is water $\Longleftrightarrow \Gamma_{1}=\gamma_{1}$
- specific structure of the system
- systematic study of factorizations

What is "simpler"?

- More constraints: study $1+\langle f\rangle \Longleftrightarrow$ study $V(I) \cap V(f)$
- Less components: study $I+\langle U f-1\rangle \Longleftrightarrow$ study $V(I) \backslash V(f)$

Method

Obvious method?

Compute a Gröbner basis of this system

- Works in theory: method used in [Bonnard et al. 2013]
- Impracticable in full generality

This work

Decomposition into simpler problems

- easy simplifications (e.g. $\gamma_{1}=1$)
- specific physical cases: e.g. matter 1 is water $\Longleftrightarrow \Gamma_{1}=\gamma_{1}$
- specific structure of the system
- systematic study of factorizations

What is "simpler"?

- More constraints: study $I+\langle f\rangle \Longleftrightarrow$ study $V(I) \cap V(f)$
- Less components: study $I+\langle U f-1\rangle \Longleftrightarrow$ study $V(I) \backslash V(f)$

Method

Obvious method?

Compute a Gröbner basis of this system

- Works in theory: method used in [Bonnard et al. 2013]
- Impracticable in full generality

This work

Decomposition into simpler problems

- easy simplifications (e.g. $\gamma_{1}=1$)
- specific physical cases: e.g. matter 1 is water $\Longleftrightarrow \Gamma_{1}=\gamma_{1}$
- specific structure of the system
- systematic study of factorizations

Typical example

If I contains $f \cdot g$, we can decompose the system into:

- either $f=0 \rightarrow$ add f to the system
- or $f \neq 0$ and $g=0 \rightarrow$ add $U f-1$ and g to the system

First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Why the rank? Because of...

Theorem

Consider

$$
M=\left(P_{i, j}(\mathbf{X})\right)_{1 \leq i, j \leq n}
$$

Then generically:

$$
\operatorname{det}(M) \text { singular } \Longrightarrow \operatorname{rank}(M)<n-1
$$

For our specific matrix, we do not know if the theorem applies.
\Longrightarrow We need to consider both branches.

First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Why the rank? Because of...

Theorem

Consider

$$
M=\left(P_{i, j}(\mathbf{X})\right)_{1 \leq i, j \leq n}
$$

Then generically:

$$
\operatorname{det}(M) \text { singular } \Longrightarrow \operatorname{rank}(M)<n-1
$$

For our specific matrix, we do not know if the theorem applies.
\Longrightarrow We need to consider both branches.

The case $\operatorname{rank}(M)<3$: classification

$$
\left\langle D, \frac{\partial D}{\partial y_{1}}, \frac{\partial D}{\partial y_{2}}, \frac{\partial D}{\partial z_{1}}, \frac{\partial D}{\partial z_{2}}, 3 \text {-minors of } M\right\rangle \text { contains } P=\sum_{d=0}^{4} a_{d}\left(\Gamma_{1}, \Gamma_{2}, \gamma_{2}\right) y_{2}^{2 d}
$$

We classify depending on the number of roots of P in $Y_{2}=y_{2}^{2}$:

- First bound: degree of P
- Need to handle multiple roots (for example using discriminants)

First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Why the rank? Because of...

Theorem

Consider

$$
M=\left(P_{i, j}(\mathbf{X})\right)_{1 \leq i, j \leq n}
$$

Then generically:

$$
\operatorname{det}(M) \text { singular } \Longrightarrow \operatorname{rank}(M)<n-1
$$

For our specific matrix, the theorem does not apply.
\Longrightarrow We need to consider both branches.

The case $\operatorname{rank}(M)=n-1$: incidence varieties

Theorem

Consider $M=\left(P_{i, j}(\mathbf{X})\right)_{1 \leq i, j \leq n}$ and let \mathcal{I} be the incidence variety defined by

$$
\left[\begin{array}{l}
\\
M
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n-1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

If (\mathbf{x}) is a point of $V(\operatorname{det}(M))$, then:

- there exists a non-zero vector $\Lambda=\left(\lambda_{i}\right)$ such that $(\mathbf{x}, \Lambda) \in \mathcal{I}$

The case $\operatorname{rank}(M)=n-1$: incidence varieties

Theorem

Consider $M=\left(P_{i, j}(\mathbf{X})\right)_{1 \leq i, j \leq n}$ and let \mathcal{I} be the incidence variety defined by

$$
\left[\begin{array}{l}
M
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n-1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

If (\mathbf{x}) is a singular point of $V(\operatorname{det}(M))$ such that $M(\mathbf{x})$ has rank $n-1$, then:

- there exists a non-zero vector $\Lambda=\left(\lambda_{i}\right)$ such that $(\mathbf{x}, \Lambda) \in \mathcal{I}$, and
- \wedge is unique up to scalar multiplication, and
- (\mathbf{x}, Λ) is a singular point of \mathcal{I} w.r.t. \mathbf{X}

The case $\operatorname{rank}(M)=n-1$: incidence varieties

Theorem

Consider $M=\left(P_{i, j}(\mathbf{X})\right)_{1 \leq i, j \leq n}$ and let \mathcal{I} be the incidence variety defined by

$$
\left[\begin{array}{l}
M
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n-1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

If (\mathbf{x}) is a singular point of $V(\operatorname{det}(M))$ such that $M(\mathbf{x})$ has rank $n-1$, then:

- there exists a non-zero vector $\Lambda=\left(\lambda_{i}\right)$ such that $(\mathbf{x}, \Lambda) \in \mathcal{I}$, and
- Λ is unique up to scalar multiplication, and
- (\mathbf{x}, Λ) is a singular point of \mathcal{I} w.r.t. \mathbf{X}

Overview of the classification

More branches from factorizations

Overview of the classification

$\operatorname{rank}(M)<3$
$Y_{2} \leftarrow y_{2}^{2}$
6 branches according to the number of roots of P

Branches according to the degree of P and the roots multiplicity

Conclusion, perspectives

What has been done?

Classification of singular trajectories for the saturation control

- Exhaustive classification in some particular cases
- Some branches entirely explored in full generality

Still work in progress

- Some branches not solved yet in full generality
- More physical constraints have to be taken into account
- Specific physical cases do not necessarily appear in the classification

Applications

- Identification of the situations where the saturation method may fail
- New control policies trying to avoid these points

Overview of the classification

$$
Y_{2} \leftarrow y_{2}^{2}
$$

6 branches according to the number of roots of P

Branches according to the degree of P and the roots multiplicity

16 branches according to the nonzero minor

4 branches according to the non-zero coordinate in Λ

More branches from factorizations

More branches from factorizations

Thank you for your attention! Merci pour votre attention!

