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Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery
1. apply a magnetic field to a body
2. measure the radio waves emitted in reaction

Optimize the contrast = be able to distinguish two biological matters from this measure

Bad contrast Good contrast

Bio. matter 1

Bio. matter 2

Known methods:
I inject contrast agents to the patient: potentially toxic
I make the field variable to exploit differences in relaxation times

=⇒ requires finding optimal settings

(Images: Pr. Steffen Glaser, Tech. Univ. München)



Numerical approach

The Bloch equations{
ẏi = −Γiyi − ux zi

żi = −γi (1− zi ) + ux yi

(i = 1, 2)

Saturation method

Find a path ux so that after some time T :
I matter 1 saturated: y1(T ) = z1(T ) = 0
I matter 2 “maximized”: |(y2(T ), z2(T ))| maximal

Glaser’s team, 2012 : Control Theory method
I Numerical method to find a path towards a saturated system = solution ux

I Already used in some specific cases for the MRI, here applied in full generality

Problem:
I The complexity of the path ux is not bounded

Goal:
I Classify singular trajectories for the control
I Obtain control policies for the contrast problem

This classification problem can be modelled with polynomials!
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System

I M :=


−Γ1y1 −z1 − 1 −Γ1 + (γ1 − Γ1) z1 (2 γ1 − 2 Γ1) y1

−γ1z1 y1 (γ1 − Γ1) y1 2 Γ1 − γ1 − (2 γ1 − 2 Γ1) z1

−Γ2y2 −z2 − 1 −Γ2 + (γ2 − Γ2) z2 (2 γ2 − 2 Γ2) y2

−γ2z2 y2 (γ2 − Γ2) y2 2 Γ2 − γ2 − (2 γ2 − 2 Γ2) z2


I D := det(M)

Problem
Find all zeroes of D which are singular in (y1, y2, z1, z2)

Equivalent formulation

Find the zeroes of 〈
D,

∂D
∂y1

,
∂D
∂y2

,
∂D
∂z1

,
∂D
∂z2

〉

I Method described in [Bonnard et al. 2013]
I Proof of concept: they used this method to solve the problem for the

4 experimental settings serving as examples to the saturation method
I Question : solutions in full generality?



Method

Obvious method?
Compute a Gröbner basis of this system

I Works in theory: method used in [Bonnard et al. 2013]
I Impracticable in full generality

This work
Decomposition into simpler problems

I easy simplifications (e.g. γ1 = 1)
I specific physical cases: e.g. matter 1 is water ⇐⇒ Γ1 = γ1

I specific structure of the system
I systematic study of factorizations

What is “simpler”?

I More constraints: study I + 〈f 〉 ⇐⇒ study V (I) ∩ V (f )

I Less components: study I + 〈U f − 1〉 ⇐⇒ study V (I) r V (f )
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Method

Obvious method?
Compute a Gröbner basis of this system

I Works in theory: method used in [Bonnard et al. 2013]
I Impracticable in full generality

This work
Decomposition into simpler problems

I easy simplifications (e.g. γ1 = 1)
I specific physical cases: e.g. matter 1 is water ⇐⇒ Γ1 = γ1

I specific structure of the system
I systematic study of factorizations

Typical example

If I contains f · g, we can decompose the system into:
I either f = 0→ add f to the system
I or f 6= 0 and g = 0→ add U f − 1 and g to the system



First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Base problem

rank(M) < 3 rank(M) = 3

Why the rank? Because of...

Theorem
Consider

M = (Pi,j (X))1≤i,j≤n

Then generically:
det(M) singular =⇒ rank(M) < n − 1

For our specific matrix, we do not know if the theorem applies.
=⇒ We need to consider both branches.
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The case rank(M) < 3: classification

〈
D,

∂D
∂y1

,
∂D
∂y2

,
∂D
∂z1

,
∂D
∂z2

, 3-minors of M
〉

contains P =
4∑

d=0

ad (Γ1, Γ2, γ2)y2d
2

We classify depending on the number of roots of P in Y2 = y2
2 :

I First bound: degree of P
I Need to handle multiple roots (for example using discriminants)

...

rank(M) < 3, Y2 = y2
2

No solution in Y2

a1 = · · · = a4 = 0
a0 6= 0

1 solution in Y2

a2 = · · · = a4 = 0
a1 6= 0

a3 = a4 = 0
a2 6= 0

disc(P) = 0

...
...

...
...
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The case rank(M) = n − 1: incidence varieties

Theorem
Consider M = (Pi,j (X))1≤i,j≤n and let I be the incidence variety defined by M

 ·
 λ1

...
λn−1

 =

0
...
0


If (x) is a point of V (det(M)), then:

I there exists a non-zero vector Λ = (λi ) such that (x,Λ) ∈ I

I Λ is unique up to scalar multiplication, and
I (x,Λ) is a singular point of I w.r.t. X

〈
D,

∂D
∂yi , zi

, M · Λ, ∂M · Λ
∂yi , zi

, Mk 6= 0 , λi = 1

〉
1≤k≤16
1≤i≤4

Incidence variety Non-zero 3× 3 minor
(16 choices)

Non-zero coordinate
(4 choices)
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Overview of the classification

Base problem

rank(M) < 3

Y2 ← y2
2

6 branches according to
the number of roots of P

Branches according to
the degree of P

and the roots multiplicity

More branches from factorizations

rank(M) = 3

16 branches according to
the nonzero minor

4 branches according to
the non-zero coordinate in Λ

More branches from factorizations

Recurring factors
or with physical interpretation

Suggest ways to branch earlier
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Conclusion, perspectives

What has been done?
Classification of singular trajectories for the saturation control

I Exhaustive classification in some particular cases
I Some branches entirely explored in full generality

Still work in progress

I Some branches not solved yet in full generality
I More physical constraints have to be taken into account
I Specific physical cases do not necessarily appear in the classification

Applications

I Identification of the situations where the saturation method may fail
I New control policies trying to avoid these points
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Thank you for your attention!
Merci pour votre attention!


