Algebraic classification related to contrast optimization for MRI

Bernard Bonnard¹ Jean-Charles Faugère² Alain Jacquemard² Mohab Safey El Din² Thibaut Verron²

¹ Institut de Mathématiques de Bourgogne, Dijon, France UMR CNRS 5584

²Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe PoLSYS Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

Journées Nationales de Calcul Formel, 05 novembre 2015

Physical problem

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. apply a magnetic field to a body
- 2. measure the radio waves emitted in reaction

Optimize the contrast = be able to distinguish two biological matters from this measure

Bad contrast

Good contrast

Known methods:

- inject contrast agents to the patient: potentially toxic
- make the field variable to exploit differences in relaxation times
 - \implies requires finding optimal settings

(Images: Pr. Steffen Glaser, Tech. Univ. München)

The Bloch equations

(i = 1, 2)

$$\begin{cases} \dot{y}_i &= -\Gamma_i y_i - u_x z_i \\ \dot{z}_i &= -\gamma_i (1 - z_i) + u_x y_i \end{cases}$$

Saturation method

Find a path u_x so that after some time *T*:

- matter 1 saturated: $y_1(T) = z_1(T) = 0$
- matter 2 "maximized": $|(y_2(T), z_2(T))|$ maximal

Glaser's team, 2012 : Control Theory method

- Numerical method to find a path towards a saturated system = solution Ux
- > Already used in some specific cases for the MRI, here applied in full generality

Numerical approach... and computational problem

The Bloch equations

 $\begin{cases} \dot{y}_i &= -\Gamma_i y_i - \boldsymbol{U}_{\boldsymbol{X}} \boldsymbol{Z}_i \\ \dot{z}_i &= -\gamma_i (1 - \boldsymbol{Z}_i) + \boldsymbol{U}_{\boldsymbol{X}} y_i \end{cases}$

Saturation method

Find a path u_x so that after some time *T*:

- matter 1 saturated: $y_1(T) = z_1(T) = 0$
- matter 2 "maximized": $|(y_2(T), z_2(T))|$ maximal

Glaser's team, 2012 : Control Theory method

- Numerical method to find a path towards a saturated system = solution ux
- Already used in some specific cases for the MRI, here applied in full generality Problem:
 - The complexity of the path u_x is not bounded

Goal:

(i = 1, 2)

- Classify singular trajectories for the control
- Obtain control policies for the contrast problem

This classification problem can be modelled with polynomials!

System

$$M := \begin{pmatrix} -\Gamma_1 y_1 & -z_1 - 1 & -\Gamma_1 + (\gamma_1 - \Gamma_1) z_1 & (2\gamma_1 - 2\Gamma_1) y_1 \\ -\gamma_1 z_1 & y_1 & (\gamma_1 - \Gamma_1) y_1 & 2\Gamma_1 - \gamma_1 - (2\gamma_1 - 2\Gamma_1) z_1 \\ -\Gamma_2 y_2 & -z_2 - 1 & -\Gamma_2 + (\gamma_2 - \Gamma_2) z_2 & (2\gamma_2 - 2\Gamma_2) y_2 \\ -\gamma_2 z_2 & y_2 & (\gamma_2 - \Gamma_2) y_2 & 2\Gamma_2 - \gamma_2 - (2\gamma_2 - 2\Gamma_2) z_2 \end{pmatrix}$$

$$D := \det(M)$$

Problem

Find all zeroes of D which are singular in (y_1, y_2, z_1, z_2)

Equivalent formulation

Find the zeroes of

$$\left\langle D, \frac{\partial D}{\partial y_1}, \frac{\partial D}{\partial y_2}, \frac{\partial D}{\partial z_1}, \frac{\partial D}{\partial z_2} \right\rangle$$

- Method described in [Bonnard et al. 2013]
- Proof of concept: they used this method to solve the problem for the 4 experimental settings serving as examples to the saturation method
- Question : solutions in full generality?

Method

Obvious method?

Compute a Gröbner basis of this system

- Works in theory: method used in [Bonnard et al. 2013]
- Impracticable in full generality

This work

Decomposition into simpler problems

- easy simplifications (e.g. $\gamma_1 = 1$)
- ► specific physical cases: e.g. matter 1 is water \iff $\Gamma_1 = \gamma_1$
- specific structure of the system
- systematic study of factorizations

What is "simpler"?

- More constraints: study $I + \langle f \rangle \iff$ study $V(I) \cap V(f)$
- Less components: study $I + \langle Uf 1 \rangle \iff$ study $V(I) \smallsetminus V(f)$

Method

Obvious method?

Compute a Gröbner basis of this system

- Works in theory: method used in [Bonnard et al. 2013]
- Impracticable in full generality

This work

Decomposition into simpler problems

- easy simplifications (e.g. $\gamma_1 = 1$)
- ► specific physical cases: e.g. matter 1 is water \iff $\Gamma_1 = \gamma_1$
- specific structure of the system
- systematic study of factorizations

What is "simpler"?

- More constraints: study $I + \langle f \rangle \iff$ study $V(I) \cap V(f)$
- Less components: study $I + \langle Uf 1 \rangle \iff$ study $V(I) \setminus V(f)$

Method

Obvious method?

Compute a Gröbner basis of this system

- Works in theory: method used in [Bonnard et al. 2013]
- Impracticable in full generality

This work

Decomposition into simpler problems

- easy simplifications (e.g. $\gamma_1 = 1$)
- ► specific physical cases: e.g. matter 1 is water $\iff \Gamma_1 = \gamma_1$
- specific structure of the system
- systematic study of factorizations

Typical example

If *I* contains $f \cdot g$, we can decompose the system into:

- either $f = 0 \rightarrow \text{add } f$ to the system
- ▶ or $f \neq 0$ and $g = 0 \rightarrow \text{add } Uf 1$ and g to the system

First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Why the rank? Because of ...

Theorem

Consider

$$M = (P_{i,j}(\mathbf{X}))_{1 \le i,j \le n}$$

Then generically:

$$det(M)$$
 singular \implies rank $(M) < n - 1$

For our specific matrix, we do not know if the theorem applies.

 \implies We need to consider both branches.

First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Why the rank? Because of ...

Theorem

Consider

$$M = (P_{i,j}(\mathbf{X}))_{1 \le i,j \le n}$$

Then generically:

$$det(M)$$
 singular \implies rank $(M) < n - 1$

For our specific matrix, we do not know if the theorem applies.

 \implies We need to consider both branches.

The case rank(M) < 3: classification

$$\left\langle D, \frac{\partial D}{\partial y_1}, \frac{\partial D}{\partial y_2}, \frac{\partial D}{\partial z_1}, \frac{\partial D}{\partial z_2}, 3\text{-minors of } M \right\rangle$$
 contains $P = \sum_{d=0}^4 a_d(\Gamma_1, \Gamma_2, \gamma_2) y_2^{2d}$

We classify depending on the number of roots of *P* in $Y_2 = y_2^2$:

- First bound: degree of P
- Need to handle multiple roots (for example using discriminants)

First decomposition: rank of the matrix

We split the problem depending on the rank of the matrix:

Why the rank? Because of ...

Theorem

Consider

$$M = (P_{i,j}(\mathbf{X}))_{1 \le i,j \le n}$$

Then generically:

$$det(M)$$
 singular \implies rank $(M) < n - 1$

For our specific matrix, the theorem does not apply.

 \implies We need to consider both branches.

The case rank(M) = n - 1: incidence varieties

Theorem

Consider $M = (P_{i,j}(\mathbf{X}))_{1 \le i,j \le n}$ and let \mathcal{I} be the incidence variety defined by

$$M \quad \left] \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

If (\mathbf{x}) is a point of $V(\det(M))$, then:

• there exists a non-zero vector $\Lambda = (\lambda_i)$ such that $(\mathbf{x}, \Lambda) \in \mathcal{I}$

The case rank(M) = n - 1: incidence varieties

Theorem

Consider $M = (P_{i,j}(\mathbf{X}))_{1 \le i,j \le n}$ and let \mathcal{I} be the incidence variety defined by

$$M \quad \left] \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

If (**x**) is a singular point of $V(\det(M))$ such that $M(\mathbf{x})$ has rank n - 1, then:

- ▶ there exists a non-zero vector $\Lambda = (\lambda_i)$ such that $(\mathbf{x}, \Lambda) \in \mathcal{I}$, and
- A is unique up to scalar multiplication, and
- (\mathbf{x}, Λ) is a singular point of \mathcal{I} w.r.t. **X**

The case rank(M) = n - 1: incidence varieties

Theorem

Consider $M = (P_{i,j}(\mathbf{X}))_{1 \le i,j \le n}$ and let \mathcal{I} be the incidence variety defined by

$$\begin{bmatrix} M \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

If (**x**) is a singular point of $V(\det(M))$ such that $M(\mathbf{x})$ has rank n - 1, then:

- ▶ there exists a non-zero vector $\Lambda = (\lambda_i)$ such that $(\mathbf{x}, \Lambda) \in \mathcal{I}$, and
- Λ is unique up to scalar multiplication, and
- (\mathbf{x}, Λ) is a singular point of \mathcal{I} w.r.t. **X**

$$\left\langle D, \frac{\partial D}{\partial y_i, z_i}, \underbrace{M \cdot \Lambda, \frac{\partial M \cdot \Lambda}{\partial y_i, z_i}}_{\text{Non-zero } 3 \times 3 \text{ minor}}, \underbrace{\mathcal{M}_k \neq 0}_{\substack{1 \le k \le 16 \\ 1 \le i \le 4}}_{\text{Non-zero coordinate}} \right\rangle$$

Overview of the classification

More branches from factorizations

Overview of the classification

Conclusion, perspectives

What has been done?

Classification of singular trajectories for the saturation control

- Exhaustive classification in some particular cases
- Some branches entirely explored in full generality

Still work in progress

- Some branches not solved yet in full generality
- More physical constraints have to be taken into account
- Specific physical cases do not necessarily appear in the classification

Applications

- Identification of the situations where the saturation method may fail
- New control policies trying to avoid these points

Overview of the classification

Thank you for your attention! Merci pour votre attention!