On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems

Jean-Charles Faugère¹ Mohab Safey El Din^{1,2}

Thibaut Verron¹

¹ Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe Po∟SYs Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

²Institut Universitaire de France

Journées Nationales de Calcul Formel, 6 novembre 2014

Context

Polynomial System Solving

- ► Input: polynomial system $f_1, \ldots, f_m \in \mathbb{K}[X_1, \ldots, X_n]$
- Output: exact solution

Important and difficult

- Many applications
 - Cryptography, mechanics...
- Difficult problem
 - Decision problem is NP-hard
- Many tools
 - Triangular sets [Aubry, Lazard and Moreno Maza 1999]
 - Resultants [Cattani and Dickenstein 2005]
 - Geometric resolution [Giusti, Lecerf and Salvy 2001]
 - Gröbner bases [Buchberger 1965]

Context

Polynomial System Solving

- ► Input: polynomial system $f_1, \ldots, f_m \in \mathbb{K}[X_1, \ldots, X_n]$
- Output: exact solution

Computing Gröbner bases

(Buchberger, F₄, F₅...)

- 1. Select a set of pairs of polynomials from a queue
- 2. Reduce these polynomials
- 3. Add the new polynomials to the basis, add new pairs to the queue
- 4. Repeat 1-3 until the queue is empty

Context

Polynomial System Solving

- ► Input: polynomial system $f_1, \ldots, f_m \in \mathbb{K}[X_1, \ldots, X_n]$
- Output: exact solution

Computing Gröbner bases

(Buchberger, F₄, F₅...)

- 1. Select a set of pairs of polynomials from a queue
- 2. Reduce these polynomials
- Add the new polynomials to the basis, add new pairs to the queue
- 4. Repeat 1-3 until the queue is empty

Importance of structure

- Systems from applications are not generic!
- Design dedicated strategies
- Complexity studies with generic properties

Examples of structures

- Homogeneous systems
- Multi-homogeneous systems (Dickenstein, Emiris, Faugère/Safey/Spaenlehauer...)
- Systems with group symmetries (Colin, Gattermann, Faugère/Rahmany, Faugère/Svartz...)
- Weighted homogeneous systems
- Sparse systems (Sturmfels, Faugère/Spaenlehauer/Svartz...)

Problem statement: an example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

$$\begin{aligned} & = \begin{bmatrix} 7871\\ 14294\\ 32775\\ 20209 \end{bmatrix} e_{1}^{56} e_{1}^{5} e_{1}^{5} e_{1}^{5} e_{1}^{5} e_{1}^{5} e_{1}^{5} e_{1}^{5} e_{1}^{2} e_{1}^{5} e_{1}^{2} e_{1}^{5} e_{2}^{2} e_{1}^{5} e_{2}^{5} e_{1}^{5} e_{2}^{5} e_{1}^{5} e_{2}^{5} e_{1}^{5} e_{1}^$$

Description of the system

► Ideal invariant under the group $(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \mathfrak{S}_n$, rewritten with the invariants:

 $\begin{cases} \tilde{e}_i := e_i(x_1^2, \dots, x_n^2) \ (1 \le i \le n-1) \\ e_n(x_1, \dots, x_n) \end{cases}$

- n equations of degree 2^{n−1} in F_q[ẽ₁,..., ẽ_{n−1}, e_n]
- 1 DLP = thousands of such systems

Goal: compute a Gröbner basis

- Normal strategy (total degree)
 difficult
 - \rightarrow non regular
- Weighted degree strategy Weight $(\tilde{e}_i) = 2 \cdot \text{Weight}(e_i)$ $\rightarrow \text{easier}$
 - \rightarrow regular

Problem statement: an example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

$$= \begin{bmatrix} 7871\\ 14294\\ 32775\\ 20289 \end{bmatrix} \underbrace{e_{1}^{56} + \begin{bmatrix} 53362\\ 36407\\ 38407\\ 20289 \end{bmatrix}}_{26407} \underbrace{e_{1}^{6} + \begin{bmatrix} 22627\\ 128\\ 3037\\ 38424\\ 41455 \end{bmatrix}}_{2} \underbrace{e_{1}^{7} \tilde{e}_{2} + \begin{bmatrix} 22823\\ 2317\\ 29298\\ 5635 \end{bmatrix}}_{2} \underbrace{e_{1}^{5} \tilde{e}_{2}^{2} + \begin{bmatrix} 9843\\ 9752\\ 27066\\ 64195\\ 63674 \end{bmatrix}}_{2} \underbrace{e_{1}^{4} \tilde{e}_{2}^{4} + \begin{bmatrix} 22459\\ 28289\\ 17964\\ 5718 \end{bmatrix}}_{17964} \underbrace{e_{1}^{5} \tilde{e}_{2}^{2} + \begin{bmatrix} 8841\\ 2317\\ 8275\\ 8283 \end{bmatrix}}_{2} \underbrace{e_{1}^{5} \tilde{e}_{2}^{2} + \begin{bmatrix} 27518\\ 8059 \end{bmatrix}}_{2776} \underbrace{e_{1}^{5} \tilde{e}_{2}^{2} + \begin{bmatrix} 8841\\ 257146\\ 57146 \end{bmatrix}}_{17164} \underbrace{e_{1}^{5} \tilde{e}_{2}^{2} + \begin{bmatrix} 8841\\ 2788\\ 815\\ 8241 \end{bmatrix}}_{2} \underbrace{e_{1}^{7} \tilde{e}_{3}^{2} + \begin{bmatrix} 8842\\ 27518\\ 31159\\ 31159\\ 31276\\ 3276 \end{bmatrix}}_{2} \underbrace{e_{1}^{6} \tilde{e}_{2} \tilde{e}_{3} + 2067 \text{ smaller monomials}}_{2}$$

Description of the system

► Ideal invariant under the group $(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \mathfrak{S}_n$, rewritten with the invariants:

ewritten with the invariants:

$$\begin{cases} \tilde{e}_i := e_i(x_1^2, \dots, x_n^2) \ (1 \le i \le n-1) \\ e_n(x_1, \dots, x_n) \end{cases}$$

- ▶ n equations of degree 2ⁿ⁻¹ in 𝔽_q[˜₁,..., ˜_{n-1}, 𝑛_n]
- 1 DLP = thousands of such systems

Goal: compute a Gröbner basis

- ► Normal strategy (total degree) → difficult
 - \rightarrow non regular
- Weighted degree strategy Weight(\tilde{e}_i) = 2 · Weight(e_i) \rightarrow easier \rightarrow regular

Problem statement: an example (2)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

- ▶ 5 equations of degree (16, ..., 16) in 5 variables with W = (2, ..., 2, 1)
- 65 536 solutions
- Without weights: 2 h (37 steps)
- With weights: 15 min (29 steps)

Problem statement: an example (3)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

Description of the system

► Ideal invariant under the group $(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \mathfrak{S}_n$, rewritten with the invariants:

rewritten with the invariants:

 $\begin{cases} \tilde{e}_i := e_i(x_1^2, \dots, x_n^2) \ (1 \le i \le n-1) \\ e_n(x_1, \dots, x_n) \end{cases}$

- ▶ n equations of degree 2ⁿ⁻¹ in 𝔽_q[˜₁,..., ˜_{n-1}, 𝑛_n]
- 1 DLP = thousands of such systems

Goal: compute a Gröbner basis

- Normal strategy (total degree)
 → difficult
 - \rightarrow non regular
- ► Weighted degree strategy Weight(\tilde{e}_i) = 2 · Weight(e_i) \rightarrow easier
 - \rightarrow easier
 - \rightarrow regular

Problem statement: an example (4)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

- ▶ 5 equations of degree (16, ..., 16) in 5 variables with W = (2, ..., 2, 1)
- 65 536 solutions
- Without weights: 2 h (37 steps)
- With weights: 15 min (29 steps)

Problem statement: another example

Ideal of relations between 50 monomials of degree 2 in 25 variables

- 50 equations of degree 2 in 75 variables
- GREVLEX ordering (e.g. for a 2-step strategy)
- Without weights: 3.9 h (34 steps reaching degree 22)
- With weights: 0.1 s (5 steps reaching degree 6)

Problem statement: another example

Ideal of relations between 50 monomials of degree 2 in 25 variables

Problem

- Strategy for this structure?
- Complexity bounds? Relevant generic properties?

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, ..., w_n) \in \mathbb{N}^n$ Weighted degree (or *W*-degree): $\deg_W(X_1^{\alpha_1} ... X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$ Weighted homogeneous polynomial: poly. with monomials of same *W*-degree

Given a general (not weighted homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case Complexity estimates: consider the highest *W*-degree components of the system

- Enough to study weighted homogeneous systems
- ▶ Notations: (f_1, \ldots, f_m) , *W*-homo. with *W*-degree (d_1, \ldots, d_m)

Strategy in the homogeneous case

Strategy in the W-homogeneous case

Strategy in the W-homogeneous case

Strategy in the W-homogeneous case

Results from the homogeneous case ($m \le n$) [Faugère, Safey, V. 2013]

- Generic properties: regular sequences (m = n), Noether position (m < n)
- ► Weighted Macaulay's bound: $d_{\max} \leq \sum_{i=1}^{m} d_i \sum_{i=1}^{m} w_i + \max_{1 \leq j \leq m} \{w_j\}$

Main results

► The previous bound:
$$d_{\max} \leq \sum_{i=1}^{m} d_i - \sum_{i=1}^{m} w_i + \max_{1 \leq j \leq m} \{w_j\}$$

The order of the variables matters: simultaneous Noether position ($m \le n$)

• Better bound on
$$d_{\max}$$
: $d_{\max} \leq \sum_{i=1}^{m} d_i - \sum_{i=1}^{m} w_i + w_m$

► Algorithmic improvement: order the variables so that $w_m \le w_j \quad \forall j$

The overdetermined case: semi-regular sequences

- Tricky definition in the weighted case
- With hypotheses, same characterization as in the homogeneous case
- Practical and theoretical gains

Regular sequences ($m \le n$)

Definition

 $F = (f_1, \dots, f_m) \text{ W-homo.} \in \mathbb{K}[\mathbf{X}] \text{ is regular iff}$ $\begin{cases} \langle F \rangle \neq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}]/I_{i-1} \end{cases}$ $(I_i := \langle f_1, \dots, f_i \rangle)$

Properties

- Generic if not empty (for large classes of W-degrees and weights)
- Algorithmic benefit: F₅ criterion
- Hilbert Series:

HS = generating series of the rank defects of the F₅ matrices per W-deg

$$=\frac{\prod_{i=1}^{m}(1-T^{d_i})}{\prod_{i=1}^{n}(1-T^{w_i})}$$

• Macaulay bound (if m = n): $d_{\max} \leq \sum_{i=1}^{n} d_i - \sum_{i=1}^{n} w_i + \max_{1 \leq j \leq n} \{w_j\}$

Noether position (m < n)

Definition

 $F = (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n]$ is in Noether position iff (F, X_{m+1}, \dots, X_n) is regular

"Regularity + selected variables"

Properties

- Generic if not empty
- ► True up to a generic change of coordinates if non-trivial changes exist (Ex: if $1 = w_n | w_{n-1} | ... | w_1$)
- ► Macaulay bound on d_{\max} : $d_{\max} \le \sum_{i=1}^{m} d_i \sum_{i=1}^{m} w_i + \max_{1 \le j \le m} \{w_j\}$ (only the first *m* weights matter)

Simultaneous Noether position ($m \le n$)

Noether position = information on what variables are important \Rightarrow Good property for *W*-homogeneous systems in general

Definition

 $F = (f_1, \ldots, f_m) \in \mathbb{K}[X_1, \ldots, X_n]$ is in simultaneous Noether position iff (f_1, \ldots, f_i) is in Noether pos. for all *j*'s

Properties

$$\blacktriangleright d_{\max} \leq \sum_{i=1}^{m} (d_i - w_i) + w_m$$

• Better to have
$$w_m \leq w_j \ (j \neq m)$$

Simultaneous Noether position ($m \le n$)

Noether position = information on what variables are important \Rightarrow Good property for *W*-homogeneous systems in general

Definition

 $F = (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n]$ is in simultaneous Noether position iff (f_1, \dots, f_j) is in Noether pos. for all *j*'s

Properties

$$\blacktriangleright d_{\max} \leq \sum_{i=1}^{m} (d_i - w_i) + w_m$$

• Better to have
$$w_m \leq w_j$$
 ($j \neq m$)

Order of the variables	W _m	d _{max}	Macaulay's bound	New bound	F_5 time (s)
$X_1 > X_2 > X_3 > X_4$	1	210	229	210	101.9
$X_4 > X_3 > X_2 > X_1$	20	220	229	229	255.5

Generic W-homo. system, W-degree (60, 60, 60, 60) w.r.t W = (20, 5, 5, 1)

Overdetermined case (m > n)

Equivalent definitions in the homogeneous case

$$F = (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n] \text{ homogeneous is semi-regular}$$

$$\iff \forall k \in \{1, \dots, m\}, \forall d \in \mathbb{N}, (\cdot f_k) : (A/I_{k-1})_d \to (A/I_{k-1})_{d+d_k} \text{ is full-rank}$$

$$\iff \forall k \in \{1, \dots, m\}, \mathsf{HS}_{A/I_k} = \left\lfloor \frac{\prod_{i=1}^k (1 - T^{d_i})}{(1 - T)^n} \right\rfloor_+ (\text{truncated at the first coef.} \le 0)$$

But in the weighted case...

Ex:
$$n = 3$$
, $W = (3, 2, 1)$, $m = 8$, $D = (6, ..., 6)$:

$$\left[\frac{\prod_{i=1}^{m}(1-T^{d_i})}{\prod_{i=1}^{n}(1-T^{w_i})}\right]_{+} = 1 + T + 2T^2 + 3T^3 + 4T^4 + 5T^5 - T^6 + 0T^7 - 6T^8 + \cdots$$
$$HS_{A/I} = 1 + T + 2T^2 + 3T^3 + 4T^4 + 5T^5 + 0T^6 + T^7$$

Overdetermined case (m > n)

Equivalent definitions in the weighted homogeneous case

Assume that $1 = w_n | w_{n-1} | ... | w_1$.

 $\begin{aligned} F &= (f_1, \dots, f_m) \in \mathbb{K}[X_1, \dots, X_n] \text{ W-homogeneous is semi-regular} \\ \iff \forall k \in \{1, \dots, m\}, \forall d \in \mathbb{N}, (\cdot f_k) : (A/I_{k-1})_d \to (A/I_{k-1})_{d+d_k} \text{ is full-rank} \\ \iff \forall k \in \{1, \dots, m\}, \mathsf{HS}_{A/I_k} = \left\lfloor \frac{\prod_{i=1}^k (1 - T^{d_i})}{\prod_{i=1}^n (1 - T^{w_i})} \right\rfloor_+ (\text{truncated at the first coef.} \le 0) \end{aligned}$

Properties

- Conjectured to be generic
 - Proved in some cases (ex: m = n + 1)
- Practical and theoretical gains
 - Asymptotic studies of d_{max}

Experimental data

F : affine system with a weighted homogeneous structure:

$$f_i = \sum_lpha c_lpha m_lpha$$
 with $\deg_W(m_lpha) \leq d_i$

Assumption: the highest W-degree components are generic

System	Normal (s)	Weighted (s)	Speed-up
DLP Edwards $n = 5$, GREVLEX order (F ₅ , FGb)	6461.2	935.4	6.9
DLP Edwards $n = 5$, GREVLEX order (F ₄ , Magma)	56 195.0	6044.0	9.3
Invariant rels. Cyclic $n = 5$, GREvLEX order (F ₄ , Magma)	> 75 000	392.7	> 191
Invariant rels. Cyclic $n = 5$, elimination order (F ₄ , Magma)	NA	382.5	NA
Monomial rels., $n = 26$, $m = 52$, GREVLEX order (F ₄ , Magma)	14630.6	0.2	73 153
Monomial rels., $n = 26$, $m = 52$, elimination order (F ₄ , Magma)	17599.5	8054.2	2.2

Conclusion and perspectives

What has been done

- ► Theoretical results for W-homogeneous systems under generic properties
- Complexity bounds for F₅ for a W-GREVLEX basis
 - Size of the matrices divided by $(\prod w_i)$
 - Bounds on the maximal degree reached by the F₅ algorithm
 - Bounds for 0-dim., positive-dim. and overdetermined systems
 - Indication on the best order for the variables
- Consequences:
 - Zero-dim: already successfully used on systems from the DLP
 - Positive-dim: applicable to polynomial inversion problems
 - Overdetermined: applicable to many problems (ex: cryptography)

Perspectives

- Some timings still not completely understood
- Affine systems: algorithm to find a good system of weights
- ► Additional structure: *W*-homo. for several systems of weights, weights ≤ 0...

Conclusion and perspectives

What has been done

- ► Theoretical results for W-homogeneous systems under generic properties
- Complexity bounds for F₅ for a W-GREVLEX basis
 - Size of the matrices divided by $(\prod w_i)$
 - Bounds on the maximal degree reached by the F₅ algorithm
 - Bounds for 0-dim., positive-dim. and overdetermined systems
 - Indication on the best order for the variables
- Consequences:
 - Zero-dim: already successfully used on systems from the DLP
 - Positive-dim: applicable to polynomial inversion problems
 - Overdetermined: applicable to many problems (ex: cryptography)

Perspectives

- Some timings still not completely understood
- Affine systems: algorithm to find a good system of weights
- Additional structure: W-homo. for several systems of weights, weights $\leq 0...$

Thank you for your attention!