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Context

Polynomial System Solving

I Input: polynomial system
f1, . . . , fm ∈ K[X1, . . . ,Xn]

I Output: exact solution

Important and difficult

I Many applications
I Cryptography, mechanics...

I Difficult problem
I Decision problem is NP-hard

I Many tools
I Triangular sets [Aubry,

Lazard and Moreno Maza
1999]

I Resultants [Cattani and
Dickenstein 2005]

I Geometric resolution [Giusti,
Lecerf and Salvy 2001]

I Gröbner bases [Buchberger
1965]

Importance of structure

I Systems from applications are not generic!
I Design dedicated strategies
I Complexity studies with generic properties

Examples of structures

I Homogeneous systems
I Multi-homogeneous systems (Dickenstein,

Emiris, Faugère/Safey/Spaenlehauer...)
I Systems with group symmetries (Colin,

Gattermann, Faugère/Rahmany,
Faugère/Svartz...)

I Weighted homogeneous systems
I Sparse systems (Sturmfels,

Faugère/Spaenlehauer/Svartz...)
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Problem statement: an example (1)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
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ẽ8
1 +




26257
128

3037
38424
41456




ẽ7
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1 ẽ2

2 +




19817
29737
52187
36574
46683




ẽ5
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ẽ4
1 ẽ4
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Description of the system

I Ideal invariant under the group
(Z/2Z)n−1 oSn,
rewritten with the invariants:{

ẽi := ei (x2
1 , . . . , x2

n ) (1 ≤ i ≤ n − 1)
en(x1, . . . , xn)

I n equations of degree 2n−1

in Fq [ẽ1, . . . , ẽn−1, en]

I 1 DLP = thousands of such systems

Goal: compute a Gröbner basis
I Normal strategy (total degree)
→ difficult
→ non regular

I Weighted degree strategy
Weight(ẽi ) = 2 ·Weight(ei )
→ easier
→ regular
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ẽ2
1 ẽ6
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Problem statement: an example (2)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

1 5 10 15 20 25 30 35

10

20

30

Step

Degree

W -degree/2

Algorithm F5, step by step

Normal

I 5 equations of degree (16, . . . , 16) in 5 variables with W = (2, . . . , 2, 1)
I 65 536 solutions
I Without weights: 2 h (37 steps)
I With weights: 15 min (29 steps)
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Problem statement: an example (4)
Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
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W -degree/2

Algorithm F5, step by step
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I 65 536 solutions
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Problem statement: another example
Ideal of relations between 50 monomials of degree 2 in 25 variables

0 5 15 25 35

10

20

Step

Degree
Algorithm F4, step by step

Normal
Weighted

I 50 equations of degree 2 in 75 variables
I GREVLEX ordering (e.g. for a 2-step strategy)
I Without weights: 3.9 h (34 steps reaching degree 22)
I With weights: 0.1 s (5 steps reaching degree 6)



Problem statement: another example
Ideal of relations between 50 monomials of degree 2 in 25 variables

0 5 15 25 35

10

20

Step

Degree
Algorithm F4, step by step

Normal
Weighted

Problem

I Strategy for this structure?
I Complexity bounds? Relevant generic properties?



Weighted homogeneous systems

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: W = (w1, . . . ,wn) ∈ Nn

Weighted degree (or W -degree): degW (Xα1
1 . . .Xαn

n ) =
∑n

i=1 wiαi

Weighted homogeneous polynomial: poly. with monomials of same W -degree

Given a general (not weighted homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case

Complexity estimates: consider the highest W -degree components of the system

I Enough to study weighted homogeneous systems
I Notations: (f1, . . . , fm), W -homo. with W -degree (d1, . . . , dm)



Strategy in the homogeneous case

(W -homogeneous) (Homogeneous)

F F

W -GREVLEX
basis of F

GREVLEX
basis of F

F5

Reduces matrices
of monomials
degree by degree

→ Size of the matrices

→ Max degree dmax





O

(
dmax

(
n + dmax − 1

dmax

)ω)

degX1

degX2

deg = 41

1



Strategy in the W -homogeneous case
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out of 6



Strategy in the W -homogeneous case

(W -homogeneous) (Homogeneous)

F F (X w1
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Results from the homogeneous case (m ≤ n) [Faugère, Safey, V. 2013]

I Generic properties: regular sequences (m = n), Noether position (m < n)

I Weighted Macaulay’s bound: dmax ≤
m∑

i=1

di −
m∑

i=1

wi + max
1≤j≤m

{wj}



Main results

I The previous bound: dmax ≤
m∑

i=1

di −
m∑

i=1

wi + max
1≤j≤m

{wj}

The order of the variables matters: simultaneous Noether position (m ≤ n)

I Better bound on dmax: dmax ≤
m∑

i=1

di −
m∑

i=1

wi + wm

I Algorithmic improvement: order the variables so that wm ≤ wj ∀j

The overdetermined case: semi-regular sequences

I Tricky definition in the weighted case
I With hypotheses, same characterization as in the homogeneous case
I Practical and theoretical gains



Regular sequences (m ≤ n)

Definition
F = (f1, . . . , fm) W -homo. ∈ K[X] is regular iff

{
〈F 〉 6= K[X]
∀i , fi is no zero-divisor in K[X]/Ii−1

(Ii := 〈f1, . . . , fi〉)

X

Y

X 2 + Y 2 − 1
X − 2Y − 1

Properties

I Generic if not empty (for large classes of W -degrees and weights)
I Algorithmic benefit: F5 criterion
I Hilbert Series:

HS = generating series of the rank defects of the F5 matrices per W -deg

=

∏m
i=1(1− T di )∏n
i=1(1− T wi )

I Macaulay bound (if m = n): dmax ≤
n∑

i=1

di −
n∑

i=1

wi + max
1≤j≤n

{wj}



Noether position (m < n)

Definition
F = (f1, . . . , fm) ∈ K[X1, . . . ,Xn]

is in Noether position iff

(F ,Xm+1, . . . ,Xn) is regular

“Regularity + selected variables”

X

Y X

X

Y X

Properties

I Generic if not empty
I True up to a generic change of coordinates if non-trivial changes exist

(Ex: if 1 = wn | wn−1 | . . . | w1)

I Macaulay bound on dmax: dmax ≤
m∑

i=1

di −
m∑

i=1

wi + max
1≤j≤m

{wj}

(only the first m weights matter)



Simultaneous Noether position (m ≤ n)

Noether position = information on what variables are important
⇒ Good property for W -homogeneous systems in general

Definition

F = (f1, . . . , fm) ∈ K[X1, . . . ,Xn]

is in simultaneous Noether position iff

(f1, . . . , fj) is in Noether pos. for all j ’s

Properties

I dmax ≤
m∑

i=1

(di − wi) + wm

I Better to have wm ≤ wj (j 6= m)

Order of the variables wm dmax
Macaulay’s

bound New bound F5 time (s)

X1 > X2 > X3 > X4 1 210 229 210 101.9

X4 > X3 > X2 > X1 20 220 229 229 255.5

Generic W -homo. system, W -degree (60, 60, 60, 60) w.r.t W = (20, 5, 5, 1)
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Overdetermined case (m > n)

Equivalent definitions in the homogeneous case

F = (f1, . . . , fm) ∈ K[X1, . . . ,Xn] homogeneous is semi-regular

⇐⇒ ∀ k ∈ {1, . . . ,m}, ∀ d ∈ N, ( · fk ) : (A/Ik−1)d → (A/Ik−1)d+dk
is full-rank

⇐⇒ ∀ k ∈ {1, . . . ,m},HSA/Ik =

⌊∏k
i=1(1− T di )

(1− T )n

⌋

+
(truncated at the first coef. ≤ 0)

But in the weighted case...

Ex: n = 3, W = (3, 2, 1), m = 8, D = (6, . . . , 6):
⌊∏m

i=1(1− T di )∏n
i=1(1− T wi )

⌋

+
= 1 + T + 2T 2 + 3T 3 + 4T 4 + 5T 5−T 6 + 0T 7 − 6T 8 + · · ·

HSA/I = 1 + T + 2T 2 + 3T 3 + 4T 4 + 5T 5+0T 6 + T 7



Overdetermined case (m > n)

Equivalent definitions in the weighted homogeneous case

Assume that 1 = wn | wn−1 | . . . | w1.

F = (f1, . . . , fm) ∈ K[X1, . . . ,Xn] W -homogeneous is semi-regular

⇐⇒ ∀ k ∈ {1, . . . ,m}, ∀ d ∈ N, ( · fk ) : (A/Ik−1)d → (A/Ik−1)d+dk
is full-rank

⇐⇒ ∀ k ∈ {1, . . . ,m},HSA/Ik =

⌊ ∏k
i=1(1− T di )∏n
i=1(1− T wi )

⌋

+
(truncated at the first coef. ≤ 0)

Properties
I Conjectured to be generic

I Proved in some cases (ex: m = n + 1)

I Practical and theoretical gains
I Asymptotic studies of dmax



Experimental data

F : affine system with a weighted homogeneous structure:

fi =
∑

α

cαmα with degW (mα) ≤ di

Assumption: the highest W -degree components are generic

Normal strategy F GREVLEX
basis of F

Weighted normal
strategy F W -GREVLEX

basis of F

F (XW )
GREVLEX

basis of F (XW )

F5

F5

O

(
dmax

(
∏

wi)
ω

(
n + dmax − 1

dmax

)ω)



Experimental results

System Normal (s) Weighted (s) Speed-up

DLP Edwards n = 5,
GREVLEX order (F5, FGb) 6461.2 935.4 6.9

DLP Edwards n = 5,
GREVLEX order (F4, Magma) 56 195.0 6044.0 9.3

Invariant rels. Cyclic n = 5,
GREVLEX order (F4, Magma) > 75 000 392.7 > 191

Invariant rels. Cyclic n = 5,
elimination order (F4, Magma) NA 382.5 NA

Monomial rels., n = 26, m = 52,
GREVLEX order (F4, Magma) 14 630.6 0.2 73 153

Monomial rels., n = 26, m = 52,
elimination order (F4, Magma) 17 599.5 8054.2 2.2



Conclusion and perspectives

What has been done

I Theoretical results for W -homogeneous systems under generic properties
I Complexity bounds for F5 for a W -GREVLEX basis

I Size of the matrices divided by (
∏

wi )
I Bounds on the maximal degree reached by the F5 algorithm
I Bounds for 0-dim., positive-dim. and overdetermined systems
I Indication on the best order for the variables

I Consequences:
I Zero-dim: already successfully used on systems from the DLP
I Positive-dim: applicable to polynomial inversion problems
I Overdetermined: applicable to many problems (ex: cryptography)

Perspectives

I Some timings still not completely understood
I Affine systems: algorithm to find a good system of weights
I Additional structure: W -homo. for several systems of weights, weights ≤ 0. . .
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One last word

Thank you for your attention!


