On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems

Jean-Charles Faugère ${ }^{1} \quad$ Mohab Safey El Din ${ }^{1,2}$ Thibaut Verron ${ }^{1}$
${ }^{1}$ Université Pierre et Marie Curie, Paris 6, France
INRIA Paris-Rocquencourt, Équipe PolSYs
Laboratoire d'Informatique de Paris 6, UMR CNRS 7606
${ }^{2}$ Institut Universitaire de France

Journées Nationales de Calcul Formel, 6 novembre 2014

Context

Polynomial System Solving

- Input: polynomial system
$f_{1}, \ldots, f_{m} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
- Output: exact solution

Important and difficult

- Many applications
- Cryptography, mechanics...
- Difficult problem
- Decision problem is NP-hard
- Many tools
- Triangular sets [Aubry, Lazard and Moreno Maza 1999]
- Resultants [Cattani and Dickenstein 2005]
- Geometric resolution [Giusti, Lecerf and Salvy 2001]
- Gröbner bases [Buchberger 1965]

Context

Polynomial System Solving

- Input: polynomial system
$f_{1}, \ldots, f_{m} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
- Output: exact solution

Computing Gröbner bases

(Buchberger, $\mathrm{F}_{4}, \mathrm{~F}_{5} \ldots$)

1. Select a set of pairs of polynomials from a queue
2. Reduce these polynomials
3. Add the new polynomials to the basis, add new pairs to the queue
4. Repeat $1-3$ until the queue is empty

Context

Polynomial System Solving

- Input: polynomial system $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
- Output: exact solution

Computing Gröbner bases

(Buchberger, $\mathrm{F}_{4}, \mathrm{~F}_{5} \ldots$..)

1. Select a set of pairs of polynomials from a queue
2. Reduce these polynomials
3. Add the new polynomials to the basis, add new pairs to the queue
4. Repeat $1-3$ until the queue is empty

Importance of structure

- Systems from applications are not generic!
- Design dedicated strategies
- Complexity studies with generic properties

Examples of structures

- Homogeneous systems
- Multi-homogeneous systems (Dickenstein, Emiris, Faugère/Safey/Spaenlehauer...)
- Systems with group symmetries (Colin, Gattermann, Faugère/Rahmany, Faugère/Svartz...)
- Weighted homogeneous systems
- Sparse systems (Sturmfels, Faugère/Spaenlehauer/Svartz...)

Problem statement: an example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
$\left.\begin{array}{l}0=\left[\begin{array}{c}7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}26257 \\ 128 \\ 3037 \\ 38424 \\ 41456\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{l}25203 \\ 23117 \\ 28918 \\ 29298 \\ 56353\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{l}19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{c}9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059\end{array}\right] \tilde{e}_{1}^{4} \tilde{e}_{2}^{4}+\left[\begin{array}{l}11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146\end{array}\right] \tilde{e}_{1}^{3} \tilde{e}_{2}^{5} \\ +\left[\begin{array}{c}46217 \\ 5478 \\ 45631 \\ 13171 \\ 42548\end{array}\right] \tilde{e}_{1}^{2} \tilde{e}_{2}^{6}+\left[\begin{array}{c}40524 \\ 60777 \\ 48809 \\ 1858 \\ 55751\end{array}\right] \tilde{e}_{1} \tilde{e}_{2}^{7}+\left[\begin{array}{c}4522 \\ 17281 \\ 1238 \\ 8056 \\ 54831\end{array}\right] \tilde{e}_{2}^{8}+\left[\tilde{e}_{1}^{7}\left[\begin{array}{c}27518 \\ 32176 \\ 54885 \\ 8241\end{array}\right] \tilde{e}_{3}+\left[\tilde{e}_{1}^{6} \tilde{e}_{2} \tilde{e}_{3}+2067 \text { smaller monomials }\right.\right. \\ 28424 \\ 5276\end{array}\right]$

Description of the system
Goal: compute a Gröbner basis

- Ideal invariant under the group
$(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes \mathfrak{S}_{n}$, rewritten with the invariants:
$\left\{\begin{array}{l}\tilde{e}_{i}:=e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \quad(1 \leq i \leq n-1) \\ e_{n}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
- n equations of degree 2^{n-1}
in $\mathbb{F}_{q}\left[\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}, e_{n}\right]$
- 1 DLP $=$ thousands of such systems

Problem statement: an example (1)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
$0=\left[\begin{array}{c}7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}26257 \\ 128 \\ 3037 \\ 38424 \\ 41456\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{l}25203 \\ 23117 \\ 28918 \\ 29298 \\ 56353\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{l}19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{l}9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059\end{array}\right] \tilde{e}_{1}^{4} \tilde{e}_{2}^{4}+\left[\begin{array}{l}11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146\end{array}\right] \tilde{e}_{1}^{3} \tilde{e}_{2}^{5}$
$+\left[\begin{array}{c}46217 \\ 5478 \\ 45631 \\ 13171 \\ 42548\end{array}\right] \tilde{e}_{1}^{2} \tilde{e}_{2}^{6}+\left[\begin{array}{c}63811 \\ 50777 \\ 48809 \\ 1858 \\ 55751\end{array}\right] \tilde{e}_{1} \tilde{e}_{2}^{7}+\left[\begin{array}{c}4522 \\ 6881 \\ 1238 \\ 8056 \\ 54831\end{array}\right] \tilde{e}_{2}^{8}+\left[\begin{array}{c}1728 \\ 18652 \\ 54885 \\ 824176 \\ 821159 \\ 28424 \\ 5276\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{3}^{6} \tilde{e}_{2} \tilde{e}_{3}+2067$ smaller monomials

Description of the system

- Ideal invariant under the group
$(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes \mathfrak{S}_{n}$, rewritten with the invariants:
$\left\{\begin{array}{l}\tilde{e}_{i}:=e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \quad(1 \leq i \leq n-1) \\ e_{n}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
- n equations of degree 2^{n-1}
in $\mathbb{F}_{q}\left[\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}, e_{n}\right]$
- 1 DLP $=$ thousands of such systems

Goal: compute a Gröbner basis

- Normal strategy (total degree) \rightarrow difficult
\rightarrow non regular
- Weighted degree strategy

Weight $\left(\tilde{e}_{i}\right)=2 \cdot$ Weight $\left(e_{i}\right)$ \rightarrow easier

Problem statement: an example (2)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

- 5 equations of degree $(16, \ldots, 16)$ in 5 variables with $W=(2, \ldots, 2,1)$
- 65536 solutions
- Without weights: 2 h (37 steps)

Problem statement: an example (3)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)
$0=\left[\begin{array}{c}7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}26257 \\ 128 \\ 3037 \\ 38424 \\ 41456\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{l}25203 \\ 23117 \\ 28918 \\ 29298 \\ 56353\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{l}19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{c}9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059\end{array}\right] \tilde{e}_{1}^{4} \tilde{e}_{2}^{4}+\left[\begin{array}{l}11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146\end{array}\right]$
$+\left[\begin{array}{c}46217 \\ 5478 \\ 45631 \\ 13171 \\ 42548\end{array}\right] \tilde{e}_{1}^{2} \tilde{e}_{2}^{6}+\left[\begin{array}{c}63811 \\ 50777 \\ 48809 \\ 1858 \\ 55751\end{array}\right] \tilde{e}_{2}^{5}$

Description of the system

- Ideal invariant under the group
$(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes \mathfrak{S}_{n}$, rewritten with the invariants:
$\left\{\begin{array}{l}\tilde{e}_{i}:=e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \quad(1 \leq i \leq n-1) \\ e_{n}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
- n equations of degree 2^{n-1} in $\mathbb{F}_{q}\left[\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}, e_{n}\right]$
- 1 DLP $=$ thousands of such systems

Goal: compute a Gröbner basis

- Normal strategy (total degree) \rightarrow difficult
\rightarrow non regular
- Weighted degree strategy

Weight $\left(\tilde{e}_{i}\right)=2 \cdot \operatorname{Weight}\left(e_{i}\right)$
\rightarrow easier
\rightarrow regular

Problem statement: an example (4)

Discrete Logarithm Problem on Edwards elliptic curves (Faugère, Gaudry, Huot, Renault 2013)

- 5 equations of degree $(16, \ldots, 16)$ in 5 variables with $W=(2, \ldots, 2,1)$
- 65536 solutions
- Without weights: 2 h (37 steps)
- With weights: 15 min (29 steps)

Problem statement: another example

Ideal of relations between 50 monomials of degree 2 in 25 variables

Algorithm F_{4}, step by step

- 50 equations of degree 2 in 75 variables
- GRevLex ordering (e.g. for a 2-step strategy)
- Without weights: 3.9 h (34 steps reaching degree 22)
- With weights: 0.1 s (5 steps reaching degree 6)

Problem statement: another example

Ideal of relations between 50 monomials of degree 2 in 25 variables

Algorithm F_{4}, step by step

Problem

- Strategy for this structure?
- Complexity bounds? Relevant generic properties?

Weighted homogeneous systems

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree (or W-degree): $\operatorname{deg}_{W}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$ Weighted homogeneous polynomial: poly. with monomials of same W-degree

Given a general (not weighted homogeneous) system and a system of weights
Computational strategy: weighted-homogenize it as in the homogeneous case Complexity estimates: consider the highest W-degree components of the system

- Enough to study weighted homogeneous systems
- Notations: $\left(f_{1}, \ldots, f_{m}\right), W$-homo. with W-degree $\left(d_{1}, \ldots, d_{m}\right)$

Strategy in the homogeneous case

(Homogeneous)

$$
\operatorname{deg}_{X_{2}}
$$

$$
O\left(d_{\max }\binom{n+d_{\max }-1}{d_{\max }}^{\omega}\right)
$$

Strategy in the W-homogeneous case

(W-homogeneous) (Homogeneous)

Strategy in the W-homogeneous case

(W-homogeneous)
(Homogeneous)

$$
O\left(\frac{d_{\max }}{\left(\prod w_{i}\right)^{\omega}}\binom{n+d_{\max }-1}{d_{\max }}^{\omega}\right)
$$

Strategy in the W-homogeneous case

(W-homogeneous) (Homogeneous)

Results from the homogeneous case $(m \leq n)$ [Faugère, Safey, V. 2013]

- Generic properties: regular sequences $(m=n)$, Noether position $(m<n)$
- Weighted Macaulay's bound: $d_{\text {max }} \leq \sum_{i=1}^{m} d_{i}-\sum_{i=1}^{m} w_{i}+\max _{1 \leq i \leq m}\left\{w_{j}\right\}$

Main results

- The previous bound: $d_{\max } \leq \sum_{i=1}^{m} d_{i}-\sum_{i=1}^{m} w_{i}+\max _{1 \leq j \leq m}\left\{w_{j}\right\}$

The order of the variables matters: simultaneous Noether position ($m \leq n$)

- Better bound on $d_{\text {max }}: d_{\text {max }} \leq \sum_{i=1}^{m} d_{i}-\sum_{i=1}^{m} w_{i}+w_{m}$
- Algorithmic improvement: order the variables so that $w_{m} \leq w_{j} \quad \forall j$

The overdetermined case: semi-regular sequences

- Tricky definition in the weighted case
- With hypotheses, same characterization as in the homogeneous case
- Practical and theoretical gains

Regular sequences $(m \leq n)$

Definition

$F=\left(f_{1}, \ldots, f_{m}\right) W$-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \neq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] / l_{i-1}
\end{array}\right.
$$

$$
\left(I_{i}:=\left\langle f_{1}, \ldots, f_{i}\right\rangle\right)
$$

Properties

- Generic if not empty (for large classes of W-degrees and weights)
- Algorithmic benefit: F_{5} criterion
- Hilbert Series:
$\mathrm{HS}=$ generating series of the rank defects of the F_{5} matrices per W-deg

$$
=\frac{\prod_{i=1}^{m}\left(1-T^{d_{i}}\right)}{\prod_{i=1}^{n}\left(1-T^{w_{i}}\right)}
$$

- Macaulay bound (if $m=n$): $d_{\text {max }} \leq \sum_{i=1}^{n} d_{i}-\sum_{i=1}^{n} w_{i}+\max _{1 \leq j \leq n}\left\{w_{j}\right\}$

Noether position $(m<n)$

Definition

$F=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
is in Noether position iff
$\left(F, X_{m+1}, \ldots, X_{n}\right)$ is regular
"Regularity + selected variables"

Properties

- Generic if not empty
- True up to a generic change of coordinates if non-trivial changes exist (Ex: if $1=w_{n}\left|w_{n-1}\right| \ldots \mid w_{1}$)
- Macaulay bound on $d_{\max }$: $d_{\max } \leq \sum_{i=1}^{m} d_{i}-\sum_{i=1}^{m} w_{i}+\max _{1 \leq i \leq m}\left\{w_{j}\right\}$ (only the first m weights matter)

Simultaneous Noether position ($m \leq n$)

Noether position = information on what variables are important \Rightarrow Good property for W-homogeneous systems in general

Definition

$F=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
is in simultaneous Noether position iff
$\left(f_{1}, \ldots, f_{j}\right)$ is in Noether pos. for all j 's

Properties

- $d_{\text {max }} \leq \sum_{i=1}^{m}\left(d_{i}-w_{i}\right)+w_{m}$
- Better to have $w_{m} \leq w_{j}(j \neq m)$

Simultaneous Noether position ($m \leq n$)

Noether position = information on what variables are important \Rightarrow Good property for W-homogeneous systems in general

Definition

$F=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ is in simultaneous Noether position iff $\left(f_{1}, \ldots, f_{j}\right)$ is in Noether pos. for all j 's

Properties

- $d_{\text {max }} \leq \sum_{i=1}^{m}\left(d_{i}-w_{i}\right)+w_{m}$
- Better to have $w_{m} \leq w_{j}(j \neq m)$

Order of the variables	w_{m}	$d_{\max }$	Macaulay's bound	New bound	F_{5} time (s)
$X_{1}>X_{2}>X_{3}>X_{4}$	1	210	229	210	101.9
$X_{4}>X_{3}>X_{2}>X_{1}$	20	220	229	229	255.5

Generic W-homo. system, W-degree $(60,60,60,60)$ w.r.t $W=(20,5,5,1)$

Overdetermined case $(m>n)$

Equivalent definitions in the homogeneous case

$F=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ homogeneous is semi-regular
$\Longleftrightarrow \forall k \in\{1, \ldots, m\}, \forall d \in \mathbb{N},\left(\cdot f_{k}\right):\left(A / I_{k-1}\right)_{d} \rightarrow\left(A / I_{k-1}\right)_{d+d_{k}}$ is full-rank
$\Longleftrightarrow \forall k \in\{1, \ldots, m\}, \mathrm{HS}_{A / /_{k}}=\left\lfloor\frac{\prod_{i=1}^{k}\left(1-T^{d_{i}}\right)}{(1-T)^{n}}\right\rfloor_{+}$(truncated at the first coef. ≤ 0)

But in the weighted case...

Ex: $n=3, W=(3,2,1), m=8, D=(6, \ldots, 6)$:

$$
\begin{gathered}
\left|\frac{\prod_{i=1}^{m}\left(1-T^{d_{i}}\right)}{\prod_{i=1}^{n}\left(1-T^{w_{i}}\right)}\right|_{+}=1+T+2 T^{2}+3 T^{3}+4 T^{4}+5 T^{5}-T^{6}+0 T^{7}-6 T^{8} . \\
H S_{A / I}=1+T+2 T^{2}+3 T^{3}+4 T^{4}+5 T^{5}+0 T^{6}+T^{7}
\end{gathered}
$$

Overdetermined case $(m>n)$

Equivalent definitions in the weighted homogeneous case

Assume that $1=w_{n}\left|w_{n-1}\right| \ldots \mid w_{1}$.
$F=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] W$-homogeneous is semi-regular
$\Longleftrightarrow \forall k \in\{1, \ldots, m\}, \forall d \in \mathbb{N},\left(\cdot f_{k}\right):\left(A / I_{k-1}\right)_{d} \rightarrow\left(A / I_{k-1}\right)_{d+d_{k}}$ is full-rank
$\Longleftrightarrow \forall k \in\{1, \ldots, m\}, \mathrm{HS}_{A / /_{k}}=\left\lfloor\left.\frac{\prod_{i=1}^{k}\left(1-T^{d_{i}}\right)}{\prod_{i=1}^{n}\left(1-T^{w_{i}}\right)}\right|_{+} \quad\right.$ (truncated at the first coef. ≤ 0)

Properties

- Conjectured to be generic
- Proved in some cases (ex: $m=n+1$)
- Practical and theoretical gains
- Asymptotic studies of $d_{\text {max }}$

Experimental data

$F:$ affine system with a weighted homogeneous structure:

$$
f_{i}=\sum_{\alpha} c_{\alpha} m_{\alpha} \text { with } \operatorname{deg}_{w}\left(m_{\alpha}\right) \leq d_{i}
$$

Assumption: the highest W-degree components are generic

Normal strategy

Weighted normal
strategy

$$
O\left(\frac{d_{\max }}{\left(\prod w_{i}\right)^{\omega}}\binom{n+d_{\max }-1}{d_{\max }}^{\omega}\right)
$$

Experimental results

System	Normal (s)	Weighted (s)	Speed-up
DLP Edwards $n=5$, GREVLEX order (F5, FGb)	6461.2	935.4	6.9
DLP Edwards $n=5$, GREVLEX order (F4, Magma)	56195.0	6044.0	9.3
Invariant rels. Cyclic $n=5$, GREvLEX order (F4, Magma)	>75000	392.7	>191
Invariant rels. Cyclic $n=5$, elimination order (F_{4}, Magma)	NA	382.5	NA
Monomial rels., $n=26, m=52$, GREVLEX order (F4, Magma)	14630.6	0.2	73153
Monomial rels., $n=26, m=52$, elimination order (F_{4}, Magma)	17599.5	8054.2	2.2

Conclusion and perspectives

What has been done

- Theoretical results for W-homogeneous systems under generic properties
- Complexity bounds for F_{5} for a W-GRevLex basis
- Size of the matrices divided by ($\prod w_{i}$)
- Bounds on the maximal degree reached by the F_{5} algorithm
- Bounds for 0-dim., positive-dim. and overdetermined systems
- Indication on the best order for the variables
- Consequences:
- Zero-dim: already successfully used on systems from the DLP
- Positive-dim: applicable to polynomial inversion problems
- Overdetermined: applicable to many problems (ex: cryptography)
- Some timings still not completely understood
- Affine systems: algorithm to find a good system of weights - Additional structure: W-homo. for several systems of weights, weights ≤ 0

Conclusion and perspectives

What has been done

- Theoretical results for W-homogeneous systems under generic properties
- Complexity bounds for F_{5} for a W-GRevLex basis
- Size of the matrices divided by ($\prod w_{i}$)
- Bounds on the maximal degree reached by the F_{5} algorithm
- Bounds for 0-dim., positive-dim. and overdetermined systems
- Indication on the best order for the variables
- Consequences:
- Zero-dim: already successfully used on systems from the DLP
- Positive-dim: applicable to polynomial inversion problems
- Overdetermined: applicable to many problems (ex: cryptography)

Perspectives

- Some timings still not completely understood
- Affine systems: algorithm to find a good system of weights
- Additional structure: W-homo. for several systems of weights, weights $\leq 0 \ldots$

One last word

Thank you for your attention!

