On The Complexity Of Computing Gröbner Bases For Quasi-Homogeneous Systems

Jean-Charles Faugère ${ }^{1} \quad$ Mohab Safey El Din ${ }^{1,2}$ Thibaut Verron ${ }^{1}$
${ }^{1}$ Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe PoLSys
Laboratoire d'Informatique de Paris 6, UMR CNRS 7606
${ }^{2}$ Institut Universitaire de France

22 mai 2014

Motivation

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)

$$
\begin{aligned}
& 0=\left[\begin{array}{c}
7871 \\
18574 \\
14294 \\
32775 \\
20289
\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}
53362 \\
50900 \\
36407 \\
58813 \\
20802
\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}
26257 \\
128 \\
3037 \\
38424 \\
41456
\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{c}
25203 \\
23117 \\
28918 \\
29298 \\
56353
\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{c}
19817 \\
29737 \\
52187 \\
36574 \\
46683
\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{c}
9843 \\
3752 \\
27006 \\
64195 \\
63059
\end{array}\right] \tilde{e}_{1}^{-} \tilde{e}_{2}^{4}+\left[\begin{array}{l}
11204 \\
25459 \\
58263 \\
17964 \\
57146
\end{array}\right] \\
& +\left[\begin{array}{c}
46217 \\
5478 \\
45631 \\
13171 \\
42548
\end{array}\right] \tilde{e}_{1}^{3} \tilde{e}_{2}^{5} \\
& \tilde{e}_{1}^{2} \tilde{e}_{2}^{6}+\left[\begin{array}{c}
63811 \\
50777 \\
48809 \\
1858 \\
55751
\end{array}\right] \tilde{e}_{1} \tilde{e}_{2}^{7}+\left[\begin{array}{c}
40524 \\
6881 \\
1238 \\
8056 \\
54831
\end{array}\right] \tilde{e}_{2}^{8}+\left[\begin{array}{c}
4522 \\
1728 \\
18652 \\
54885 \\
8241
\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{3}+\left[\begin{array}{c}
27518 \\
32176 \\
31159 \\
28424 \\
5276
\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2} \tilde{e}_{3}+2067 \text { smaller monomials }
\end{aligned}
$$

Motivation

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)
$0=\left[\begin{array}{c}7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}26257 \\ 128 \\ 3037 \\ 38424 \\ 41456\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{l}25203 \\ 23117 \\ 28918 \\ 29298 \\ 56353\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{c}19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{c}9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059\end{array}\right] \tilde{e}_{1}^{4} \tilde{e}_{2}^{4}+\left[\begin{array}{l}11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146\end{array}\right]$
$+\left[\begin{array}{c}46217 \\ 5478 \\ 45631 \\ 13171 \\ 42548\end{array}\right] \tilde{e}_{1}^{3} \tilde{e}_{2}^{5}$

Description of the system

- Ideal invariant under the group $(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes \mathfrak{S}_{n}$, rewritten with the invariants:
$\left\{\begin{array}{l}\tilde{e}_{i}:=e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \quad(1 \leq i \leq n-1) \\ e_{n}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
- n equations of degree 2^{n-1}
in $\mathbb{F}_{q}\left[\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}, e_{n}\right]$
- 1 DLP $=$ thousands of such systems

Goal: solve the system
\Longleftrightarrow compute a Gröbner basis
\rightarrow difficult (intractable with Magma) \rightarrow non regular

Weighted degree grading
Weight $\left(\tilde{e}_{i}\right)=2$. Weight $\left(e_{i}\right)$
\rightarrow easier
\square

- Two questions:
- Algorithms for this structure? - Complexity estimates?

Motivation

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)
$0=\left[\begin{array}{c}7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}26257 \\ 128 \\ 3037 \\ 38424 \\ 41456\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{l}25203 \\ 23117 \\ 28918 \\ 29298 \\ 56353\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{c}19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{c}9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059\end{array}\right] \tilde{e}_{1}^{4} \tilde{e}_{2}^{4}+\left[\begin{array}{l}11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146\end{array}\right]$
$+\left[\begin{array}{c}46217 \\ 5478 \\ 45631 \\ 13171 \\ 42548\end{array}\right] \tilde{e}_{1}^{3} \tilde{e}_{2}^{5}$

Description of the system

- Ideal invariant under the group
$(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes \mathfrak{S}_{n}$, rewritten with the invariants:
$\left\{\begin{array}{l}\tilde{e}_{i}:=e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \quad(1 \leq i \leq n-1) \\ e_{n}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
- n equations of degree 2^{n-1}
in $\mathbb{F}_{q}\left[\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}, e_{n}\right]$
- 1 DLP $=$ thousands of such systems

Goal: solve the system \Longleftrightarrow compute a Gröbner basis

- Total degree grading
\rightarrow difficult (intractable with Magma)
\rightarrow non regular

Weighted degree grading
Weight $\left(\tilde{e}_{i}\right)=2 \cdot$ Weight $\left(e_{i}\right)$
\square

- Two questions:
- Alaorithms for this structure? - Complexity estimates?

Motivation

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)
$\left.\begin{array}{l}0=\left[\begin{array}{c}7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289\end{array}\right] e_{5}^{16}+\left[\begin{array}{l}53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802\end{array}\right] \tilde{e}_{1}^{8}+\left[\begin{array}{c}26257 \\ 128 \\ 3037 \\ 38424 \\ 41456\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{2}+\left[\begin{array}{l}25203 \\ 23117 \\ 28918 \\ 29298 \\ 56353\end{array}\right] \tilde{e}_{1}^{6} \tilde{e}_{2}^{2}+\left[\begin{array}{c}19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683\end{array}\right] \tilde{e}_{1}^{5} \tilde{e}_{2}^{3}+\left[\begin{array}{c}9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059\end{array}\right] \tilde{e}_{1}^{4} \tilde{e}_{2}^{4}+\left[\begin{array}{l}11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146\end{array}\right] \\ +\left[\begin{array}{c}46217 \\ 5478 \\ 45631 \\ 13171 \\ 42548\end{array}\right] \tilde{e}_{1}^{3} \tilde{e}_{2}^{5} \tilde{e}_{2}^{6}+\left[\begin{array}{c}63811 \\ 50777 \\ 48809 \\ 1858 \\ 55751\end{array}\right] \tilde{e}_{1} \tilde{e}_{2}^{7}+\left[\begin{array}{c}4522 \\ 6881 \\ 17238 \\ 8056 \\ 54831\end{array}\right] \tilde{e}_{2}^{8}+\left[\begin{array}{c}27518 \\ 18652 \\ 54885 \\ 82416 \\ 82176\end{array}\right] \tilde{e}_{1}^{7} \tilde{e}_{3}+\left[\tilde{e}_{1}^{6} \tilde{e}_{2} \tilde{e}_{3}+2067 \text { smaller monomials }\right. \\ 28424 \\ 5276\end{array}\right] \quad$.

Description of the system

- Ideal invariant under the group
$(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes \mathfrak{S}_{n}$, rewritten with the invariants:
$\left\{\begin{array}{l}\tilde{e}_{i}:=e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \quad(1 \leq i \leq n-1) \\ e_{n}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
- n equations of degree 2^{n-1}
in $\mathbb{F}_{q}\left[\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}, e_{n}\right]$
- 1 DLP $=$ thousands of such systems

Goal: solve the system
\Longleftrightarrow compute a Gröbner basis

- Total degree grading
\rightarrow difficult (intractable with Magma)
\rightarrow non regular
- Weighted degree grading

Weight $\left(\tilde{e}_{i}\right)=2 \cdot$ Weight $\left(e_{i}\right)$
\rightarrow easier
\rightarrow regular

- Two questions:
- Algorithms for this structure?
- Complexity estimates?

Gröbner bases and structured systems

Problematic

Structured systems

\rightarrow Can we exploit it?

Successfully studied structures

- Bihomogeneous (Dickenstein, Emiris, Faugère, Safey, Spaenlehauer...)
- Group symmetries (Colin, Faugère, Gatermann, Rahmany, Svartz...)
- Quasi-homogeneous? ([Traverso 1996]...)

Quasi-homogeneous systems: définitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree (or W-degree): $\operatorname{deg}_{w}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$
Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree
\rightarrow Example: physical systems: Volume $=$ Area \times Height

Computational strategy: quasi-homogenize it as in the homogeneous case Comnlexity estimates: consider the highest- W-degree components of the system

Quasi-homogeneous systems: définitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree (or W-degree): $\operatorname{deg}_{W}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$
Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree
\rightarrow Example: physical systems: Volume $=$ Area \times Height

Weight 3 Weight 2 Weight 1
Given a general (non-quasi-homogeneous) system and a system of weights
Computational strategy: quasi-homogenize it as in the homogeneous case Complexity estimates: consider the highest- W-degree components of the system

- Enough to study quasi-homogeneous systems

Complexity for generic homogeneous systems

Homogeneous, generic, with total degree $\left(d_{1}, \ldots, d_{n}\right)$ (zero-dimensional)

GRevLex basis

FGLM [Faugère, Gianni, Lazard and Mora 1993]

Lex basis

Complexity for generic homogeneous systems

Main results: strategy and complexity results

Roadmap

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights
- $F=\left(f_{1}, \ldots, f_{m}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{m}\right)$

General roadmap:

1. Find a generic property with good complexity estimates

- Regular sequences (dimension $0, m=n$)
- Noether position (positive dimension, $m \leq n$)
- ...Semi-regular sequences (dimension $0, m>n$)

2. Design new algorithms to take advantage of this structure

- Adapt algorithms for the homogeneous case to the quasi-homogeneous case

3. Conclusion: complexity results

Roadmap

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights
- $F=\left(f_{1}, \ldots, f_{m}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{m}\right)$

General roadmap:

1. Find a generic property with good complexity estimates

- Regular sequences (dimension $0, m=n$)
- Noether position (positive dimension, $m \leq n$)
- ... Semi-regular sequences (dimension $0, m>n$)

2. Design new algorithms to take advantage of this structure

- Adapt algorithms for the homogeneous case to the quasi-homogeneous case

3. Conclusion: complexity results

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$\left\{\begin{array}{l}\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle\end{array}\right.$

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$\left\{\begin{array}{l}\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle\end{array}\right.$

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle
\end{array}\right.
$$

Result (Faugère, Safey, V.)

Properties of regular sequences

Hilbert series

$$
\mathrm{HS}_{A / I}(T)=\sum_{d=0}^{\infty}\left(\text { rank defect of the } F_{5} \text { matrix at degree } d\right) \cdot T^{d}
$$

Properties

For regular sequences of homogeneous polynomials of degree d_{i} :

$$
\mathrm{HS}_{A / /}(T)=\frac{\left(1-T^{d_{1}}\right) \cdots\left(1-T^{d_{m}}\right)}{(1-T)^{n}}
$$

In zero dimension $(m=n)$:

- Bézout bound on the degree: $D=\prod_{i=1}^{n} d_{i}$
- Macaulay bound on the degree of regularity: $d_{\mathrm{reg}} \leq \sum_{i=1}^{n}\left(d_{i}-1\right)+1$

Properties of regular sequences

Hilbert series

$$
\mathrm{HS}_{A / /}(T)=\sum_{d=0}^{\infty}\left(\text { rank defect of the } F_{5} \text { matrix at } W \text {-degree } d\right) \cdot T^{d}
$$

Properties

For regular sequences of W-homogeneous polynomials of W-degree d_{i} :

$$
\mathrm{HS}_{A / /}(T)=\frac{\left(1-T^{d_{1}}\right) \cdots\left(1-T^{d_{m}}\right)}{\left(1-T^{w_{1}}\right) \cdots\left(1-T^{w_{n}}\right)}
$$

In zero dimension $(m=n)$:

- Bézout bound on the degree: $D=\frac{\prod_{i=1}^{n} d_{i}}{\prod_{i=1}^{n} w_{i}}$
- Macaulay bound on the degree of regularity: $d_{\mathrm{reg}} \leq \sum_{i=1}^{n}\left(d_{i}-w_{i}\right)+\max \left\{w_{j}\right\}$

Limitations

Limitations of the regularity

- $m<n$ (positive dimension): no real information
- $m=n$ (zero dimension, complete intersection)
- exact formula for $d_{\text {reg }}$?
- $d_{\text {reg }}$ depends on the order of the variables
- Hilbert series: independent from that order
- $m>n$ (cryptography): no regular sequence

\Longrightarrow Additional properties

- $m<n$: Noether position
- $m=n$: simultaneous Noether position
- $m>n$: semi-regular sequences

Noether position

Noether position

$F=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right], m \leq n$

- Noether position:
$\left(F, X_{m+1}, \ldots, X_{n}\right)$ regular
- simultaneous Noether position:
$\left(f_{1}, \ldots, f_{j}\right)$ in NP for all j's

Properties

- Generic if not empty
- Valid under generic change of coordinates for "nice" systems of weights
- Relevant property for fine-grained complexity (structure lemma [Bardet 2004])
- For a zero-dim. W-homogeneous sequence in simultaneous Noether position:

$$
d_{\mathrm{reg}}=\sum_{i=1}^{n}\left(d_{i}-w_{i}\right)+w_{n}
$$

Semi-regular sequences

Semi-regular sequences

- If $m>n$, reductions to zero cannot be eliminated.
- Semi-regular sequence: all reductions to zero are at high degrees
- Hilbert series of a semi-regular homogeneous sequence:
$\mathrm{HS}_{\mathrm{A} / /}(T)=\left\lfloor\frac{\left(1-T^{d_{1}}\right) \cdots\left(1-T^{d_{m}}\right)}{\left.(1-T)^{n}\right)}\right\rfloor($ series truncated to the first coefficient $\leq 0)$
- For W-homogeneous systems, only true for "nice" systems of weights
- Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg's conjecture

Semi-regular sequences are generic.

Semi-regular sequences

Semi-regular sequences

- If $m>n$, reductions to zero cannot be eliminated.
- Semi-regular sequence: all reductions to zero are at high degrees
- Hilbert series of a semi-regular W-homogeneous sequence:

$$
\mathrm{HS}_{A / /}(T)=\left\lfloor\frac{\left(1-T^{d_{1}}\right) \cdots\left(1-T^{d_{m}}\right)}{\left(1-T^{w_{1}}\right) \cdots\left(1-T^{w_{m}}\right)}\right\rfloor \quad(\text { series truncated to the first coefficient } \leq 0)
$$

- For W-homogeneous systems, only true for "nice" systems of weights
- Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg's conjecture

Semi-regular sequences are generic.

Roadmap

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights
- $F=\left(f_{1}, \ldots, f_{m}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{m}\right)$

General roadmap:

1. Find a generic property with good complexity estimates

- Regular sequences (dimension $0, m=n$)
- Noether position (positive dimension, $m \leq n$)
- ...Semi-regular sequences (dimension $0, m>n$)

2. Design new algorithms to take advantage of this structure

- Adapt algorithms for the homogeneous case to the quasi-homogeneous case

3. Conclusion: complexity results

Algorithms: from quasi-homogeneous to homogeneous

Transformation morphism

$$
\begin{array}{ccc}
\operatorname{hom}_{w}:(\mathbb{K}[\mathbf{X}], W-\operatorname{deg}) & \rightarrow & (\mathbb{K}[\mathbf{X}], \operatorname{deg}) \\
f & \mapsto & f\left(X_{1}^{w_{1}}, \ldots, X_{n}^{w_{n}}\right)
\end{array}
$$

- Graded injective morphism
- Sends regular sequences on regular sequences
- S-Pol $\left(\operatorname{hom}_{w}(f), \operatorname{hom}_{w}(g)\right)=\operatorname{hom}_{w}(\mathrm{~S}-\operatorname{Pol}(f, g))$
\longrightarrow Good behavior w.r.t Gröbner bases
(Quasi-homogeneous)
(Homogeneous)

Size of the Macaulay matrices

Counting the monomials

- hom $_{w}(F)$ lies in an algebra with a lot of useless monomials
- Count them: combinatorial object named Sylvester denumerants
- Result ${ }^{1}$: asymptotically $N_{d} \sim \frac{\text { Monomials of total degree } d}{\prod_{i=1}^{n} w_{i}}$

[^0]
Adapting the algorithms

Detailed strategy

- F_{5} algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Adapting the algorithms

Detailed strategy

- F_{5} algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Adapting the algorithms

Detailed strategy

- F_{5} algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Roadmap

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights
- $F=\left(f_{1}, \ldots, f_{m}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{m}\right)$

General roadmap:

1. Find a generic property with good complexity estimates

- Regular sequences (dimension $0, m=n$)
- Noether position (positive dimension, $m \leq n$)
- ...Semi-regular sequences (dimension $0, m>n$)

2. Design new algorithms to take advantage of this structure

- Adapt algorithms for the homogeneous case to the quasi-homogeneous case

3. Conclusion: complexity results

Complexity

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$
- $F=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ generic W-homogeneous

Complexity of F_{5}

$$
\left(\frac{1}{\prod_{i=1}^{n} w_{i}}\right)^{3}\binom{n+d_{\mathrm{reg}}-1}{d_{\mathrm{reg}}}^{3}
$$

- Asymptotic gain from the size of the matrices
- Practical gain from the weighted Macaulay bound ($d_{\text {reg }}$)

Complexity of FGLM

$$
\left(\frac{1}{\prod_{i=1}^{n} w_{i}}\right)^{3} n\left(\prod_{i=1}^{n} d_{i}\right)^{3}
$$

- Asymptotic gain from the weighted Bézout bound (number of solutions)

Benchmarking

F : affine system with a quasi-homogeneous structure

$$
f_{i}=\sum_{\alpha} c_{\alpha} m_{\alpha} \text { with } \operatorname{deg}_{w}\left(m_{\alpha}\right) \leq d_{i}
$$

Assumption: the highest W-degree components are regular (e.g. if F is generic)

Quasi-homo. strategy

Benchmarks for generic systems

Time (s)
Algorithm F_{5}, timings

- Generic systems in n variables with $\{$ weights $W=(2, \ldots, 2,1,1)$

$$
W \text {-degree } D=(4, \ldots, 4)
$$

- Number of solutions: 2^{n+2}
- Benchmarks obtained with FGb : $\left\{\begin{array}{l}\mathrm{F}_{5} \text { [Faugère 2002] } \\ \text { SPARSEFGLM [Faugère and Mou 2013] }\end{array}\right.$

A run of F_{5} on the DLP example

- 5 equations of W-degree $(16, \ldots, 16)$ in 5 variables with $W=(2, \ldots, 2,1)$
- 65536 solutions
- Timings: $\left\{\begin{array}{rccc}\text { Magma }\left(F_{4}\right) & >12 \mathrm{~h} & 1.7 \mathrm{~h} & \text { Speed-up: } 9.3 \\ \text { FGb }\left(\mathrm{F}_{5}\right) & 12297 \mathrm{~s} & 567 \mathrm{~s} & \text { Speed-up: } 21.7\end{array}\right.$

A run of F_{4} on an inversion example

Ideal of relations between 50 monomials of degree 2 in 25 variables

- 50 equations of (W-)degree 2 in 75 variables
- GRevLex ordering (e.g. for a 2-step strategy)
- Without weights: 3.9 h (34 steps reaching degree 22)
- With weights: 0.1 s (5 steps reaching W-degree 6)

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic assumptions
- Computational strategy for quasi-homogeneous systems
- Complexity results for F_{5} and FGLM for this strategy
- Bound on the maximal degree reached by the F_{5} algorithm
- Complexity overall divided by $\left(\prod w_{i}\right)^{3}$

Consequences

- Successfully applied to a cryptographical problem
- Wide range of potential applications
- Affine systems: find the most appropriate system of weights (e.g for the DLP, how to choose the weights of the e_{i} 's?) - Additional structure: quasi-homo. for several systems of weights, weights ≤ 0.

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic assumptions
- Computational strategy for quasi-homogeneous systems
- Complexity results for F_{5} and FGLM for this strategy
- Bound on the maximal degree reached by the F_{5} algorithm
- Complexity overall divided by $\left(\Pi w_{i}\right)^{3}$

Consequences

- Successfully applied to a cryptographical problem
- Wide range of potential applications

Perspectives

- Affine systems: find the most appropriate system of weights (e.g for the DLP, how to choose the weights of the e_{i} 's?)
- Additional structure: quasi-homo. for several systems of weights, weights $\leq 0 \ldots$

One last word

Thank you for your attention!

[^0]: ${ }^{1}$ Geir Agnarsson (2002). 'On the Sylvester denumerants for general restricted partitions'

