Complexité du calcul de bases de Gröbner pour les systèmes quasi-homogènes

Jean-Charles Faugère ${ }^{1} \quad$ Mohab Safey El Din ${ }^{1,2}$
Thibaut Verron ${ }^{1,3}$
${ }^{1}$ Université Pierre et Marie Curie, Paris 6, France
INRIA Paris-Rocquencourt, Équipe PoLSys
Laboratoire d'Informatique de Paris 6, UMR CNRS 7606
${ }^{2}$ Institut Universitaire de France
${ }^{3}$ École Normale Supérieure, Paris

16 mai 2013

Polynomial system solving

Applications:

- Cryptography
- Physics, industry...
- Theory (algo. geometry)

Polynomial system
$f_{1}(\mathbf{X})=\cdots=f_{m}(\mathbf{X})=0$

- Numerical: give approximations of the solutions
- Newton's method
- Homotopy continuation method
- Symbolic: give exact solutions
- Gröbner bases (Buchberger, Faugère...)
- Resultant method
- Triangular sets
- Special algorithms for finite fields (exhaustive search, SAT-solvers, hybrid methods...)

Difficult problem

- NP-hard on finite fields
- Exponential number of solutions

Gröbner bases

Gröbner bases

Problematic

Structured systems
\rightarrow Can we exploit it?

Successfully studied structures

- Bihomogeneous (Dickenstein, Emiris, Faugère, Safey, Spaenlehauer...)
- Group symmetries (Colin, Faugère, Gattermann, Rahmany, Svartz...)
- Quasi-homogeneous?

Quasi-homogeneous systems

Definition

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree: $\operatorname{deg}_{W}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$
Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree

$$
\text { e.g. } X^{2}+X Y^{2}+Y^{4} \text { for } W=(2,1)
$$

- Homogeneous systems are W-homogeneous with weights $(1, \ldots, 1)$.

Quasi-homogeneous systems

Definition

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree: $\operatorname{deg}_{W}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$
Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree

$$
\text { e.g. } X^{2}+X Y^{2}+Y^{4} \text { for } W=(2,1)
$$

- Homogeneous systems are W-homogeneous with weights $(1, \ldots, 1)$.

Applications

Physical system

Polynomial inversion

Usual two-steps strategy in the zero-dimensional case

Usual two-steps strategy in the zero-dimensional case

Usual two-steps strategy in the zero-dimensional case

Goal

Under generic assumptions, complexity polynomial in the number of solutions

Complexity for generic homogeneous systems

Main results: strategy and complexity results

Roadmap

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General roadmap:

1. Find a generic property which rules out all reductions to zero

- Regular sequences

2. Design new algorithms to take advantage of this structure

- Adapt algorithms for the homogeneous case to the quasi-homogeneous case

3. Obtain complexity results

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$\left\{\begin{array}{l}\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle\end{array}\right.$

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$\left\{\begin{array}{l}\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle\end{array}\right.$

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle
\end{array}\right.
$$

Result (Faugère, Safey, V.)

From quasi-homogeneous to homogeneous

Transformation morphism

$$
\begin{array}{ccc}
\operatorname{hom}_{w}:(\mathbb{K}[\mathbf{X}], W-\operatorname{deg}) & \rightarrow & (\mathbb{K}[\mathbf{X}], \operatorname{deg}) \\
f & \mapsto & f\left(X_{1}^{w_{1}}, \ldots, X_{n}^{w_{n}}\right)
\end{array}
$$

- Graded injective morphism.
- Sends regular sequences on regular sequences
- Good behavior w.r.t Gröbner bases (forth and back)
(Quasi-homogeneous)
(Homogeneous)

Adapting the algorithms

Detailed strategy

- F_{5} algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Adapting the algorithms

Detailed strategy

- F_{5} algorithm on the homogenized system

- FGLM algorithm on the quasi-homogeneous system

Adapting the algorithms

Detailed strategy

- F_{5} algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Benchmarks (1)

F : affine system with a quasi-homogeneous structure

$$
f_{i}=\sum_{\alpha} c_{\alpha} m_{\alpha} \text { with } \operatorname{deg}_{W}\left(m_{\alpha}\right) \leq d_{i}
$$

Assumption: the highest W-degree components are regular (e.g. if F is generic)

Quasi-homo. strategy

Benchmarks (2)

n	$\operatorname{deg}(I)$	$t_{F_{5}}($ qh $)$	Speed-up for F_{5}	$t_{\text {FGLM }}($ qh $)$	Speed-up for FGLM
10	4096	7.5 s	5.4	2.4 s	2.6
11	8192	33.3 s	6.4	17.5 s	2.4
12	16384	167.9 s	6.8	115.8 s	2.1
13	32768	796.7 s	8.4	782.7 s	2.1
14	65536	5040.1 s	∞	5602.3 s	

Benchmarks obtained with FGb on generic affine systems
with W-degree (4) for $W=(2, \ldots, 2,1,1)$

n	$\operatorname{deg}(I)$	$t_{5_{5}}(\mathrm{qh})$	Speed-up for F_{5}	$t_{\text {FGLM }}(\mathrm{qh})$	Speed-up for FGLM
4	512	0.1 s	1	0.1 s	1
5	65536	935.4 s	6.9	2164.4 s	3.2

Benchmarks obtained with real systems
(DLP on Edwards curves : Faugère, Gaudry, Huot, Renault 2013):

$$
W \text {-degree (4) w.r.t } W=(2, \ldots, 2,1)
$$

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic hypotheses
- Computational strategy for quasi-homogeneous systems
- Complexity results for F_{5} and FGLM for this strategy
- Bound on the maximal degree reached by the F_{5} algorithm
- Complexity overall divided by $\left(\prod w_{i}\right)^{\omega}$
- Polynomial in the number of solutions
- Overdetermined systems: adapt the definitions and the results
- Affine systems: find the most appropriate system of weights

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic hypotheses
- Computational strategy for quasi-homogeneous systems
- Complexity results for F_{5} and FGLM for this strategy
- Bound on the maximal degree reached by the F_{5} algorithm
- Complexity overall divided by $\left(\prod w_{i}\right)^{\omega}$
- Polynomial in the number of solutions

Perspectives

- Overdetermined systems: adapt the definitions and the results
- Affine systems: find the most appropriate system of weights

One last word

Thank you for your attention!

