Computing Gröbner bases for quasi-homogeneous systems

Jean-Charles Faugère ${ }^{1} \quad$ Mohab Safey El Din ${ }^{12}$
Thibaut Verron ${ }^{13}$
${ }^{1}$ Université Pierre et Marie Curie, Paris 6, France
INRIA Paris-Rocquencourt, Équipe PolSys
Laboratoire d'Informatique de Paris 6, UMR CNRS 7606
${ }^{2}$ Institut Universitaire de France
${ }^{3}$ École Normale Supérieure

March 22, 2013

Motivations

Motivations

Motivations

Parametrization of the solutions

$$
\begin{aligned}
& \mathbf{q}(\mathbf{T})=0 \\
& \mathbf{X}=\mathbf{p}(\mathbf{T})
\end{aligned}
$$

Row-echelon form of the Macaulay matrix

$$
\left(\begin{array}{c}
\vdots \\
m_{i} F_{j} \\
\vdots
\end{array}\right)
$$

- Cryptography
- Physics, industry...
- Theory (algo. geometry)

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Examples of successfully studied structures:

> - Homogeneous

- Bihomogeneous: [FSS10b]
- Group symmetries: e.g [FS12]

Motivations

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem:

Exploit the structures of the system

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous: [FSS10b]
- Group symmetries: e.g [FS12]

Motivations

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem:

Exploit the structures of the system

Parametrization of the solutions

$$
\begin{aligned}
& \mathbf{q}(\mathbf{T})=0 \\
& \mathbf{X}=\mathbf{p}(\mathbf{T})
\end{aligned}
$$

Row-echelon form of the Macaulay matrix

$$
\left(\begin{array}{c}
\vdots \\
m_{i} F_{j} \\
\vdots
\end{array}\right)
$$

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous: [FSS10b]
- Group symmetries: e.g [FS12]
- Quasi-homogeneous

Definitions of quasi-homogeneous systems

Definition

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree: $\operatorname{deg}_{w}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$
Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree

$$
\text { e.g. } X^{2}+X Y^{2}+Y^{4} \text { for } W=(2,1)
$$

- Homogeneous systems are W-homogeneous with weights $(1, \ldots, 1)$.

Physical system
Polynomial inversion

Definitions of quasi-homogeneous systems

Definition

System of weights: $W=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$
Weighted degree: $\operatorname{deg}_{w}\left(X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}\right)=\sum_{i=1}^{n} w_{i} \alpha_{i}$
Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree

$$
\text { e.g. } X^{2}+X Y^{2}+Y^{4} \text { for } W=(2,1)
$$

- Homogeneous systems are W-homogeneous with weights $(1, \ldots, 1)$.

Applications

Physical system
Volume $=$ Area \times Height

Weight 3 Weight 2 Weight 1

Polynomial inversion

Usual two-steps strategy in the zero-dimensional case

Relevant complexity parameters
${ }^{7} d_{\text {max }}=$ highest degree reached by F_{5} Less than the degree of regularity $d_{\text {reg }}$. For generic homo. systems:

$D=$ degree of the ideal
$=$ number of solutions in dim. 0
$=\prod d_{i}$ (homo. generic case)

Usual two-steps strategy in the zero-dimensional case

Relevant complexity parameters

- $d_{\text {max }}=$ highest degree reached by F_{5} Less than the degree of regularity $d_{\text {reg }}$. For generic homo. systems:

$$
d_{\mathrm{reg}}=\sum_{i=1}^{n}\left(d_{i}-1\right)+1 \text { [Lazard83] }
$$

- $D=$ degree of the ideal
= number of solutions in dim. 0
$=\prod_{i=1}^{n} d_{i}$ (homo. generic case)

For an homogeneous system:

$$
N_{d}=\binom{n+d-1}{d}
$$

Main results

Adaptation of the usual strategy, so that we still have the complexity:

- $C_{F_{5}}=O\left(d_{\mathrm{reg}} N_{d_{\text {reg }}}^{\omega}\right)$
- $C_{\text {FGLM }}=O\left(n D^{\omega}\right)$
with estimations of the parameters for generic quasi-homogeneous systems:
- $D=\frac{\prod_{i=1}^{n} d_{i}}{\prod_{i=1}^{n} w_{i}}$
- $d_{\mathrm{reg}}=\sum_{i=1}^{n}\left(d_{i}-w_{i}\right)+\max \left\{w_{j}\right\}$
- $N_{d} \simeq \frac{1}{\prod_{i=1}^{n} w_{i}}\binom{n+d-1}{d}$

Main results

Adaptation of the usual strategy, so that we still have the complexity:

- $C_{F_{5}}=O\left(d_{\text {reg }} N_{d_{\text {feg }}}^{\omega}\right)$
- $C_{\text {FGLM }}=O\left(n D^{\omega}\right)$
with estimations of the parameters for generic quasi-homogeneous systems:
- $D=\prod_{i=1}^{n} d_{i}$
- $d_{\text {reg }}=\sum_{i=1}^{n}\left(d_{i}-1\right)+1$
- $N_{d}=\binom{n+d-1}{d}$

Remark

If we set the weights to $(1, \ldots, 1)$,
we recover the usual values for homogeneous systems.

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero
2. Design new algorithms to take advantage of this structure
3. Obtain complexity results

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero

- Does the F_{5}-criterion still work for quasi-homo. regular sequences?
- Are quasi-homo. regular sequences still generic?

2. Design new algorithms to take advantage of this structure
3. Obtain complexity results

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero

- Does the F_{5}-criterion still work for quasi-homo. regular sequences?
- Are quasi-homo. regular sequences still generic?

2. Design new algorithms to take advantage of this structure

- Adapt the matrix- F_{5} algorithm to reduce the size of the computed matrices

3. Obtain complexity results

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero

- Does the F_{5}-criterion still work for quasi-homo. regular sequences?
- Are quasi-homo. regular sequences still generic?

2. Design new algorithms to take advantage of this structure

- Adapt the matrix- F_{5} algorithm to reduce the size of the computed matrices

3. Obtain complexity results

- What is the overall complexity?

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero

- Does the F_{5}-criterion still work for quasi-homo. regular sequences?
- Are quasi-homo. regular sequences still generic?

2. Design new algorithms to take advantage of this structure
3. Obtain complexity results

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle
\end{array}\right.
$$

For affine systems: defined w.r.t the highest weighted-degree components.

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle
\end{array}\right.
$$

For affine systems: defined w.r.t the highest weighted-degree components.

Generic sequences

of homo. polynomials

Generic

Good properties
F_{5}-criterion
Complexity results

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle
\end{array}\right.
$$

For affine systems: defined w.r.t the highest weighted-degree components.

Result (Faugère, Safey, V.)

Regular seq. are generic amongst systems of quasi-homo. poly. of given W-degree, assuming there exists at least one regular sequence for that W-degree.

Regular sequences

Definition

$F=\left(f_{1}, \ldots, f_{m}\right)$ quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff

$$
\left\{\begin{array}{l}
\langle F\rangle \subsetneq \mathbb{K}[\mathbf{X}] \\
\forall i, f_{i} \text { is no zero-divisor in } \mathbb{K}[\mathbf{X}] /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle
\end{array}\right.
$$

For affine systems: defined w.r.t the highest weighted-degree components.

Result (Faugère, Safey, V.)

Regular seq. are generic amongst systems of quasi-homo. poly. of given W-degree, assuming there exists at least one regular sequence for that W-degree.

Why this condition?

- $W=(2,3), d_{1}=4, d_{2}=4$: no regular sequence
- $W=(2,3), d_{1}=6, d_{2}=6:\left(X_{1}^{3}, X_{2}^{2}\right)$ is regular, regular sequences are generic

Hilbert series, degree and degree of regularity

Hilbert series of an ideal

The Hilbert series of a (quasi-)homogeneous ideal is defined as the generating series of the rank defects in the Macaulay matrices of successive degrees.

$$
\mathrm{HS}_{l}(t)=\sum_{d=0}^{\infty} \operatorname{dim}_{K-e v}(K[\mathbf{X}] / I)_{d} t^{d}
$$

Expression for a zero-dimensional regular sequence:

$$
\mathrm{HS}_{/}(t)=\frac{\left(1-t^{d_{1}}\right) \cdots\left(1-t^{d_{n}}\right)}{(1-t) \cdots(1-t)}=\left(1+\cdots+t^{d_{1}-1}\right) \cdots\left(1+\cdots+t^{d_{n}-1}\right)
$$

Hilbert series, degree and degree of regularity

Hilbert series of an ideal

The Hilbert series of a (quasi-)homogeneous ideal is defined as the generating series of the rank defects in the Macaulay matrices of successive degrees.

$$
\mathrm{HS}_{l}(t)=\sum_{d=0}^{\infty} \operatorname{dim}_{K-e v}(K[\mathbf{X}] / I)_{d} t^{d}
$$

Expression for a zero-dimensional regular sequence:

$$
\mathrm{HS}_{l}(t)=\frac{\left(1-t^{d_{1}}\right) \cdots\left(1-t^{d_{n}}\right)}{(1-t) \cdots(1-t)}=\left(1+\cdots+t^{d_{1}-1}\right) \cdots\left(1+\cdots+t^{d_{n}-1}\right)
$$

Bézout and Macaulay bounds

- Bézout bound: $D=H S_{l}(t:=1)=\prod_{i=1}^{n} d_{i}$
- Macaulay bound: $d_{\mathrm{reg}}=\operatorname{deg}\left(\mathrm{HS}_{l}\right)+1=\sum_{i=1}^{n}\left(d_{i}-1\right)+1$

Hilbert series, degree and degree of regularity

Hilbert series of an ideal

The Hilbert series of a (quasi-)homogeneous ideal is defined as the generating series of the rank defects in the Macaulay matrices of successive degrees.

$$
\mathrm{HS}_{l}(t)=\sum_{d=0}^{\infty} \operatorname{dim}_{K-e v}(K[\mathbf{X}] / I)_{d} t^{d}
$$

Expression for a zero-dimensional regular sequence:

$$
\mathrm{HS}_{l}(t)=\frac{\left(1-t^{d_{1}}\right) \cdots\left(1-t^{d_{n}}\right)}{\left(1-t^{w_{1}}\right) \cdots\left(1-t^{w_{n}}\right)}=\frac{\left(1+\cdots+t^{d_{1}-1}\right) \cdots\left(1+\cdots+t^{d_{n}-1}\right)}{\left(1+\cdots+t^{w_{1}-1}\right) \cdots\left(1+\cdots+t^{w_{n}-1}\right)}
$$

Bézout and Macaulay bounds

- Bézout bound: $D=\mathrm{HS}_{(}(t:=1)=\frac{\prod_{i=1}^{n} d_{i}}{\prod_{i=1}^{n} w_{i}}$
- Macaulay bound: $d_{\mathrm{reg}}=\operatorname{deg}\left(\mathrm{HS}_{l}\right)+\max \left\{w_{j}\right\}=\sum_{i=1}^{n}\left(d_{i}-w_{i}\right)+\max \left\{w_{j}\right\}$

Size of the Macaulay matrices

- Need to count the monomials with a given W-degree
- Combinatorial object named Sylvester denumerants
- Result ${ }^{1}$: asymptotically $N_{d} \sim \frac{\text { Monomials of total degree } d}{\prod_{i=1}^{n} w_{i}}$

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero
2. Design new algorithms to take advantage of this structure

- Adapt the matrix- F_{5} algorithm to reduce the size of the computed matrices

3. Obtain complexity results

From homogeneous to quasi-homogeneous

Homogenization morphism

$$
\begin{array}{ccc}
\operatorname{hom}_{w}:(\mathbb{K}[\mathbf{X}], W \text {-deg }) & \rightarrow & (\mathbb{K}[\mathbf{X}], \text { deg }) \\
f & \mapsto & f\left(X_{1}^{w_{1}}, \ldots, X_{n}^{w_{n}}\right)
\end{array}
$$

- Graded injective morphism.
- Sends regular sequences onto regular sequences
- Good behavior w.r.t Gröbner bases

Adapting the algorithms

The W-GREVLEX ordering

Analogous to the GRevLex ordering, except monomials are selected according to their W-degree instead of total degree.

Adapting the algorithms

The W-GREVLEX ordering

Analogous to the GREVLEX ordering, except monomials are selected according to their W-degree instead of total degree.

Detailed strategy

Adapting the algorithms

The W-GREvLEX ordering

Analogous to the GREVLEX ordering, except monomials are selected according to their W-degree instead of total degree.

Detailed strategy

Adapting the algorithms

The W-GREVLEX ordering

Analogous to the GREVLEX ordering, except monomials are selected according to their W-degree instead of total degree.

Detailed strategy

Adapting the algorithms

The W-GREVLEX ordering

Analogous to the GREVLEX ordering, except monomials are selected according to their W-degree instead of total degree.

Detailed strategy

How to adapt the matrix $-\mathrm{F}_{5}$ algorithm?

At degree d

How to adapt the matrix $-\mathrm{F}_{5}$ algorithm?

At degree d

This 1 should be replaced by the weight of X_{k} !!!
$\left\{\begin{array}{c}\text { Monomials } \\ \text { with degree } d-d_{i}\end{array}\right\}$

How to adapt the matrix $-\mathrm{F}_{5}$ algorithm?

At W-degree d

Setting a road-map

Input

- $W=\left(w_{1}, \ldots, w_{n}\right)$ system of weights.
- $F=\left(f_{1}, \ldots, f_{n}\right)$ generic sequence of W-homogeneous polynomials with W-degree $\left(d_{1}, \ldots, d_{n}\right)$.

General road-map:

1. Find a generic property which rules out all reductions to zero
2. Design new algorithms to take advantage of this structure
3. Obtain complexity results

- What is the overall complexity?

Main results

Adaptation of the usual strategy, so that we still have the complexity:

- $C_{F_{5}}=O\left(d_{\mathrm{reg}} N_{d_{\mathrm{reg}}}^{\omega}\right)$
- $C_{\text {FGLM }}=O\left(n D^{\omega}\right)$
with estimations of the parameters for generic quasi-homogeneous systems:
- $D=\frac{\prod_{i=1}^{n} d_{i}}{\prod_{i=1}^{n} w_{i}}$
- $d_{\mathrm{reg}}=\sum_{i=1}^{n}\left(d_{i}-w_{i}\right)+\max \left\{w_{j}\right\}$
- $N_{d} \simeq \frac{1}{\prod_{i=1}^{n} w_{i}}\binom{n+d-1}{d}$

Overall, the complexity is divided by $\left(\Pi w_{i}\right)^{\omega}$ when compared to a homogeneous system of the same degree.

And what about higher dimension?

For homogeneous systems in positive dimension $(m \leq n)$:

- Bézout bound: $D=\prod_{i=1}^{m} d_{i}$
- Macaulay bound: $d_{\text {reg }} \leq \sum_{i=1}^{m}\left(d_{i}-1\right)+1$
- Information about which variables really matter to the system.
- Not necessary for homogeneous systems in "hig enough" fields, because that property is always satisfied up to a linear change of variables.

And what about higher dimension?

For W-homogeneous systems in positive dimension $(m \leq n)$:

- Bézout bound: $D=\frac{\prod_{i=1}^{n} d_{i}}{? ? ?}$
- Macaulay bound: $d_{\mathrm{reg}} \leq \sum_{i=1}^{m}\left(d_{i}-\right.$??? $)+? ? ?$

Which of the weights to use in the formulas?
Definition
The sequence f_{1}, \ldots, f_{m} is in Noether position
iff the sequence $f_{1}, \ldots, f_{m}, X_{m+1}, \ldots, X_{n}$ is regular.

Properties

* Information about which variables really matter to the system.
- Not necessary for homogeneous systems in "big enough" fields, because that property is always satisfied up to a linear change of variables.

And what about higher dimension?

For W-homogeneous systems in positive dimension $(m \leq n)$:

- Bézout bound: $D=\frac{\prod_{i=1}^{n} d_{i}}{? ? ?}$
- Macaulay bound: $d_{\mathrm{reg}} \leq \sum_{i=1}^{m}\left(d_{i}-\right.$??? $)+? ? ?$

Which of the weights to use in the formulas?

Definition

The sequence f_{1}, \ldots, f_{m} is in Noether position
iff the sequence $f_{1}, \ldots, f_{m}, X_{m+1}, \ldots, X_{n}$ is regular.

Properties

- Information about which variables really matter to the system.
- Not necessary for homogeneous systems in "big enough" fields, because that property is always satisfied up to a linear change of variables.

Results for a positive-dimensional ideal in Noether position

Result (Faugère, Safey, V.)

Sequences in Noether pos. are generic amongst W-homo. seq. of given W-degree, assuming there exists some sequence in Noether position with that W-degree.

- Bézout bound:

- Macaulay bound:

- Algorithm matrix- F_{5} still runs in complexity polynomial in the Bézout bound.
- Algorithm FGLM only works for zero-dimensional systems.

Results for a positive-dimensional ideal in Noether position

Result (Faugère, Safey, V.)

Sequences in Noether pos. are generic amongst W-homo. seq. of given W-degree, assuming there exists some sequence in Noether position with that W-degree.

- Bézout bound:

$$
D=\frac{\prod_{i=1}^{m} d_{i}}{\prod_{i=1}^{m} w_{i}}
$$

- Macaulay bound:

$$
d_{\mathrm{reg}}=\sum_{i=1}^{m}\left(d_{i}-w_{i}\right)+\max \left\{w_{j}: j \leq m\right\}
$$

- Algorithm matrix- F_{5} still runs in complexity polynomial in the Bézout bound.
- Algorithm FGLM only works for zero-dimensional systems.
- These results are nonetheless helpful when we study affine systems (through homogenization).

Benchmarks with generic systems

n	$\operatorname{deg}(l)$	$t_{5}(\mathrm{qh})$	Ratio for F_{5}	$t_{\text {FGLM }}(\mathrm{qh})$	Ratio for FGLM
7	512	0.09 s	3.2	0.06 s	1.7
8	1024	0.39 s	4.2	0.17 s	1.9
9	2048	1.63 s	4.9	0.59 s	2.0
10	4096	7.54 s	5.4	2.36 s	2.6
11	8192	33.3 s	6.4	17.5 s	2.4
12	16384	167.9 s	6.8	115.8 s	
13	32768	796.7 s	8.4	782.74 s	
14	65536	5040.1 s	∞	5602.27 s	

Benchmarks obtained with FGb on generic affine systems with W-degree $(4, \ldots, 4)$ for $W=(2, \ldots, 2,1,1)$

Real-world benchmarks

n	$\operatorname{deg}(I)$	$t_{F_{5}}(\mathrm{qh})$	Ratio for F_{5}	$t_{\mathrm{FGLM}}(\mathrm{qh})$	Ratio for FGLM
3	16	0.00 s		0.00 s	
4	512	0.03 s	3.7	0.07 s	
5	65536	935.39 s	6.9	2164.38 s	3.2

Benchmarks obtained with systems arising in the DLP on Edwards curves, with W-degree (4) for $W=(2, \ldots, 2,1)$
(Faugère, Gaudry, Huot, Renault 2013)

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic hypotheses
- Variant of the usual strategy for these systems (variant of $F_{5}+$ weighted order)
- Complexity results for F_{5} and FGLM for this strategy
- Complexity overall divided by $\left(\prod w_{i}\right)^{\omega}$
- Polynomial in the number of solutions
- Overdetermined systems: adapt the definitions and the results
- Affine systems: find the most appropriate system of weights

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic hypotheses
- Variant of the usual strategy for these systems (variant of $F_{5}+$ weighted order)
- Complexity results for F_{5} and FGLM for this strategy
- Complexity overall divided by $\left(\prod w_{i}\right)^{\omega}$
- Polynomial in the number of solutions

Perspectives

- Overdetermined systems: adapt the definitions and the results
- Affine systems: find the most appropriate system of weights

One last word

Thanks for listening!

