Computing Gröbner bases for quasi-homogeneous systems

Jean-Charles Faugère¹

Mohab Safey El Din¹²

Thibaut Verron¹³

¹Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe PoLSYS Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

²Institut Universitaire de France

³École Normale Supérieure

March 22, 2013

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem: Exploit the structures of t system

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous:
 [FSS10b]
- Group symmetries:
 e.g [FS12]
 - Quasi-homogeneous

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem: Exploit the structures of the system

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous: [FSS10b]
- Group symmetries:
 e.g [FS12]
 - Quasi-homogeneous

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem: Exploit the structures of the system

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous: [FSS10b]
- Group symmetries:
 e.g [FS12]
 - Quasi-homogeneous

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem:

Exploit the structures of the system

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous:
 [FSS10b]
- Group symmetries:
 e.g [FS12]
 - Quasi-homogeneous

Difficult problem

- NP-hard in finite field
- Exponential number of solutions

Problem:

Exploit the structures of the system

Examples of successfully studied structures:

- Homogeneous
- Bihomogeneous:
 [FSS10b]
- Group symmetries:
 e.g [FS12]
- Quasi-homogeneous

Definitions of quasi-homogeneous systems

Definition

System of weights: $W = (w_1, \ldots, w_n) \in \mathbb{N}^n$

Weighted degree: $\deg_{W}(X_{1}^{\alpha_{1}}...X_{n}^{\alpha_{n}}) = \sum_{i=1}^{n} w_{i}\alpha_{i}$

Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree

e.g.
$$X^2 + XY^2 + Y^4$$
 for $W = (2, 1)$

▶ Homogeneous systems are *W*-homogeneous with weights (1,...,1).

Definitions of quasi-homogeneous systems

Definition

System of weights: $W = (w_1, \ldots, w_n) \in \mathbb{N}^n$

Weighted degree: deg_W($X_1^{\alpha_1} \dots X_n^{\alpha_n}$) = $\sum_{i=1}^n w_i \alpha_i$

Quasi-homogeneous polynomial: poly. containing only monomials of same W-degree

e.g.
$$X^2 + XY^2 + Y^4$$
 for $W = (2, 1)$

▶ Homogeneous systems are *W*-homogeneous with weights (1,...,1).

Usual two-steps strategy in the zero-dimensional case

Relevant complexity parameters

d_{max} = highest degree reached by F₅
 Less than the degree of regularity d_{reg}.
 For generic homo. systems:

$$d_{
m reg} = \sum_{i=1}^{n} (d_i - 1) + 1$$
 [Lazard83]

- $\blacktriangleright D = degree of the ideal$
 - = number of solutions in dim. 0
 - $=\prod_{i} d_i$ (homo. generic case)

Usual two-steps strategy in the zero-dimensional case

Relevant complexity parameters

 d_{max} = highest degree reached by F₅ Less than the degree of regularity d_{reg}. For generic homo. systems:

$$d_{\text{reg}} = \sum_{i=1}^{n} (d_i - 1) + 1$$
 [Lazard83]

- D =degree of the ideal
 - = number of solutions in dim. 0 = $\prod_{i=1}^{n} d_i$ (homo. generic case)

Main results

Adaptation of the usual strategy, so that we still have the complexity:

- $\blacktriangleright \ C_{F_5} = O\left(\mathit{d}_{\mathsf{reg}} \mathit{N}_{\mathit{d}_{\mathsf{reg}}}^{\omega}\right)$
- $C_{\text{FGLM}} = O(nD^{\omega})$

with estimations of the parameters for generic quasi-homogeneous systems:

$$D = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i}$$

$$d_{reg} = \sum_{i=1}^{n} (d_i - w_i) + \max\{w_j\}$$

$$N_d \simeq \frac{1}{\prod_{i=1}^{n} w_i} \binom{n+d-1}{d}$$

Main results

Adaptation of the usual strategy, so that we still have the complexity:

- $\blacktriangleright \ C_{F_5} = O\left(\textit{d}_{reg}\textit{N}_{\textit{d}_{reg}}^{\omega}\right)$
- $C_{\text{FGLM}} = O(nD^{\omega})$

with estimations of the parameters for generic quasi-homogeneous systems:

$$D = \prod_{i=1}^{n} d_{i}$$

$$d_{reg} = \sum_{i=1}^{n} (d_{i} - 1) + 1$$

$$N_{d} = \binom{n+d-1}{d}$$

Remark

If we set the weights to $(1, \ldots, 1)$, we recover the usual values for homogeneous systems.

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

General road-map:

1. Find a generic property which rules out all reductions to zero

- 2. Design new algorithms to take advantage of this structure
- 3. Obtain complexity results

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

- 1. Find a generic property which rules out all reductions to zero
 - ► Does the F₅-criterion still work for quasi-homo. regular sequences?
 - Are quasi-homo. regular sequences still generic?
- 2. Design new algorithms to take advantage of this structure
- 3. Obtain complexity results

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

- 1. Find a generic property which rules out all reductions to zero
 - Does the F₅-criterion still work for quasi-homo. regular sequences?
 - Are quasi-homo. regular sequences still generic?
- 2. Design new algorithms to take advantage of this structure
 - Adapt the matrix-F₅ algorithm to reduce the size of the computed matrices
- 3. Obtain complexity results

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

- 1. Find a generic property which rules out all reductions to zero
 - Does the F₅-criterion still work for quasi-homo. regular sequences?
 - Are quasi-homo. regular sequences still generic?
- 2. Design new algorithms to take advantage of this structure
 - Adapt the matrix-F₅ algorithm to reduce the size of the computed matrices
- 3. Obtain complexity results
 - What is the overall complexity?

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

- 1. Find a generic property which rules out all reductions to zero
 - ► Does the F₅-criterion still work for quasi-homo. regular sequences?
 - Are quasi-homo. regular sequences still generic?
- 2. Design new algorithms to take advantage of this structure
- 3. Obtain complexity results

Definition

$$\begin{split} F &= (f_1, \dots, f_m) \text{ quasi-homo.} \in \mathbb{K}[\mathbf{X}] \text{ is regular iff} \\ \begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, \ f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases} \end{split}$$

For affine systems: defined w.r.t the highest weighted-degree components.

Definition

Definition

$$F = (f_1, \dots, f_m) \text{ quasi-homo.} \in \mathbb{K}[\mathbf{X}] \text{ is regular iff}$$
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases}$$

For affine systems: defined w.r.t the highest weighted-degree components.

Result (Faugère, Safey, V.)

Regular seq. are generic amongst systems of quasi-homo. poly. of given *W*-degree, assuming there exists at least one regular sequence for that *W*-degree.

Definition

$$F = (f_1, \dots, f_m) \text{ quasi-homo.} \in \mathbb{K}[\mathbf{X}] \text{ is regular iff}$$
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}] / \langle f_1, \dots, f_{i-1} \rangle \end{cases}$$

For affine systems: defined w.r.t the highest weighted-degree components.

Result (Faugère, Safey, V.)

Regular seq. are generic amongst systems of quasi-homo. poly. of given *W*-degree, assuming there exists at least one regular sequence for that *W*-degree.

Why this condition?

- $W = (2,3), d_1 = 4, d_2 = 4$: no regular sequence
- ▶ $W = (2,3), d_1 = 6, d_2 = 6 : (X_1^3, X_2^2)$ is regular, regular sequences are generic

Hilbert series, degree and degree of regularity

Hilbert series of an ideal

The Hilbert series of a (quasi-)homogeneous ideal is defined as the generating series of the rank defects in the Macaulay matrices of successive degrees.

$$\mathsf{HS}_{I}(t) = \sum_{d=0}^{\infty} \dim_{\mathcal{K}-ev} \left(\mathcal{K}[\mathbf{X}]/I\right)_{d} t^{d}$$

Expression for a zero-dimensional regular sequence:

$$\mathsf{HS}_{l}(t) = \frac{(1 - t^{d_{1}}) \cdots (1 - t^{d_{n}})}{(1 - t) \cdots (1 - t)} = (1 + \dots + t^{d_{1} - 1}) \cdots (1 + \dots + t^{d_{n} - 1})$$

Bézout and Macaulay bounds

- Bézout bound: $D = HS_I(t := 1) = \prod_{i=1}^n d_i$
- ► Macaulay bound: $d_{\text{reg}} = \text{deg}(\text{HS}_I) + 1 = \sum_{i=1}^{n} (d_i 1) + 1$

Hilbert series, degree and degree of regularity

Hilbert series of an ideal

The Hilbert series of a (quasi-)homogeneous ideal is defined as the generating series of the rank defects in the Macaulay matrices of successive degrees.

$$\mathsf{HS}_{I}(t) = \sum_{d=0}^{\infty} \mathsf{dim}_{\mathcal{K}-ev} \left(\mathcal{K}[\mathbf{X}]/I\right)_{d} t^{d}$$

Expression for a zero-dimensional regular sequence:

$$HS_{l}(t) = \frac{(1 - t^{d_{1}}) \cdots (1 - t^{d_{n}})}{(1 - t) \cdots (1 - t)} = (1 + \dots + t^{d_{1}-1}) \cdots (1 + \dots + t^{d_{n}-1})$$

Bézout and Macaulay bounds

• Bézout bound: $D = HS_i(t := 1) = \prod_{i=1}^n d_i$

• Macaulay bound:
$$d_{reg} = deg(HS_i) + 1 = \sum_{i=1}^{n} (d_i - 1) + 1$$

Hilbert series, degree and degree of regularity

Hilbert series of an ideal

The Hilbert series of a (quasi-)homogeneous ideal is defined as the generating series of the rank defects in the Macaulay matrices of successive degrees.

$$\mathsf{HS}_{I}(t) = \sum_{d=0}^{\infty} \dim_{\mathcal{K}-ev} \left(\mathcal{K}[\mathbf{X}]/I\right)_{d} t^{d}$$

Expression for a zero-dimensional regular sequence:

$$\mathsf{HS}_{l}(t) = \frac{(1 - t^{d_{1}}) \cdots (1 - t^{d_{n}})}{(1 - t^{w_{1}}) \cdots (1 - t^{w_{n}})} = \frac{(1 + \dots + t^{d_{1}-1}) \cdots (1 + \dots + t^{d_{n}-1})}{(1 + \dots + t^{w_{1}-1}) \cdots (1 + \dots + t^{w_{n}-1})}$$

Bézout and Macaulay bounds

• Bézout bound:
$$D = HS_i(t := 1) = \frac{\prod_{i=1}^n d_i}{\prod_{i=1}^n w_i}$$

• Macaulay bound: $d_{\text{reg}} = \text{deg}(\text{HS}_i) + \max\{w_j\} = \sum_{i=1}^{n} (d_i - w_i) + \max\{w_j\}$

Size of the Macaulay matrices

- ▶ Need to count the monomials with a given *W*-degree
- Combinatorial object named Sylvester denumerants
- ► Result¹: asymptotically $N_d \sim \frac{\#\text{Monomials of total degree } d}{\prod_{i=1}^n w_i}$

¹Geir02.

Computing Gröbner bases for quasi-homogeneous systems

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

General road-map:

1. Find a generic property which rules out all reductions to zero

- 2. Design new algorithms to take advantage of this structure
 - ► Adapt the matrix-F₅ algorithm to reduce the size of the computed matrices
- 3. Obtain complexity results

From homogeneous to quasi-homogeneous

Homogenization morphism

$$\begin{array}{rcl} \hom_W : & (\mathbb{K}[\mathbf{X}], W\text{-deg}) & \to & (\mathbb{K}[\mathbf{X}], \text{deg}) \\ & f & \mapsto & f(X_1^{w_1}, \dots, X_n^{w_n}) \end{array}$$

- Graded injective morphism.
- Sends regular sequences onto regular sequences
- Good behavior w.r.t Gröbner bases

How to adapt the matrix-F₅ algorithm?

How to adapt the matrix-F₅ algorithm?

How to adapt the matrix-F₅ algorithm?

- $W = (w_1, \ldots, w_n)$ system of weights.
- F = (f₁,..., f_n) generic sequence of W-homogeneous polynomials with W-degree (d₁,..., d_n).

General road-map:

1. Find a generic property which rules out all reductions to zero

- 2. Design new algorithms to take advantage of this structure
- 3. Obtain complexity results
 - What is the overall complexity?

Main results

Adaptation of the usual strategy, so that we still have the complexity:

$$\blacktriangleright C_{F_5} = O\left(d_{reg}N_{d_{reg}}^{\omega}\right)$$

•
$$C_{\text{FGLM}} = O(nD^{\omega})$$

with estimations of the parameters for generic quasi-homogeneous systems:

$$D = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i}$$

$$d_{\text{reg}} = \sum_{i=1}^{n} (d_i - w_i) + \max\{w_i\}$$

$$N_d \simeq \frac{1}{\prod_{i=1}^{n} w_i} \binom{n+d-1}{d}$$

Overall, the complexity is divided by $(\prod w_i)^{\omega}$ when compared to a homogeneous system of the same degree.

And what about higher dimension?

For homogeneous systems in positive dimension ($m \le n$):

• Bézout bound: $D = \prod_{i=1}^{m} d_i$

► Macaulay bound:
$$d_{\text{reg}} \leq \sum_{i=1}^{m} (d_i - 1) + 1$$

Definition

The sequence f_1, \ldots, f_m is in Noether position iff the sequence $f_1, \ldots, f_m, X_{m+1}, \ldots, X_n$ is regular.

Properties

- Information about which variables really matter to the system.
- Not necessary for homogeneous systems in "big enough" fields, because that property is always satisfied up to a linear change of variables.

And what about higher dimension?

For W-homogeneous systems in positive dimension ($m \le n$):

• Bézout bound: $D = \frac{\prod_{i=1}^{n} d_i}{\frac{777}{777}}$

• Macaulay bound:
$$d_{reg} \leq \sum_{i=1}^{m} (d_i - ???) + ???$$

Which of the weights to use in the formulas?

Definition

The sequence f_1, \ldots, f_m is in Noether position iff the sequence $f_1, \ldots, f_m, X_{m+1}, \ldots, X_n$ is regular.

Properties

- Information about which variables really matter to the system.
- Not necessary for homogeneous systems in "big enough" fields, because that property is always satisfied up to a linear change of variables.

And what about higher dimension?

For W-homogeneous systems in positive dimension ($m \le n$):

• Bézout bound: $D = \frac{\prod_{i=1}^{n} d_i}{\frac{777}{777}}$

► Macaulay bound:
$$d_{\text{reg}} \leq \sum_{i=1}^{m} (d_i - ???) + ???$$

Which of the weights to use in the formulas?

Definition

The sequence f_1, \ldots, f_m is in Noether position iff the sequence $f_1, \ldots, f_m, X_{m+1}, \ldots, X_n$ is regular.

Properties

- Information about which variables really matter to the system.
- Not necessary for homogeneous systems in "big enough" fields, because that property is always satisfied up to a linear change of variables.

Result (Faugère, Safey, V.)

Sequences in Noether pos. are generic amongst *W*-homo. seq. of given *W*-degree, assuming there exists some sequence in Noether position with that *W*-degree.

Bézout bound:

$$D = \frac{\prod_{i=1}^{m} d_i}{\prod_{i=1}^{m} w_i}$$

Macaulay bound:

$$d_{\mathsf{reg}} = \sum_{i=1}^{m} (d_i - w_i) + \max\{w_j : j \le m\}$$

- ► Algorithm matrix-F₅ still runs in complexity polynomial in the Bézout bound.
- Algorithm FGLM only works for zero-dimensional systems.
- These results are nonetheless helpful when we study affine systems (through homogenization).

Result (Faugère, Safey, V.)

Sequences in Noether pos. are generic amongst *W*-homo. seq. of given *W*-degree, assuming there exists some sequence in Noether position with that *W*-degree.

Bézout bound:

$$D = \frac{\prod_{i=1}^{m} d_i}{\prod_{i=1}^{m} w_i}$$

Macaulay bound:

$$d_{\mathsf{reg}} = \sum_{i=1}^m (d_i - w_i) + \max\{w_j : j \le m\}$$

- ► Algorithm matrix-F₅ still runs in complexity polynomial in the Bézout bound.
- Algorithm FGLM only works for zero-dimensional systems.
- These results are nonetheless helpful when we study affine systems (through homogenization).

n	deg(1)	t _{F₅} (qh)	Ratio for F_5	$t_{ m FGLM}(qh)$	Ratio for FGLM
7	512	0.09s	3.2	0.06s	1.7
8	1024	0.39s	4.2	0.17s	1.9
9	2048	1.63s	4.9	0.59s	2.0
10	4096	7.54s	5.4	2.36s	2.6
11	8192	33.3s	6.4	17.5s	2.4
12	16384	167.9s	6.8	115.8s	
13	32768	796.7s	8.4	782.74s	
14	65536	5040.1s	∞	5602.27s	

Benchmarks obtained with FGb on **generic** affine systems with *W*-degree $(4, \ldots, 4)$ for $W = (2, \ldots, 2, 1, 1)$

n	deg(1)	t _{F₅} (qh)	Ratio for F_5	<i>t</i> _{FGLM} (qh)	Ratio for FGLM
3	16	0.00s		0.00s	
4	512	0.03s	3.7	0.07s	
5	65536	935.39s	6.9	2164.38s	3.2

Benchmarks obtained with systems arising in the DLP on Edwards curves, with *W*-degree (4) for W = (2, ..., 2, 1)(Faugère, Gaudry, Huot, Renault 2013)

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic hypotheses
- Variant of the usual strategy for these systems (variant of F₅ + weighted order)
- Complexity results for F₅ and FGLM for this strategy
 - Complexity overall divided by $(\prod w_i)^{\omega}$
 - Polynomial in the number of solutions

Perspectives

- Overdetermined systems: adapt the definitions and the results
- Affine systems: find the most appropriate system of weights

Conclusion

What we have done

- Theoretical results for quasi-homogeneous systems under generic hypotheses
- Variant of the usual strategy for these systems (variant of F₅ + weighted order)
- Complexity results for F₅ and FGLM for this strategy
 - Complexity overall divided by $(\prod w_i)^{\omega}$
 - Polynomial in the number of solutions

Perspectives

- Overdetermined systems: adapt the definitions and the results
- Affine systems: find the most appropriate system of weights

Thanks for listening!